On curvatures of ruled surfaces in Minkowski 3-spaces

Dae Won Yoon ${ }^{\text {i }}$
Department of Mathematics Education and RINS
Gyeongsang National University, Jinju 660-701, South Korea
dwyoon@gsnu.ac.kr
Joon Hee Park
Department of Mathematics Education
Gyeongsang National University, Jinju 660-701, South Korea

Received: 04/12/2006; accepted: 18/07/2007.

Abstract

In this paper, we classify ruled surfaces of non-degenerate second fundamental form in Minkowski 3 -spaces satisfying some algebraic equations in terms of the second mean curvature, the mean curvature and the Gaussian curvature.

Keywords: Gaussian curvature, second mean curvature, mean curvature, Minkowski surface, non-developable ruled surface.

MSC 2000 classification: 53B25, 53C50.

1 Introduction

The inner geometry with non-degenerate second fundamental form has been a popular research topic for ages. We will refer the term "non-developable," and by a non-developable surface we mean that a surface free of points of vanishing Gaussian curvature in a Euclidean 3 -space. It is readily seen that the second fundamental form of a surface is non-degenerate if and only if a surface is nondevelopable. On such a surface M, we can regard the second fundamental form $I I$ of a surface M as a new Riemannian metric or pseudo-Riemannian metric on the Riemannian or pseudo-Riemannian manifold $(M, I I)$. In this case, we can define the Gaussian curvature and the mean curvature of non-degenerate second fundamental form, denoted by $K_{I I}$ and $H_{I I}$ respectively, these are nothing but the Gaussian curvature and the mean curvature of $(M, I I)$. By Briosch's formula in a Euclidean 3-space and a Minkowski 3 -space we are able to computer $K_{I I}$ of M by replacing the components of the first fundamental form E, F, G by the components of the second fundamental form e, f, g, respectively. The curvature $K_{I I}$ is called the second Gaussian curvature (cf. [2, 3, 7, 11, 13, 14, 15, etc]).

[^0]On the other hand, the mean curvature $H_{I I}$ of non-degenerate second fundamental form in a Minkowski 3-pace \mathbb{R}_{1}^{3} is defined by ([7])

$$
\begin{equation*}
H_{I I}=H+\frac{1}{2} \Delta_{I I} \ln \sqrt{|K|}, \tag{1.1}
\end{equation*}
$$

where K and H are the Gaussian curvature and the mean curvature respectively, and $\Delta_{I I}$ denotes the Laplacian operator of non-degenerate second fundamental form, that is,

$$
\begin{equation*}
\Delta_{I I}=-\frac{1}{\sqrt{|h|}} \sum_{i, j=1}^{2} \frac{\partial}{\partial x^{i}}\left(\sqrt{|h|} h^{i j} \frac{\partial}{\partial x^{j}}\right) \tag{1.2}
\end{equation*}
$$

where $e=h_{11}, f=h_{12}, g=h_{22}, h=\operatorname{det}\left(h_{i j}\right),\left(h^{i j}\right)=\left(h_{i j}\right)^{-1}$ and $\left\{x_{i}\right\}$ is rectangular coordinate system in \mathbb{R}_{1}^{3}. The curvature $H_{I I}$ is said to be the second mean curvature of a surface M in a Minkowski 3 -space.

Several geometers have studied the above mentioned curvatures of surfaces in a Euclidean space and a Minkowski space and obtained many interesting results. In particular, the authors in $[6,7,15,18,19]$ investigated the relationship between the mean curvature and the Gaussian curvature, and in [$7,11,13,19$] investigated the relationship between the Gaussian curvature and the second Gaussian curvature. Also, the authors in $[2,3,7,11,14,17,19]$ studied the relationship between the mean curvature and the second Gaussian curvature, and in $[7,8,17]$ studied the relationship between the Gaussian curvature, the mean curvature and the second mean curvature.

Recently, Y. H. Kim and the present first author([12]) classified non-developable ruled surface in a Minkowski 3-space satisfying the equations

$$
\begin{align*}
& a H^{2}+2 b H K_{I I}+c K_{I I}^{2}=\text { constant }, \\
& a K^{2}+2 b K K_{I I}+c K_{I I}^{2}=\text { constant }, \tag{1.3}
\end{align*}
$$

where a, b, c are constants.
In this article, we investigate a non-developable ruled surface in a Minkowski 3 -space \mathbb{R}_{1}^{3} satisfying the equations

$$
\begin{align*}
& a H^{2}+2 b H H_{I I}+c H_{I I}^{2}=\text { constant }, \tag{1.4}\\
& a K^{2}+2 b K H_{I I}+c H_{I I}^{2}=\text { constant }, \tag{1.5}
\end{align*}
$$

along each ruling, where a, b, c are constant. If a surface satisfies the equations (1.4) and (1.5), then a surface is said to be a $H H_{I I}$-quadric and $K H_{I I}$-quadric, respectively.

2 Preliminaries

Let \mathbb{R}_{1}^{3} be a Minkowski 3 -space with the scalar product of index 1 given by $\langle\cdot, \cdot\rangle=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}$, where $\left(x_{1}, x_{2}, x_{3}\right)$ is a standard rectangular coordinate system of \mathbb{R}_{1}^{3}. A vector x of \mathbb{R}_{1}^{3} is said to be space-like if $\langle x, x\rangle>0$ or $x=0$, time-like if $\langle x, x\rangle<0$ and null if $\langle x, x\rangle=0$ and $x \neq 0$. A time-like or null vector in \mathbb{R}_{1}^{3} is said to be causal.

Now, we define a ruled surface M in \mathbb{R}_{1}^{3}. Let I and J be open intervals containing 0 in the real line \mathbb{R}. Let $\alpha=\alpha(s)$ be a curve of J into \mathbb{R}_{1}^{3} and $\beta=\beta(s)$ a vector field along α. Then, a ruled surface M is defined by the parametrization given as follows:

$$
x=x(s, t)=\alpha(s)+t \beta(s), \quad s \in J, \quad t \in I .
$$

For such a ruled surface, α and β are called the base curve and the director vector field, respectively.

According to the causal character of α^{\prime} and β, there are four possibilities:
(1) α^{\prime} and β are non-null and linearly independent.
(2) α^{\prime} is null and β is non-null with $\left\langle\alpha^{\prime}, \beta\right\rangle \neq 0$.
(3) α^{\prime} is non-null and β is null with $\left\langle\alpha^{\prime}, \beta\right\rangle \neq 0$.
(4) α^{\prime} and β are null with $\left\langle\alpha^{\prime}, \beta\right\rangle \neq 0$.

It is easily to see that, with an appropriate change of the curve α, cases (2) and (3) reduce to (1) and (4), respectively (For the details, see [1]).

First of all, we consider the ruled surface of the case (1). In this case, the ruled surface M is said to be cylindrical if the director vector field β is constant and non-cylindrical otherwise.

Let the base curve α and the director vector field β be non-null. Then, the base curve α can be chosen to be orthogonal to the director vector field β and β can be normalized satisfying $\langle\beta(s), \beta(s)\rangle=\varepsilon(= \pm 1)$ for all $s \in J$. In this case, according to the character of vector fields α^{\prime} and β, we have ruled surfaces of five different kinds as follows: If the base curve α is space-like or time-like, then the ruled surface M is said to be of type M_{+}or type M_{-}, respectively. Also, the ruled surface of type M_{+}can be divided into three types. If the vector field β is space-like, it is said to be of type M_{+}^{1} or M_{+}^{2} if β^{\prime} is non-null or null, respectively. When the vector field β is time-like, β^{\prime} is space-like because of the causal character. In this case, M is said to be of type M_{+}^{3}. On the other hand, for the ruled surface of type M_{-}, the director vector field is always space-like. According as its derivative β^{\prime} is non-null or null, it is also said to be of type
M_{-}^{1} or M_{-}^{2}, respectively (cf. [10]). The ruled surface M of the case (4) is called a null scroll. One of typical examples of null scrolls is B-scroll which is defined as follows:

Let $\alpha(s)$ be a null curve in \mathbb{R}_{1}^{3} with Cartan frame $\{A, B, C\}$, i.e., A, B, C are vector fields along α in \mathbb{R}_{1}^{3} satisfying the following conditions:

$$
\begin{array}{ll}
<A, A>=<B, B>=0, & <A, B>=-1, \\
<A, C>=<B, C>=0, & <C, C>=1,
\end{array}
$$

and

$$
\begin{aligned}
\alpha^{\prime} & =A, \\
C^{\prime} & =-a A-k(s) B,
\end{aligned}
$$

where a is a constant and $k(s)$ a function vanishing nowhere.
Then the map

$$
\begin{aligned}
& x: M \longrightarrow \mathbb{R}_{1}^{3} \\
& \quad(s, t) \rightarrow \alpha+t B(s)
\end{aligned}
$$

defines a Lorentz surface M in \mathbb{R}_{1}^{3} that L. K. Graves ([9]) called a B-scroll.
Throughout the paper, we assume the ruled surface M under consideration is connected unless stated otherwise.

On the other hand, many geometers have been interested in studying submanifolds of Euclidean and pseudo-Euclidean space in terms of the so-called finite type immersion ([4]). Also, such a notion can be extended to smooth maps on submanifolds, namely the Gauss map ([5]). In this regard, Y. H. Kim and the first author defined pointwise finite type Gauss map ([10]). In particular, the Gauss map G on a submanifold M of a pseudo-Euclidean space \mathbb{E}_{s}^{m} of index s is said to be of pointwise 1-type if $\Delta G=f G$ for some smooth function f on M where Δ denotes the Laplace operator defined on M. In [10] the authors showed that minimal non-cylindrical ruled surfaces in a Minkowski 3space have pointwise 1-type Gauss map. Based on this fact, the authors proved the following theorem which will be useful to prove our theorems in this paper.

1 Theorem ([10]). Let M be a non-cylindrical ruled surface with spacelike or time-like base curve in a Minkowski 3-space. Then, the Gauss map is of pointwise 1-type if and only if M is an open part of one of the following spaces: the space-like or time-like helicoid of the 1st, the 2nd and the 3rd kind, the space-like or time-like conjugate of Enneper's surface of the 2nd kind.

3 Main Results

In this section we study ruled $H H_{I I}$-quadric surface and $K H_{I I}$-quadric surface M in a Minkowski 3-space \mathbb{R}_{1}^{3}. Thus the ruled surface M under consideration
must have the non-degenerate second fundamental form which automatically implies that M is non-developable.

2 Theorem. Let a, b, c be constants with $a^{2}+b^{2}+c^{2} \neq 0, a-6 b+9 c \neq 0$. If M is a non-developable $H_{H_{I I}-q u a d r i c ~ r u l e d ~ s u r f a c e ~ w i t h ~ n o n-n u l l ~ b a s e ~ c u r v e ~ i n ~}^{n}$ a Minkowski 3-space. Then M is an open part of one of the following surfaces :
(1) the helicoid of the 1 st kind as space-like or time-like surface,
(2) the helicoid of the 2nd kind as space-like or time-like surface,
(3) the helicoid of the 3rd kind as space-like or time-like surface,
(4) the conjugate of Enneper's surfaces of the 2nd kind as space-like or timelike surface.

Proof. We consider two cases separately.
Case 1. Let M be a non-developable ruled surface of the three types M_{+}^{1}, M_{+}^{3} or M_{-}^{1}. Then the parametrization for M is given by

$$
x=x(s, t)=\alpha(s)+t \beta(s)
$$

such that $\langle\beta, \beta\rangle=\varepsilon_{1}(= \pm 1),\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=\varepsilon_{2}(= \pm 1)$ and $\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle=0$. In this case α is the striction curve of x, and the parameter is the arc-length on the (pseudo-)spherical curve β.

The first fundamental form of the surface M is given by $E=\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle+$ $\varepsilon_{2} t^{2}, F=\left\langle\alpha^{\prime}, \beta\right\rangle$ and $G=\varepsilon_{1}$. For later use, we define the smooth functions Q, J and D as follows:

$$
Q=\left\langle\alpha^{\prime}, \beta \times \beta^{\prime}\right\rangle \neq 0, \quad J=\left\langle\beta^{\prime \prime}, \beta^{\prime} \times \beta\right\rangle, \quad D=\sqrt{\left|E G-F^{2}\right|}
$$

In terms of the orthonormal basis $\left\{\beta, \beta^{\prime}, \beta \times \beta^{\prime}\right\}$ we obtain

$$
\begin{gather*}
\alpha^{\prime}=\varepsilon_{1} F \beta-\varepsilon_{1} \varepsilon_{2} Q \beta \times \beta^{\prime} \tag{3.1}\\
\beta^{\prime \prime}=\varepsilon_{1} \varepsilon_{2}\left(-\beta+J \beta \times \beta^{\prime}\right) \tag{3.2}\\
\alpha^{\prime} \times \beta=\varepsilon_{2} Q \beta^{\prime} \tag{3.3}
\end{gather*}
$$

which imply $E G-F^{2}=-\varepsilon_{2} Q^{2}+\varepsilon_{1} \varepsilon_{2} t^{2}$. And, the unit normal vector N is given by $N=\frac{1}{D}\left(\varepsilon_{2} Q \beta^{\prime}-t \beta \times \beta^{\prime}\right)$. Then, the components e, f and g of the second fundamental form are expressed as

$$
e=\frac{1}{D}\left(\varepsilon_{1} Q(F-Q J)-Q^{\prime} t+J t^{2}\right), \quad f=\frac{Q}{D} \neq 0, \quad g=0
$$

Therefore, the Gaussian curvature K and the mean curvature H are given by

$$
\begin{gather*}
K=\frac{Q^{2}}{D^{4}}, \tag{3.4}\\
H=\frac{1}{2 D^{3}}\left(\varepsilon_{1} J t^{2}-\varepsilon_{1} Q^{\prime} t-Q F-Q^{2} J\right) . \tag{3.5}
\end{gather*}
$$

On the other hand, by (1.2) the Laplacian operator of non-degenerate second fundamental form $I I$ is

$$
\begin{align*}
\Delta_{I I}= & -\frac{2 D}{Q} \frac{\partial^{2}}{\partial s \partial t}+\frac{1}{Q^{2}}\left(2 J D t-Q^{\prime} D\right) \frac{\partial}{\partial t}+ \\
& +\frac{D}{Q^{2}}\left(\varepsilon_{1} Q F-\varepsilon_{1} Q^{2} J-Q^{\prime} t+J t^{2}\right) \frac{\partial^{2}}{\partial t^{2}} . \tag{3.6}
\end{align*}
$$

Thus, by using (1.1), (3.4), (3.5) and (3.6) the second mean curvature $H_{I I}$ is given by

$$
\begin{equation*}
H_{I I}=\frac{1}{2 Q^{2} D^{3}}\left(-2 J t^{4}+\left(2 \varepsilon_{1} Q F+5 \varepsilon_{1} Q^{2} J\right) t^{2}+3 \varepsilon_{1} Q^{2} Q^{\prime} t+Q^{3} F-3 Q^{4} J\right) \tag{3.7}
\end{equation*}
$$

First of all, we suppose that $Q^{2}-\varepsilon_{1} t^{2}>0$. We now differentiate H and $H_{I I}$ with respect to t, the results are

$$
\begin{equation*}
H_{t}=\frac{1}{2 D^{5}}\left(J t^{3}-2 Q^{\prime} t^{2}-\varepsilon_{1} Q(3 F+Q J) t-\varepsilon_{1} Q^{2} Q^{\prime}\right) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
\left(H_{I I}\right)_{t}=\frac{1}{2 Q^{2} D^{5}}\left(2 \varepsilon_{1} J t^{5}\right. & +\left(2 Q F-3 Q^{2} J\right) t^{3}+ \\
& \left.+6 Q^{2} Q^{\prime} t^{2}+\left(7 \varepsilon_{1} Q^{3} F+\varepsilon_{1} Q^{4} J\right) t+\varepsilon_{1} Q^{4} Q^{\prime}\right) \tag{3.9}
\end{align*}
$$

Now, suppose that a non-developable ruled surface is $H H_{I I}$-quadric surface. Then we have by (1.4)

$$
a H H_{t}+b\left(H_{t} H_{I I}+H\left(H_{I I}\right)_{t}\right)+c H_{I I}\left(H_{I I}\right)_{t}=0,
$$

which implies we have

$$
\begin{equation*}
a Q^{4} A_{1}+b Q^{2} B_{1}+c C_{1}=0 \tag{3.10}
\end{equation*}
$$

where we put

$$
\begin{align*}
A_{1}= & \varepsilon_{1} J^{2} t^{5}-3 \varepsilon_{1} J Q^{\prime} t^{4}+\left(4 Q J F-2 Q^{2} J^{2}+2 \varepsilon_{1} Q^{\prime 2}\right) t^{3}+ \\
& +\left(2 Q^{2} Q^{\prime} J+5 Q Q^{\prime} F\right) t^{2}+\left(Q^{2} Q^{\prime 2}+4 \varepsilon_{1} Q^{3} J F+\varepsilon_{1} Q^{4} J^{2}+3 \varepsilon_{1} Q^{2} F^{2}\right) t+ \\
& +\varepsilon_{1} Q^{3} Q^{\prime}(F+Q J), \\
B_{1}= & 2 Q^{\prime} J t^{6}+\left(8 \varepsilon_{1} Q J F+2 \varepsilon_{1} Q^{2} J^{2}\right) t^{5}+\left(-6 \varepsilon_{1} Q Q^{\prime} F+4 \varepsilon_{1} Q^{2} Q^{\prime} J\right) t^{4}+ \\
& -\left(12 \varepsilon_{1} Q^{2} Q^{\prime 2}+8 Q^{2} F^{2}+8 Q^{3} J F+4 Q^{4} J^{2}\right) t^{3}-\left(26 Q^{3} Q^{\prime} F+2 Q^{4} Q^{\prime} J\right) t^{2}+ \\
& -\left(6 Q^{4} Q^{\prime 2}+10 \varepsilon_{1} Q^{4} F^{2}-2 \varepsilon_{1} Q^{6} J^{2}\right) t-4 \varepsilon_{1} Q^{5} Q^{\prime} F, \\
C_{1}= & -4 \varepsilon_{1} J^{2} t^{9}+16 Q^{2} J^{2} t^{7}-6 Q^{2} Q^{\prime} J t^{6}+\varepsilon_{1} Q^{2}\left(4 F^{2} 8 Q J F-23 Q^{2} J^{2}\right) t^{5}+ \\
& +\varepsilon_{1} Q^{3} Q^{\prime}(18 F+15 Q J) t^{4}+Q^{4}\left(18 \varepsilon_{1} Q^{\prime}+16 F^{2}+28 Q J F+14 Q^{2} J^{2}\right) t^{3}+ \\
& +23 Q^{5} Q^{\prime} F t^{2}+Q^{6}\left(9 Q^{\prime 2}+7 \varepsilon_{1} F^{2}-20 \varepsilon_{1} Q J F-3 \varepsilon_{1} Q^{2} J^{2}\right) t+ \\
& +3 \varepsilon_{1} Q^{7} Q^{\prime} F-9 \varepsilon_{1} Q^{8} Q^{\prime} J . \tag{3.11}
\end{align*}
$$

The direct computation of the left-hand side of (3.10) gives a polynomial in t with functions of s as the coefficients and thus they must be zero. We can obtain that the coefficient of the highest order t^{16} of the equation (3.10) is

$$
4 c \varepsilon_{1} J^{2}=0 .
$$

Therefore, one finds $J=0$ since $c \neq 0$, which implies that the coefficient of t^{5} is

$$
4 c \varepsilon_{1} Q^{2} F^{2}=0
$$

from this $F=0$. Thus, from $J=F=0$ we have

$$
(a-6 b+9 c) Q^{\prime 2}=0 .
$$

Since $a-6 b+9 c \neq 0$, one obtain $Q^{\prime}=0$. In this case the surface is minimal. Since $E G-F^{2}=\varepsilon_{1} \varepsilon_{2} t^{2}-\varepsilon_{2} Q^{2}$ and $Q^{2}-\varepsilon_{1} t^{2}>0$. Therefore, the surface is space-like or time-like when $\varepsilon_{2}=-1$ or $\varepsilon_{2}=1$, respectively. But, $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(-1,-1)$ is impossible because of the causal character. Let $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(-1,1)$. Then M is of the type M_{+}^{3}. Thus the surface is a helicoid of the 3rd kind according to Theorem 1. If $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(1, \pm 1)$, then M is of the type M_{+}^{1} or M_{-}^{1}. Hence the surface is a helicoid of the 1st kind or 2nd kind according to Theorem 1.

Next, we suppose that $Q^{2}-\varepsilon_{1} t^{2}<0$. By the similar discussion as above we can also obtain $J=F=0$ and $Q^{\prime}=0$ when $a-6 b+9 c \neq 0$. Therefore, the surface is minimal. Since $E G-F^{2}=-\varepsilon_{2}\left(Q^{2}-\varepsilon_{1} t^{2}\right)$ and $Q^{2}-\varepsilon_{1} t^{2}<0$. Consequently, M is space-like or time-like according to $\varepsilon_{2}=1$ or $\varepsilon_{2}=-1$,
respectively. In this case, $\varepsilon_{1}=1$. Therefore, M is of type M_{+}^{1} or M_{-}^{1} depending on $\varepsilon_{2}= \pm 1$. Thus, the surface is a helicoid of the 1 st kind and the 2 nd kind according to Theorem 1.

Case 2. Let M be a non-developable ruled surface of type M_{+}^{2} or M_{-}^{2}. Then, the surface M is parametrized by

$$
x(s, t)=\alpha(s)+t \beta(s)
$$

In this case, the base curve α is space-like or time-like and the director vector field β is space-like but β^{\prime} is null. So, we may take α and β satisfying $\left\langle\alpha^{\prime}, \beta\right\rangle=0$, $\langle\beta, \beta\rangle=1,\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=0$ and $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=\varepsilon_{1}(= \pm 1)$. We have put the non-zero functions q and R as follows:

$$
q=\left\|x_{s}\right\|^{2}=\varepsilon\left\langle x_{s}, x_{s}\right\rangle=\varepsilon\left(\varepsilon_{1}+2 R t\right), \quad R=\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle
$$

where ε denotes the sign of x_{s}. Therefore, the components of the first fundamental form are $E=\varepsilon q, F=0$ and $G=1$. Since $\beta \times \beta^{\prime}$ is a null vector field orthogonal to β^{\prime}, we can assume $\beta \times \beta^{\prime}=\beta^{\prime}$. Since β^{\prime} is a null direction in the hyperboloid $\{\mathbf{x} \mid\langle\mathbf{x}, \mathbf{x}\rangle=1\}, \beta$ can be chosen as a straight line. Changing the parameter s (if necessary), we have $\beta^{\prime \prime}=0$.

Let $\left\{\alpha^{\prime}, \beta, \alpha^{\prime} \times \beta\right\}$ be a moving frame along M. Then, β^{\prime} can be written as

$$
\begin{equation*}
\beta^{\prime}=\varepsilon_{1} R\left(\alpha^{\prime}-\alpha^{\prime} \times \beta\right) \tag{3.12}
\end{equation*}
$$

It follows that the function R never vanishes everywhere on M. Since $\beta^{\prime \prime}=0$, (3.12) implies

$$
\begin{equation*}
\alpha^{\prime \prime}=-R \beta+\frac{R^{\prime}}{R} \alpha^{\prime} \times \beta \tag{3.13}
\end{equation*}
$$

On the other hand, the unit normal vector field of M is given by

$$
N=\frac{1}{\sqrt{q}}\left(\alpha^{\prime} \times \beta-t \beta^{\prime}\right)
$$

from which the components of the second fundamental form e, f, and g are obtained as

$$
e=-\frac{\varepsilon}{\sqrt{q} R}\left(R R^{\prime} t+\varepsilon_{1} R^{\prime}\right), \quad f=\frac{\varepsilon}{\sqrt{q}} R, \quad g=0 .
$$

Thus, the Gaussian curvature K, the mean curvature H and the second mean curvature $H_{I I}$ are given respectively by

$$
\begin{equation*}
K=\frac{R^{2}}{q^{2}} \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
H=-\frac{\varepsilon}{2 R q^{3 / 2}}\left(R R^{\prime} t+\varepsilon_{1} R^{\prime}\right), \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{I I}=\frac{\varepsilon}{2 R q^{\frac{3}{2}}}\left(-R R^{\prime} t+\varepsilon_{1} R^{\prime}\right) . \tag{3.16}
\end{equation*}
$$

Suppose that the surface is $H H_{I I}$-quadric surface. Similarly to Case 1, we have then

$$
\begin{aligned}
& (a+2 b+c) R R^{\prime 2}=0, \\
& (3 a-2 b-5 c) R R^{\prime 2}=0, \\
& (a-3 b+2 c) R R^{\prime 2}=0
\end{aligned}
$$

which imply $R^{\prime}=0$ because a, b, c are non-zero constants. Thus, from (3.15) M is minimal, that is, it is a conjugate of Enneper's surface of the 2nd kind as space-like or time-like surface according to Theorem 1. This completes the proof.

QED
3 Remark. In Case 1 of Theorem 2, if $a-6 b+9 c=0$, then, $J=F=0$ with arbitrary Q^{\prime}. By (3.5) and (3.7) we get the equation $H_{I I}=-3 H$. In this case, from (2) and (3.2) we have

$$
\begin{align*}
& \alpha^{\prime}=-\varepsilon_{1} \varepsilon_{2} Q \beta \times \beta^{\prime}, \\
& \beta^{\prime \prime}=-\varepsilon_{1} \varepsilon_{2} \beta . \tag{3.17}
\end{align*}
$$

To solve the equation (3.17) we consider four cases separately.

1. $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(1,1)$. Without loss of generality, we may assume $\beta(0)=$ $(0,0,1)$. Then we have

$$
\beta(s)=\left(d_{1} \sin s, d_{2} \sin s, \cos s+d_{3} \sin s\right)
$$

for some constants d_{1}, d_{2}, d_{3} satisfying $-d_{1}^{2}+d_{2}^{2}+d_{3}^{2}=1$. Since $\langle\beta, \beta\rangle=1$, we have $-d_{1}^{2}+d_{2}^{2}=1$ and $d_{3}=0$. From this we can obtain

$$
\beta(s)=\left(d_{1} \sin s, \pm \sqrt{1+d_{1}^{2}} \sin s, \cos s\right),
$$

for some constant d_{1}. Therefore, we have

$$
\alpha(s)=\left(\mp \sqrt{1+d_{1}^{2}},-d_{1}, 0\right) f(s)+\mathbb{E},
$$

where $f(s)=\int Q(s) d s$ and $\mathbb{E}=\left(e_{1}, e_{2}, e_{3}\right)$ is constant vector. Thus, the surface M has the parametrization of the form

$$
\begin{align*}
x(s, t)= & \left(\mp \sqrt{1+d_{1}^{2}} f(s)+t d_{1} \sin s+e_{1},\right. \tag{3.18}\\
& \left.-d_{1} f(s) \pm t \sqrt{1+d_{1}^{2}} \sin s+e_{2}, t \cos s+e_{3}\right),
\end{align*}
$$

where d_{1} is constant, $f(s)=\int Q(s) d s$ and $\left(e_{1}, e_{2}, e_{3}\right)$ is constant vector. If $d_{1}=0$, then the surface M is a conoid of the 3rd kind (See [11]).
2. $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(1,-1)$. Without loss of generality, we may assume $\beta(0)=$ $(0,0,1)$. Then we have

$$
\beta(s)=\left(d_{1} \sinh s, \pm \sqrt{d_{1}^{2}-1} \sinh s, \cosh s\right)
$$

where $d_{1} \leq-1$ or $d_{1} \geq 1$. Therefore, we have

$$
\alpha(s)=\left(\mp \sqrt{d_{1}^{2}-1}, d_{1}, 0\right) f(s)+\mathbb{E},
$$

where $f(s)=\int Q(s) d s$ and $\mathbb{E}=\left(e_{1}, e_{2}, e_{3}\right)$ is constant vector. Thus, the parametrization for the surface M is given by

$$
\begin{align*}
x(s, t)= & \left(\mp \sqrt{d_{1}^{2}-1} f(s)+t d_{1} \sinh s+e_{1},\right. \tag{3.19}\\
& \left.d_{1} f(s) \pm t \sqrt{d_{1}^{2}-1} \sinh s+e_{2}, t \cosh s+e_{3}\right),
\end{align*}
$$

where $d_{1} \leq-1$ or $d_{1} \geq 1, f(s)=\int Q(s) d s$ and $\left(e_{1}, e_{2}, e_{3}\right)$ is constant vector.
If $d_{1}= \pm 1$, then the surface M is a conoid of the 1st kind (See [11]).
3. $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(-1,1)$. We may assume $\beta(0)=(1,0,0)$. Then we have

$$
\beta(s)=\left(\cosh s, d_{2} \sinh s, \pm \sqrt{1-d_{2}^{2}} \sinh s\right)
$$

where $-1 \leq d_{2} \leq 1$. Therefore, we have

$$
\alpha(s)=\left(0, \pm \sqrt{1-d_{2}^{2}},-d_{2}\right) f(s)+\mathbb{E},
$$

where $f(s)=\int Q(s) d s$ and $\mathbb{E}=\left(e_{1}, e_{2}, e_{3}\right)$ is constant vector. Thus, the surface M is parametrized by

$$
\begin{align*}
x(s, t)= & \left(t \cosh s+e_{1}, \pm \sqrt{1-d_{2}^{2}} f(s)+t d_{2} \sinh s+e_{2}\right. \tag{3.20}\\
& \left.-d_{2} f(s) \pm t \sqrt{1-d_{2}^{2}} \sinh s+e_{3}\right)
\end{align*}
$$

where $-1 \leq d_{2} \leq 1, f(s)=\int Q(s) d s$ and $\left(e_{1}, e_{2}, e_{3}\right)$ is constant vector.
If $d_{2}=0$ or $d_{2}= \pm 1$, then the surface M is a conoid of the 2 nd kind (See [11]).
4. $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(-1,-1)$ is impossible because of the causal character.

4 Theorem. Let a, b, c be constants with $c \neq 0$. If M is a non-developable K $H_{I I}$-quadric ruled surface with non-null base curve in a Minkowski 3-space. Then M is an open part of one of the following surfaces:
(1) the helicoid of the 1 st kind as space-like or time-like surface,
(2) the helicoid of the 2nd kind as space-like or time-like surface,
(3) the helicoid of the 3rd kind as space-like or time-like surface,
(4) the conjugate of Enneper's surfaces of the 2nd kind as space-like or timelike surface.

Proof. In order to prove the theorem, we split it into two cases.
Case 1. As is described in Theorem 2 we assume that the non-developable ruled surface M of the three types M_{+}^{1}, M_{+}^{3} or M_{-}^{1} is parametrized by

$$
x=x(s, t)=\alpha(s)+t \beta(s)
$$

such that $\langle\beta, \beta\rangle=\varepsilon_{1}(= \pm 1),\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=\varepsilon_{2}(= \pm 1)$ and $\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle=0$.
On the other hand, the Gaussian curvature K and the second mean curvature $H_{I I}$ are given by (3.4) and (3.7), respectively.

Suppose that the surface M is $K H_{I I}$-quadric. Then the equation (1.5) implies

$$
\begin{equation*}
a K K_{t}+b\left(K_{t} H_{I I}+K\left(H_{I I}\right)_{t}\right)+c H_{I I}\left(H_{I I}\right)_{t}=0 \tag{3.21}
\end{equation*}
$$

First of all, we assume that $Q^{2}-\varepsilon_{1} t^{2}>0$. By differentiating (3.4) with respect to t

$$
\begin{equation*}
K_{t}=\frac{4 \varepsilon_{1} Q^{2} t}{D^{6}} \tag{3.22}
\end{equation*}
$$

Then, by substituting (3.4), (3.7), (3.8) and (3.22) into (3.21) it follows that

$$
\begin{equation*}
4 b^{2} Q^{8} D^{2} A_{2}^{2}=\left(16 a \varepsilon_{1} Q^{8} t+c D^{2} B_{2}\right)^{2} \tag{3.23}
\end{equation*}
$$

where we put

$$
\begin{align*}
A_{2}= & -10 \varepsilon_{1} J t^{5}+\left(23 Q^{2} J+6 Q F\right) t^{3}+6 Q^{2} Q^{\prime} t^{2}+ \\
& -\left(3 \varepsilon_{1} Q^{3} F+4 \varepsilon_{1} Q^{4} J\right) t-3 \varepsilon_{1} Q^{4} Q^{\prime} \\
B_{2}= & 4 \varepsilon_{1} J^{2} t^{9}-16 Q^{2} J^{2} t^{7}+6 Q^{2} Q^{\prime} J t^{6}+\left(28 \varepsilon_{1} Q^{3} J F-4 \varepsilon_{1} Q^{2} F^{2}+23 Q^{4} J^{2}\right) t^{5} \\
& -\left(18 \varepsilon_{1} Q^{3} Q^{\prime} F+15 \varepsilon_{1} Q^{4} Q^{\prime} J\right) t^{4}+ \\
& -\left(16 Q^{4} F^{2}+18 Q^{5} J F+14 Q^{6} J^{2}+18 \varepsilon_{1} Q^{4} Q^{\prime 2}\right) t^{3} \\
& -33 Q^{5} Q^{\prime} F t^{2}+\left(3 \varepsilon_{1} Q^{8} J^{2}+20 \varepsilon_{1} Q^{7} J F-7 \varepsilon_{1} Q^{6} F^{2}-9 Q^{6} Q^{\prime 2}\right) t \\
& -3 \varepsilon_{1} Q^{7} Q^{\prime} F+9 \varepsilon_{1} Q^{8} Q^{\prime} J . \tag{3.24}
\end{align*}
$$

From (3.24) we obtain that the coefficient of the highest order of the equation (3.23) is

$$
16 c^{2} J^{4}=0
$$

It follows $J=0$ since $c \neq 0$, which implies that the coefficient of t^{14} is

$$
16 c Q^{4} F^{4}=0
$$

from this $F=0$. Thus, from $J=F=0$ we can obtain $Q^{\prime}=0$. Consequently, the mean curvature H is identically zero.

Next, we suppose that $Q^{2}-\varepsilon_{1} t^{2}<0$. In this case, by using (3.21) we can also show that the surface M is minimal. Consequently, by the proof of Theorem 2 the surface M is an open part of one of the helicoid of the 1st kind, 2nd kind and 3 rd kind as space-like or time-like surface.

Case 2. Let M be a non-developable ruled surface of type M_{+}^{2} or M_{-}^{2}. In this case, the curve α is space-like or time-like and β space-like but β^{\prime} is null. We will also use the notations given in Theorem 2. Then, the Gaussian curvature K and the second mean curvature $H_{I I}$ are given by (3.14) and (3.16), respectively.

Suppose that the surface M is $K H_{I I}$-quadric. Then, by the equation (3.14), (3.16) and (3.21), and by the similar discussion of Case 1 in Theorem 2, we can also obtain $R^{\prime}=0$ because $c \neq 0$, it follows the mean curvature H is identically zero. Consequently, by the proof of Theorem 2 the surface M is a conjugate of Enneper's surface of the 2nd kind as space-like or time-like surface. This completes the proof.

Finally, we investigate the relations between the second mean curvature, the Gaussian curvature and the mean curvature of null scrolls in \mathbb{R}_{1}^{3}.

Let $\alpha=\alpha(s)$ be null curve in \mathbb{R}_{1}^{3} and $B=B(s)$ be null vector field along α. Then, the null scroll M is parametrized by

$$
x=x(s, t)=\alpha(s)+t B(s)
$$

such that $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=0,\langle B, B\rangle=0$ and $\left\langle\alpha^{\prime}, B\right\rangle=-1$. Furthermore, without loss of generality, we may choose α as a null geodesic of M. We then have $\left\langle\alpha^{\prime}(s), B^{\prime}(s)\right\rangle=0$ for all s. By putting, $C=\alpha^{\prime} \times B$, then $\left\{\alpha^{\prime}, B, C\right\}$ is an orthonormal basis along α in \mathbb{R}_{1}^{3}. In terms of the basis, we have

$$
\begin{align*}
& \alpha^{\prime \prime}=v C, \\
& B^{\prime}=-u C, \tag{3.25}\\
& C^{\prime}=-u \alpha^{\prime}+v B
\end{align*}
$$

where we put $u=\left\langle B, C^{\prime}\right\rangle$ and $v=\left\langle\alpha^{\prime \prime}, C\right\rangle$. The induced Lorentz metric on M is given by $E=u^{2} t^{2}, F=-1, G=0$ and the unit normal vector N is obtained by

$$
N=C+t B^{\prime} \times B .
$$

Thus, the component functions of the second fundamental form are given by

$$
e=\left\langle\alpha^{\prime \prime}+t B^{\prime \prime}, N\right\rangle=u^{3} t^{2}-u^{\prime} t+v, \quad f=\left\langle B^{\prime}, C\right\rangle=-u, \quad g=0,
$$

which imply $H=u$ and $K=u^{2}$.
On the other hand, by (1.2) the Laplacian operator of non-degenerate second fundamental form $I I$ is

$$
\begin{equation*}
\Delta_{I I}=\frac{1}{u} \frac{\partial^{2}}{\partial s \partial t}+\frac{1}{u^{2}}\left(2 u^{3} t-u^{\prime}\right) \frac{\partial}{\partial t}+\frac{1}{u^{2}}\left(u^{3} t^{2}-u^{\prime} t+v\right) \frac{\partial^{2}}{\partial t^{2}}, \tag{3.26}
\end{equation*}
$$

it follows that the second mean curvature $H_{I I}$ is given by

$$
\begin{equation*}
H_{I I}=u . \tag{3.27}
\end{equation*}
$$

Thus, we have the following:
5 Theorem. Let M be null scrolls in a Minkowski 3-space. Then, M satisfies the equations $K=u^{2}, H=u, H_{I I}=u$.

6 Theorem. Let a, b, c, d be constants with $a+2 b+c \neq 0$. B-scrolls over null curves are the only null scrolls with non-degenerate second fundamental form in a Minkowski 3-space satisfying aH ${ }^{2}+2 b H H_{I I}+c H_{I I}^{2}=d$ along each ruling.

Proof. Let M be a null scroll with non-degenerate second fundamental form in a Minkowski 3 -space. Then by Theorem $4 u^{2}(a+2 b+c)=d$, it follows that the function u is a constant when $a+2 b+c \neq 0$. Thus, a null scroll M is a B-scroll.

References

[1] L.J. Alías, A. Ferrández, P. Lucas and M.A. Meroño: On the Gauss map of Bscrolls, Tsukuba J. Math., 22 (1998), 371-377.
[2] C.Baikoussis and Th.Koufogiorgos: On the inner curvature of the second fundamental form of helicoidal surfaces, Arch. Math., 68 (1997) 169-176.
[3] D.E. Blair and Th. Koufogiorgos: Ruled surfaces with vanishing second Gaussian curvature, Mh. Math., 113 (1992), 177-181.
[4] B.-Y. Chen: Total Mean Curvature and Submanifolds of Finite Type, World Scientific Publ., (1984).
[5] B.-Y. Chen and P. Piccinni: Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35 (1987), 161-186.
[6] F. Dillen and W. KÜhnel: Ruled Weingarten surfaces in Minkowski 3-spaces, Manuscripta Math., 98 (1999), 307-320.
[7] F. Dillen and W. Sodsiri: Ruled surfaces of Weingarten type in Minkowski 3-space, J. Geom., 83 (2005), 10-21.
[8] F. Dillen and W. Sodsiri: Ruled surfaces of Weingarten type in Minkowski 3-space II, J. Geom., 84 (2005), 37-44.
[9] L.K. Graves: Codimension one isometric immersions between Lorentz spaces, Trans. Amer. Math. Soc., 252 (1979), 367-392.
[10] Y.H. Kim and D.W. Yoon: Ruled surfaces with pointwise 1-type Gauss map, J. Geometry and Physics, 34 (2000), 191-205.
[11] Y.H. Kim and D.W. Yoon: Classification of ruled surfaces in Minkowski 3-spaces, J. Geometry and Physics, 49 (2004), 89-100.
[12] Y.H. Kim and D.W. Yoon: On non-developable ruled surfaces in Lorentz-Minkowski 3-spaces, Taiwanecs J. Math., 11 (2007), 197-214.
[13] Th. Koufogiorgos and T. Hasanis: A characteristic property of the sphere, Proc. Amer. Math. Soc., 69 (1977) 303-305.
[14] D. Koutroufiotis: Two characteristic properties of the sphere, Proc. Amer. Math. Soc., 44 (1974) 176-178.
[15] H. Rosenberg and R. Sa Earp: The geometry of properly embedded special surfaces in \mathbb{R}^{3}; e.g., surfaces satisfying $a H+b K=1$, where a and b are positive, Duke Math. J., 73 (1994), 291-306.
[16] R. Schneider: Closed convex hypersurfaces with second fundamental form of constant curvature, Proc. Amer. Math. Soc., 35 (1972), 230-233.
[17] G. Stamou: Regelflächen vom Weingarten-type, Colloq. Math., 79 (1999), 77-84.
[18] D.W. Yoon: Some properties of the helicoid as ruled surfaces, JP Jour. Geometry and Topology, 2 (2002), 141-147.
[19] D.W. Yoon: On non-developable ruled surfaces in Euclidean 3-spaces, to appear in Indian J. Pure Appl. Math.

[^0]: ${ }^{\text {i }}$ This work was supported by Korea Research Foundation Grant funded the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-331-C00027)

