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1 Introduction

The inner geometry with non-degenerate second fundamental form has been
a popular research topic for ages. We will refer the term “non-developable,” and
by a non-developable surface we mean that a surface free of points of vanishing
Gaussian curvature in a Euclidean 3-space. It is readily seen that the second
fundamental form of a surface is non-degenerate if and only if a surface is non-
developable. On such a surface M , we can regard the second fundamental form
II of a surfaceM as a new Riemannian metric or pseudo-Riemannian metric on
the Riemannian or pseudo-Riemannian manifold (M, II). In this case, we can
define the Gaussian curvature and the mean curvature of non-degenerate second
fundamental form, denoted by KII and HII respectively, these are nothing but
the Gaussian curvature and the mean curvature of (M, II). By Briosch’s formula
in a Euclidean 3-space and a Minkowski 3-space we are able to computer KII

of M by replacing the components of the first fundamental form E,F,G by the
components of the second fundamental form e, f, g, respectively. The curvature
KII is called the second Gaussian curvature (cf. [2, 3, 7, 11, 13, 14, 15, etc]).
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On the other hand, the mean curvature HII of non-degenerate second fun-
damental form in a Minkowski 3-pace R3

1 is defined by ([7])

HII = H +
1

2
∆II ln

√
|K|, (1.1)

whereK andH are the Gaussian curvature and the mean curvature respectively,
and ∆II denotes the Laplacian operator of non-degenerate second fundamental
form, that is,

∆II = −
1√
|h|

2∑

i,j=1

∂

∂xi

(√
|h|hij ∂

∂xj

)
, (1.2)

where e = h11, f = h12, g = h22, h = det(hij), (h
ij) = (hij)

−1 and {xi} is
rectangular coordinate system in R3

1. The curvature HII is said to be the second
mean curvature of a surface M in a Minkowski 3-space.

Several geometers have studied the above mentioned curvatures of surfaces in
a Euclidean space and a Minkowski space and obtained many interesting results.
In particular, the authors in [6, 7, 15, 18, 19 ] investigated the relationship
between the mean curvature and the Gaussian curvature, and in [ 7, 11, 13, 19]
investigated the relationship between the Gaussian curvature and the second
Gaussian curvature. Also, the authors in [2, 3, 7, 11, 14, 17, 19] studied the
relationship between the mean curvature and the second Gaussian curvature,
and in [ 7, 8, 17] studied the relationship between the Gaussian curvature, the
mean curvature and the second mean curvature.

Recently, Y. H. Kim and the present first author([12]) classified non-develop-
able ruled surface in a Minkowski 3-space satisfying the equations

aH2 + 2bHKII + cK2
II = constant,

aK2 + 2bKKII + cK2
II = constant,

(1.3)

where a, b, c are constants.

In this article, we investigate a non-developable ruled surface in a Minkowski
3-space R3

1 satisfying the equations

aH2 + 2bHHII + cH2
II = constant, (1.4)

aK2 + 2bKHII + cH2
II = constant, (1.5)

along each ruling, where a, b, c are constant. If a surface satisfies the equations
(1.4) and (1.5), then a surface is said to be a HHII -quadric and KHII -quadric,
respectively.
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2 Preliminaries

Let R3
1 be a Minkowski 3-space with the scalar product of index 1 given by

〈·, ·〉 = −dx21+dx22+dx23, where (x1, x2, x3) is a standard rectangular coordinate
system of R3

1. A vector x of R3
1 is said to be space-like if 〈x, x〉 > 0 or x = 0,

time-like if 〈x, x〉 < 0 and null if 〈x, x〉 = 0 and x 6= 0. A time-like or null vector
in R3

1 is said to be causal.
Now, we define a ruled surface M in R3

1. Let I and J be open intervals
containing 0 in the real line R. Let α = α(s) be a curve of J into R3

1 and
β = β(s) a vector field along α. Then, a ruled surface M is defined by the
parametrization given as follows:

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I.

For such a ruled surface, α and β are called the base curve and the director
vector field, respectively.

According to the causal character of α′ and β, there are four possibilities:

(1) α′ and β are non-null and linearly independent.

(2) α′ is null and β is non-null with 〈α′, β〉 6= 0.

(3) α′ is non-null and β is null with 〈α′, β〉 6= 0.

(4) α′ and β are null with 〈α′, β〉 6= 0.

It is easily to see that, with an appropriate change of the curve α, cases (2) and
(3) reduce to (1) and (4), respectively (For the details, see [1]).

First of all, we consider the ruled surface of the case (1). In this case, the
ruled surface M is said to be cylindrical if the director vector field β is constant
and non-cylindrical otherwise.

Let the base curve α and the director vector field β be non-null. Then, the
base curve α can be chosen to be orthogonal to the director vector field β and
β can be normalized satisfying 〈β(s), β(s)〉 = ε(= ±1) for all s ∈ J . In this
case, according to the character of vector fields α′ and β, we have ruled surfaces
of five different kinds as follows: If the base curve α is space-like or time-like,
then the ruled surface M is said to be of type M+ or type M−, respectively.
Also, the ruled surface of type M+ can be divided into three types. If the vector
field β is space-like, it is said to be of type M1

+ or M2
+ if β′ is non-null or null,

respectively. When the vector field β is time-like, β′ is space-like because of the
causal character. In this case, M is said to be of type M3

+. On the other hand,
for the ruled surface of type M−, the director vector field is always space-like.
According as its derivative β′ is non-null or null, it is also said to be of type
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M1
− or M2

−, respectively (cf. [10]). The ruled surface M of the case (4) is called
a null scroll. One of typical examples of null scrolls is B-scroll which is defined
as follows:

Let α(s) be a null curve in R3
1 with Cartan frame {A,B,C}, i.e., A,B,C are

vector fields along α in R3
1 satisfying the following conditions:

< A,A > =< B,B >= 0, < A,B >= −1,
< A,C > =< B,C >= 0, < C,C >= 1,

and
α′ = A,

C ′ = −aA− k(s)B,
where a is a constant and k(s) a function vanishing nowhere.

Then the map
x : M −→ R3

1

(s, t)→ α+ tB(s)

defines a Lorentz surface M in R3
1 that L. K. Graves ([9]) called a B-scroll.

Throughout the paper, we assume the ruled surface M under consideration
is connected unless stated otherwise.

On the other hand, many geometers have been interested in studying sub-
manifolds of Euclidean and pseudo-Euclidean space in terms of the so-called
finite type immersion ([4]). Also, such a notion can be extended to smooth
maps on submanifolds, namely the Gauss map ([5]). In this regard, Y. H. Kim
and the first author defined pointwise finite type Gauss map ([10]). In partic-
ular, the Gauss map G on a submanifold M of a pseudo-Euclidean space Ems
of index s is said to be of pointwise 1-type if ∆G = fG for some smooth func-
tion f on M where ∆ denotes the Laplace operator defined on M . In [10] the
authors showed that minimal non-cylindrical ruled surfaces in a Minkowski 3-
space have pointwise 1-type Gauss map. Based on this fact, the authors proved
the following theorem which will be useful to prove our theorems in this paper.

1 Theorem ([10]). Let M be a non-cylindrical ruled surface with space-
like or time-like base curve in a Minkowski 3-space. Then, the Gauss map is
of pointwise 1-type if and only if M is an open part of one of the following
spaces: the space-like or time-like helicoid of the 1st, the 2nd and the 3rd kind,
the space-like or time-like conjugate of Enneper’s surface of the 2nd kind.

3 Main Results

In this section we study ruled HHII -quadric surface and KHII -quadric sur-
faceM in a Minkowski 3-space R3

1. Thus the ruled surfaceM under consideration
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must have the non-degenerate second fundamental form which automatically
implies that M is non-developable.

2 Theorem. Let a, b, c be constants with a2+ b2+ c2 6= 0, a−6b+9c 6= 0. If
M is a non-developable HHII-quadric ruled surface with non-null base curve in
a Minkowski 3-space. Then M is an open part of one of the following surfaces :

(1) the helicoid of the 1st kind as space-like or time-like surface,

(2) the helicoid of the 2nd kind as space-like or time-like surface,

(3) the helicoid of the 3rd kind as space-like or time-like surface,

(4) the conjugate of Enneper’s surfaces of the 2nd kind as space-like or time-
like surface.

Proof. We consider two cases separately.

Case 1. LetM be a non-developable ruled surface of the three typesM1
+,M

3
+

or M1
−. Then the parametrization for M is given by

x = x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = ε1(= ±1), 〈β′, β′〉 = ε2(= ±1) and 〈α′, β′〉 = 0. In this
case α is the striction curve of x, and the parameter is the arc-length on the
(pseudo-)spherical curve β.

The first fundamental form of the surface M is given by E = 〈α′, α′〉 +
ε2t

2, F = 〈α′, β〉 and G = ε1. For later use, we define the smooth functions Q, J
and D as follows:

Q = 〈α′, β × β′〉 6= 0, J = 〈β′′, β′ × β〉, D =
√
|EG− F 2|.

In terms of the orthonormal basis {β, β′, β × β′} we obtain

α′ = ε1Fβ − ε1ε2Qβ × β′, (3.1)

β′′ = ε1ε2(−β + Jβ × β′), (3.2)

α′ × β = ε2Qβ
′, (3.3)

which imply EG−F 2 = −ε2Q2+ε1ε2t
2. And, the unit normal vector N is given

by N = 1
D (ε2Qβ

′ − tβ × β′). Then, the components e, f and g of the second
fundamental form are expressed as

e =
1

D
(ε1Q(F −QJ)−Q′t+ Jt2), f =

Q

D
6= 0, g = 0.

_____________________________________________________________________________________
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Therefore, the Gaussian curvature K and the mean curvature H are given by

K =
Q2

D4
, (3.4)

H =
1

2D3
(ε1Jt

2 − ε1Q′t−QF −Q2J). (3.5)

On the other hand, by (1.2) the Laplacian operator of non-degenerate second
fundamental form II is

∆II =−
2D

Q

∂2

∂s∂t
+

1

Q2
(2JDt−Q′D)

∂

∂t
+

+
D

Q2
(ε1QF − ε1Q2J −Q′t+ Jt2)

∂2

∂t2
.

(3.6)

Thus, by using (1.1), (3.4), (3.5) and (3.6) the second mean curvature HII is
given by

HII =
1

2Q2D3
(−2Jt4+(2ε1QF +5ε1Q

2J)t2+3ε1Q
2Q′t+Q3F −3Q4J). (3.7)

First of all, we suppose that Q2− ε1t2 > 0. We now differentiate H and HII

with respect to t, the results are

Ht =
1

2D5

(
Jt3 − 2Q′t2 − ε1Q(3F +QJ)t− ε1Q2Q′

)
, (3.8)

and

(HII)t =
1

2Q2D5
(2ε1Jt

5 + (2QF − 3Q2J)t3+

+ 6Q2Q′t2 + (7ε1Q
3F + ε1Q

4J)t+ ε1Q
4Q′). (3.9)

Now, suppose that a non-developable ruled surface is HHII -quadric surface.
Then we have by (1.4)

aHHt + b(HtHII +H(HII)t) + cHII(HII)t = 0,

which implies we have

aQ4A1 + bQ2B1 + cC1 = 0, (3.10)
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where we put

A1 = ε1J
2t5 − 3ε1JQ

′t4 + (4QJF − 2Q2J2 + 2ε1Q
′2)t3+

+ (2Q2Q′J + 5QQ′F )t2 + (Q2Q′2 + 4ε1Q
3JF + ε1Q

4J2 + 3ε1Q
2F 2)t+

+ ε1Q
3Q′(F +QJ),

B1 = 2Q′Jt6 + (8ε1QJF + 2ε1Q
2J2)t5 + (−6ε1QQ′F + 4ε1Q

2Q′J)t4+

− (12ε1Q
2Q′2 + 8Q2F 2 + 8Q3JF + 4Q4J2)t3 − (26Q3Q′F + 2Q4Q′J)t2+

− (6Q4Q′2 + 10ε1Q
4F 2 − 2ε1Q

6J2)t− 4ε1Q
5Q′F,

C1 =− 4ε1J
2t9 + 16Q2J2t7 − 6Q2Q′Jt6 + ε1Q

2(4F 28QJF − 23Q2J2)t5+

+ ε1Q
3Q′(18F + 15QJ)t4 +Q4(18ε1Q

′ + 16F 2 + 28QJF + 14Q2J2)t3+

+ 23Q5Q′Ft2 +Q6(9Q′2 + 7ε1F
2 − 20ε1QJF − 3ε1Q

2J2)t+

+ 3ε1Q
7Q′F − 9ε1Q

8Q′J.

(3.11)

The direct computation of the left-hand side of (3.10) gives a polynomial in t
with functions of s as the coefficients and thus they must be zero. We can obtain
that the coefficient of the highest order t16 of the equation (3.10) is

4cε1J
2 = 0.

Therefore, one finds J = 0 since c 6= 0, which implies that the coefficient of t5 is

4cε1Q
2F 2 = 0,

from this F = 0. Thus, from J = F = 0 we have

(a− 6b+ 9c)Q′2 = 0.

Since a−6b+9c 6= 0, one obtain Q′ = 0. In this case the surface is minimal. Since
EG−F 2 = ε1ε2t

2− ε2Q2 and Q2− ε1t2 > 0. Therefore, the surface is space-like
or time-like when ε2 = −1 or ε2 = 1, respectively. But, (ε1, ε2) = (−1,−1)
is impossible because of the causal character. Let (ε1, ε2) = (−1, 1). Then M
is of the type M3

+. Thus the surface is a helicoid of the 3rd kind according to
Theorem 1. If (ε1, ε2) = (1,±1), then M is of the type M1

+ or M1
−. Hence the

surface is a helicoid of the 1st kind or 2nd kind according to Theorem 1.
Next, we suppose that Q2 − ε1t2 < 0. By the similar discussion as above

we can also obtain J = F = 0 and Q′ = 0 when a − 6b + 9c 6= 0. Therefore,
the surface is minimal. Since EG − F 2 = −ε2(Q2 − ε1t2) and Q2 − ε1t2 < 0.
Consequently, M is space-like or time-like according to ε2 = 1 or ε2 = −1,
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respectively. In this case, ε1 = 1. Therefore, M is of type M1
+ or M1

− depending
on ε2 = ±1. Thus, the surface is a helicoid of the 1st kind and the 2nd kind
according to Theorem 1.

Case 2. LetM be a non-developable ruled surface of typeM2
+ orM2

−. Then,
the surface M is parametrized by

x(s, t) = α(s) + tβ(s).

In this case, the base curve α is space-like or time-like and the director vector
field β is space-like but β′ is null. So, we may take α and β satisfying 〈α′, β〉 = 0,
〈β, β〉 = 1, 〈β′, β′〉 = 0 and 〈α′, α′〉 = ε1(= ±1). We have put the non-zero
functions q and R as follows:

q = ||xs||2 = ε〈xs, xs〉 = ε(ε1 + 2Rt), R = 〈α′, β′〉

where ε denotes the sign of xs. Therefore, the components of the first funda-
mental form are E = εq, F = 0 and G = 1. Since β × β′ is a null vector field
orthogonal to β′, we can assume β × β′ = β′. Since β′ is a null direction in the
hyperboloid {x | 〈x,x〉 = 1}, β can be chosen as a straight line. Changing the
parameter s (if necessary), we have β′′ = 0.

Let {α′, β, α′ × β} be a moving frame along M . Then, β′ can be written as

β′ = ε1R(α
′ − α′ × β). (3.12)

It follows that the function R never vanishes everywhere on M . Since β′′ = 0,
(3.12) implies

α′′ = −Rβ +
R′

R
α′ × β. (3.13)

On the other hand, the unit normal vector field of M is given by

N =
1√
q
(α′ × β − tβ′),

from which the components of the second fundamental form e, f, and g are
obtained as

e = − ε√
qR

(RR′t+ ε1R
′), f =

ε√
q
R, g = 0.

Thus, the Gaussian curvature K, the mean curvature H and the second mean
curvature HII are given respectively by

K =
R2

q2
, (3.14)
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H = − ε

2Rq3/2
(RR′t+ ε1R

′), (3.15)

and
HII =

ε

2Rq
3
2

(−RR′t+ ε1R
′). (3.16)

Suppose that the surface is HHII -quadric surface. Similarly to Case 1, we have
then

(a+ 2b+ c)RR′2 = 0,

(3a− 2b− 5c)RR′2 = 0,

(a− 3b+ 2c)RR′2 = 0

which imply R′ = 0 because a, b, c are non-zero constants. Thus, from (3.15)
M is minimal, that is, it is a conjugate of Enneper’s surface of the 2nd kind
as space-like or time-like surface according to Theorem 1. This completes the
proof. QED

3 Remark. In Case 1 of Theorem 2, if a − 6b + 9c = 0, then, J = F = 0
with arbitrary Q′. By (3.5) and (3.7) we get the equation HII = −3H. In this
case, from (2) and (3.2) we have

α′ = −ε1ε2Qβ × β′,
β′′ = −ε1ε2β.

(3.17)

To solve the equation (3.17) we consider four cases separately.
1. (ε1, ε2) = (1, 1). Without loss of generality, we may assume β(0) =

(0, 0, 1). Then we have

β(s) = (d1 sin s, d2 sin s, cos s+ d3 sin s)

for some constants d1, d2, d3 satisfying −d21 + d22 + d23 = 1. Since 〈β, β〉 = 1, we
have −d21 + d22 = 1 and d3 = 0. From this we can obtain

β(s) = (d1 sin s,±
√
1 + d21 sin s, cos s),

for some constant d1. Therefore, we have

α(s) = (∓
√

1 + d21,−d1, 0)f(s) + E,

where f(s) =
∫
Q(s)ds and E = (e1, e2, e3) is constant vector. Thus, the surface

M has the parametrization of the form

x(s, t) =(∓
√

1 + d21f(s) + td1 sin s+ e1,

− d1f(s)± t
√

1 + d21 sin s+ e2, t cos s+ e3),
(3.18)
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where d1 is constant, f(s) =
∫
Q(s)ds and (e1, e2, e3) is constant vector. If

d1 = 0, then the surface M is a conoid of the 3rd kind (See [11]).
2. (ε1, ε2) = (1,−1). Without loss of generality, we may assume β(0) =

(0, 0, 1). Then we have

β(s) = (d1 sinh s,±
√
d21 − 1 sinh s, cosh s),

where d1 ≤ −1 or d1 ≥ 1. Therefore, we have

α(s) = (∓
√
d21 − 1, d1, 0)f(s) + E,

where f(s) =
∫
Q(s)ds and E = (e1, e2, e3) is constant vector. Thus, the

parametrization for the surface M is given by

x(s, t) =(∓
√
d21 − 1f(s) + td1 sinh s+ e1,

d1f(s)± t
√
d21 − 1 sinh s+ e2, t cosh s+ e3),

(3.19)

where d1 ≤ −1 or d1 ≥ 1, f(s) =
∫
Q(s)ds and (e1, e2, e3) is constant vector.

If d1 = ±1, then the surface M is a conoid of the 1st kind (See [11]).
3. (ε1, ε2) = (−1, 1). We may assume β(0) = (1, 0, 0). Then we have

β(s) = (cosh s, d2 sinh s,±
√

1− d22 sinh s),

where −1 ≤ d2 ≤ 1. Therefore, we have

α(s) = (0,±
√

1− d22,−d2)f(s) + E,

where f(s) =
∫
Q(s)ds and E = (e1, e2, e3) is constant vector. Thus, the surface

M is parametrized by

x(s, t) =(t cosh s+ e1,±
√

1− d22f(s) + td2 sinh s+ e2,

− d2f(s)± t
√

1− d22 sinh s+ e3),
(3.20)

where −1 ≤ d2 ≤ 1, f(s) =
∫
Q(s)ds and (e1, e2, e3) is constant vector.

If d2 = 0 or d2 = ±1, then the surface M is a conoid of the 2nd kind (See
[11]).

4. (ε1, ε2) = (−1,−1) is impossible because of the causal character.

4 Theorem. Let a, b, c be constants with c 6= 0. If M is a non-developable
KHII-quadric ruled surface with non-null base curve in a Minkowski 3-space.
Then M is an open part of one of the following surfaces:
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(1) the helicoid of the 1st kind as space-like or time-like surface,

(2) the helicoid of the 2nd kind as space-like or time-like surface,

(3) the helicoid of the 3rd kind as space-like or time-like surface,

(4) the conjugate of Enneper’s surfaces of the 2nd kind as space-like or time-
like surface.

Proof. In order to prove the theorem, we split it into two cases.
Case 1. As is described in Theorem 2 we assume that the non-developable

ruled surface M of the three types M1
+,M

3
+ or M1

− is parametrized by

x = x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = ε1(= ±1), 〈β′, β′〉 = ε2(= ±1) and 〈α′, β′〉 = 0.
On the other hand, the Gaussian curvatureK and the second mean curvature

HII are given by (3.4) and (3.7), respectively.
Suppose that the surface M is KHII -quadric. Then the equation (1.5) im-

plies
aKKt + b(KtHII +K(HII)t) + cHII(HII)t = 0. (3.21)

First of all, we assume that Q2 − ε1t2 > 0. By differentiating (3.4) with respect
to t

Kt =
4ε1Q

2t

D6
. (3.22)

Then, by substituting (3.4), (3.7), (3.8) and (3.22) into (3.21) it follows that

4b2Q8D2A2
2 = (16aε1Q

8t+ cD2B2)
2, (3.23)

where we put

A2 =− 10ε1Jt
5 + (23Q2J + 6QF )t3 + 6Q2Q′t2+

− (3ε1Q
3F + 4ε1Q

4J)t− 3ε1Q
4Q′,

B2 = 4ε1J
2t9 − 16Q2J2t7 + 6Q2Q′Jt6 + (28ε1Q

3JF − 4ε1Q
2F 2 + 23Q4J2)t5

− (18ε1Q
3Q′F + 15ε1Q

4Q′J)t4+

− (16Q4F 2 + 18Q5JF + 14Q6J2 + 18ε1Q
4Q′2)t3

− 33Q5Q′Ft2 + (3ε1Q
8J2 + 20ε1Q

7JF − 7ε1Q
6F 2 − 9Q6Q′2)t

− 3ε1Q
7Q′F + 9ε1Q

8Q′J.
(3.24)

From (3.24) we obtain that the coefficient of the highest order of the equation
(3.23) is

16c2J4 = 0.
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It follows J = 0 since c 6= 0, which implies that the coefficient of t14 is

16cQ4F 4 = 0,

from this F = 0. Thus, from J = F = 0 we can obtain Q′ = 0. Consequently,
the mean curvature H is identically zero.

Next, we suppose that Q2−ε1t2 < 0. In this case, by using (3.21) we can also
show that the surface M is minimal. Consequently, by the proof of Theorem 2
the surface M is an open part of one of the helicoid of the 1st kind, 2nd kind
and 3rd kind as space-like or time-like surface.

Case 2. LetM be a non-developable ruled surface of typeM2
+ orM2

−. In this
case, the curve α is space-like or time-like and β space-like but β′ is null. We
will also use the notations given in Theorem 2. Then, the Gaussian curvature K
and the second mean curvature HII are given by (3.14) and (3.16), respectively.

Suppose that the surface M is KHII -quadric. Then, by the equation (3.14),
(3.16) and (3.21), and by the similar discussion of Case 1 in Theorem 2, we can
also obtain R′ = 0 because c 6= 0, it follows the mean curvature H is identically
zero. Consequently, by the proof of Theorem 2 the surface M is a conjugate
of Enneper’s surface of the 2nd kind as space-like or time-like surface. This
completes the proof. QED

Finally, we investigate the relations between the second mean curvature, the
Gaussian curvature and the mean curvature of null scrolls in R3

1.

Let α = α(s) be null curve in R3
1 and B = B(s) be null vector field along α.

Then, the null scroll M is parametrized by

x = x(s, t) = α(s) + tB(s)

such that 〈α′, α′〉 = 0, 〈B,B〉 = 0 and 〈α′, B〉 = −1. Furthermore, without
loss of generality, we may choose α as a null geodesic of M . We then have
〈α′(s), B′(s)〉 = 0 for all s. By putting, C = α′ × B, then {α′, B, C} is an
orthonormal basis along α in R3

1. In terms of the basis, we have

α′′ = vC,

B′ = −uC,
C ′ = −uα′ + vB

(3.25)

where we put u = 〈B,C ′〉 and v = 〈α′′, C〉. The induced Lorentz metric on M
is given by E = u2t2, F = −1, G = 0 and the unit normal vector N is obtained
by

N = C + tB′ ×B.
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Thus, the component functions of the second fundamental form are given by

e = 〈α′′ + tB′′, N〉 = u3t2 − u′t+ v, f = 〈B′, C〉 = −u, g = 0,

which imply H = u and K = u2.
On the other hand, by (1.2) the Laplacian operator of non-degenerate second

fundamental form II is

∆II =
1

u

∂2

∂s∂t
+

1

u2
(2u3t− u′) ∂

∂t
+

1

u2
(u3t2 − u′t+ v)

∂2

∂t2
, (3.26)

it follows that the second mean curvature HII is given by

HII = u. (3.27)

Thus, we have the following:

5 Theorem. Let M be null scrolls in a Minkowski 3-space. Then, M sat-
isfies the equations K = u2, H = u,HII = u.

6 Theorem. Let a, b, c, d be constants with a + 2b + c 6= 0. B-scrolls over
null curves are the only null scrolls with non-degenerate second fundamental
form in a Minkowski 3-space satisfying aH2 + 2bHHII + cH2

II = d along each
ruling.

Proof. Let M be a null scroll with non-degenerate second fundamental
form in a Minkowski 3-space. Then by Theorem 4 u2(a+ 2b+ c) = d, it follows
that the function u is a constant when a+ 2b+ c 6= 0. Thus, a null scroll M is
a B-scroll. QED
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