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Abstract. Let E be Dedekind complete, Hausdorff, locally solid Riesz space and P an order
bounded interval. We give a new proofs of Nakano’s theorem, that if E has Fatou property,
P is complete, that the restrictions on P , of all topologies on E having Lebesgue property,
are identical; we also give a measure-theoretic proof of the result that if (E,T ) is a Dedekind
complete, Hausdorff, locally convex-solid Riesz space with Lebesque property, then P is weakly
compact and E is a regular Riesz subspace of E′′.
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1 Introduction and Notation

In this paper, for Riesz spaces, the notations are results of [1] are used. All
vector spaces are over the field of real numbers. N will stand for the set of real
numbers. (E,T ) will denote a Dedekind complete, Hausdorff, linear, locally solid
Riesz space with Fatou property and having {ρ : ρ ∈ D} a filtering upwards
family of Fatou pseudo-norms generating its topology; note (E,T ) has Fatou
property if it has a 0-nbd base consisting of solid and order-closed sets, and has
Lebesgue property if, in E, xα ↓ 0, in order, implies xα → 0 in (E,T ); Lebesgue
property implies Fatou property ([1], p.80). For every ρ ∈ D, Aρ will denote the
band ρ−1(0) in E and so E = Aρ⊕Adρ with ϕρ : E → Adρ the positive projection;
this positive projection ϕρ : E → Adρ is both order and T -continuous. For an
e ∈ E, e > 0, P will denote the order interval {x ∈ E : |x| ≤ e}.

In locally solid Riesz spaces, there are several deep results about P :
One is that if (E,T ) satisfies Fatou property, then P is complete; several so-

phisticated proofs are known ([7, 1, 3, 9]). The proof is simple when (E,T )
is metrizable and we prove that it follows easily from metrizable case (see
also [11], [12] for related ideas and results).

The second result is that any two Haudroff Lebesgue topologies, when re-
stricted to P , are identical. We obtain this result also from the metrizable case.
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Still another well-known result is that if E is a Banach lattice with order-
continuous norm, then P is weakly compact. In more general form, it says that if
(E,T ) is a Dedekind complete, Hausdorff, locally convex-solid Riesz space with
Lebesgue property, then P is weakly compact. We give a measure-theoretic proof
of this.

The following lemma is simple (Cf. [1], lemma 1.25, p. 85).

1 Lemma. Suppose E is metrizable and {xn} be a Cauchy sequence in P .
Then there is a subsequence of {xn}, which we denote by {xs(n)}, for which
o − lim xs(n) exists and {xs(n)} converges to o − limxs(n) (this implies P is
complete).

Proof. Let ρ be a Fatou pseudo-norm generating its topology. Vn = {x ∈
E : ρ(x) ≤ 1

2n+1 is a 0-nbd base. Fix an e ∈ E, e > 0. The bounded order
interval P = {x ∈ E : |x| ≤ e} is closed under arbitrary sup and inf. By taking
subsequence of {xn} and denoting it by {xs(n)}, we assume that, for all n, xs(k)−
xs(l) ∈ Vn, ∀k and ∀l ≥ n. Now, ∀p > 0, ∀q > 0, xs(n) − infn+p≤k≤n+p+q xs(k) ≤∑k=p+q

k=0 |xs(n+k)−xs(n+k+1)| ∈
∑k=p+q

k=0 Vn+k ⊂ Vn−1. Since ρ is a Fatou pseudo-
norm, it easily follows from this that xs(n) − (o − lim inf xs(n)) ∈ Vn−1 and
o − lim inf xs(n) ∈ P . In a similar way, (o − lim supxs(n)) − xs(n) ∈ Vn−1 and
o − lim supxs(n) ∈ P . Thus xs(n) converges to (o − lim inf xs(n)), and also to
(o−lim supxs(n)). So that the Cauchy sequence {xs(n)} converges to o−lim xs(n)

in P . This complete the proof. QED

From Lemma 1, we get:

2 Corollary. Let {xα}, xα ≥ 0 be a Cauchy net in P . Then for every ρ ∈ D,
there is a unique xρ ∈ Adρ ∩P such that ρ(xα−xρ) → 0. Also for any two ρ and
σ in D with ρ ≤ σ, we have ϕρ(xσ) = xρ.

Proof. Fix a ρ ∈ D and put Pρ = {y ∈ Adρ : |y| ≤ ϕρ(e)}. Noting the
facts that ϕρ(y) = y if y ∈ Adρ and ϕρ(e) ≤ e, we get ϕρ(P ) = Pρ ⊂ P . From
ρ(xα − xβ) → 0, we get ρ(ϕρ(xα)−ϕρ(xβ)) → 0. Since (Adρ, ρ) is Hausdorff and
metrizable, by Lemma 1, there is a unique xρ ∈ Adρ ∩ P such that ρ(ϕρ(xα) −
xρ) → 0. This implies that ρ(xα − xρ) → 0. It is easy to see that xρ ≥ 0.

Now take any σ ∈ D, σ ≥ ρ. Since σ(xα−xσ) → 0, we get so ρ(xα−xσ) → 0.
This means ρ(ϕρ(xα) − ϕρ(xσ)) → 0, from which it follows that ϕρ(xσ) =
xρ. QED

Now we prove the Nakano theorem ([1], p.90, Theorem 13.1).

3 Theorem. Every Cauchy net {xα} ⊂ P is convergent in P .

Proof. We first assume that xα ≥ 0. By Corollary 2, for every σ ∈ D, we
get an xσ ∈ P and xσ ↑. Put x = supxσ. We claim that xα → x: Fix a ρ ∈ D.
Now ϕρ(xσ) ↑ ϕρ(x). By Corollary 2, for any σ ≥ ρ, ϕρ(xσ) = xρ and so we get
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ϕρ(x) = xρ. So we have ρ(xα − x) = ρ(ϕρ(xα)− ϕρ(x)) = ρ(ϕρ(xα)− xρ) → 0,
by Corollary 2.

For the general case, one has only to note that if {xα} is a Cauchy net then
{x+

α } and {x−α } are also Cauchy nets. QED

The similar method can be used to prove a well-known property for Haus-
dorff, Dedekind complete, linear, locally solid, Riesz space with Lebesgue prop-
erty. We do it in the next theorem.

4 Theorem. Suppose (E,T ) has Lebesgue property and T0 be another lin-
ear, locally solid topology on E with Lebesgue property. Then, on P , T ≥ T0

([1], Theorem 12.9, p. 87).

Proof. As used above, we take {ρ : ρ ∈ D} to be a filtering upwards family
of pseudo-norms generating the topology of (E,T ). Take a net {xα} ⊂ P, xα ≥ 0
and assume that xα → 0 in T but not in T0. Take a 0-nbd V in T0; we can assume
that xα /∈ V, ∀α. Take another 0-nbd U in T0 such that U + U ⊂ V . Since
(∪{Adρ : ρ ∈ D})d = ∩ρ∈DAρ = {0} (note T is Hausdorff and ∪{Adρ : ρ ∈ D} is
an ideal in E), the closure, in T0, of ∪{Adρ : ρ ∈ D}, is a band and is equal to E.
So take a ρ ∈ D and an e0 ∈ Adρ such that 0 < e0 ≤ e and e− e0 ∈ U (note ∪Adρ
is a dense ideal in E and {Adρ : ρ ∈ D} is filtering upwards). Now xα ∧ e0 → 0
in (E,T ), xα ∧ e0 ∈ Adρ and (Adρ, ρ) metrizable space. By Lemma 1, there is a
sequence {xαn ∧ e0} which order converges to 0 in E. Since (E,T0) is Lebesgue,
we get xαn ∧ e0 converges to 0 in(E,T0). So from some n onwards, xαn ∧ e0 ∈ U .
Now xαn = xαn∧e ≤ (xαn +e−e0)∧(e−e0+e0) ≤ (e−e0)+xαn∧e0 ∈ U+U ⊂ V
which is a contradiction.

The general case of xα can be reduced to the positive case by taking x+
α and

x−α . QED

The following corollary follows immediately from this theorem.

5 Corollary. Let T and T0 be two Hausdorff, Dedekind complete, linear,
locally solid topologies, with Lebesgue property, on a Riesz space E. Then, on
P , T = T0 ([1], Theorem 12.9, p. 87).

Now we come to another well-known result about P . We give a measure-
theoretic proof.

6 Theorem. If (E,T ) has Lebesgue property, then P is weakly compact and
E is a regular Riesz subspace of E′′.

Proof. Here e ∈ E, e > 0, and P = {y ∈ E : |y| ≤ e}; take E0 = {y ∈
E : |y| ≤ ne for some n ∈ N}. E0 is a band in E and is a closed subspace of
E. With the norm on E0, ‖y‖0 = inf{λ ≥ 0 : |y| ≤ λe}, E0 is an M -space with
unit e and so, as a complete lattice, can be identified with C(X) for a compact
Stonian space X. Also it is a simple verification that ‖.‖0-topology is finer
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than T -topology. Take a µ ∈ (E,T )′. Now |µ| is a positive linear functional
on C(X) and so it extends to a positive regular Borel measure on X. Since
|µ| is order continuous (note (E,T ) has Lebesgue property), for any closed
set C with empty interior, |µ|(C) = 0: to prove this, let {fα} ⊂ C(X), fα ↓
χC ; since C has empty interior and C(X) is Dedekind complete, we get fα ↓
0 in C(X), and so |µ|(C) = lim |µ|(fα) = 0 (note |µ| is order continuous).
From this it follows that |µ|(B) = 0 for any meagre Borel set B. Denoting by
β(X) the set of all bounded Borel measurable functions on X, we get linear,
positive, order σ-continuous mapping ψ : β(X) → C(X) with the property
that if {fα} is a bounded, increasing net in C(X) with pointwise sup fα = f ,
then ψ(f) = supψ(fα) in C(X) ([5], Lemma 2, p. 379; note for f ∈ C(X),
we have ψ(f) = f and, in general ψ(f) = f except on a meager subset of
X) and |µ|(g) = |µ|(ψ(g)),∀g ∈ β(X). Let B = {g ∈ β(X) : −1 ≤ g ≤ 1}
and B0 = ψ(B). By Hahn decomposition theorem, X = A ∪ A1, where A, A1

are disjoint, positive and negative Borel subsets of X for µ ([8], p. 273). Thus
µ = (χA−χA1)|µ|. Now the maximum value of µ on B is |µ|(1) =

∫
(χA−χA1)dµ.

Thus µ takes its maximum on B at (χA − χA1) ∈ B, and therefore also on
ψ(χA − χA1) ∈ P . Now by Theorem 3, P is complete in (E,T ) and also every
f ∈ E′ attains its maximum in P ; by James theorem ([4], Theorem 6, p. 139),
P is weakly compact.

Now we prove that E is a regular Riesz subspace of E′′. Naturally E is a
Riesz subspace of E′′. Assume 0 ≤ xα ↑ e in E and there is a x′′ ∈ E′′ such
that x′′ < e and xα ≤ x′′, ∀α. This means {xα} ⊂ P and x′′ /∈ P . Since P is
weakly compact and convex, by separation theorem ([10], 9.2, p.65), there is an
µ ∈ E′ such that < x′′, µ > > sup{µ(g) : g ∈ P} = |µ|(e) (note P is solid).
Now < x′′, µ > ≤ < x′′, |µ| > ≤ < e, |µ| >, a contradiction. This proves the
result. QED
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