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Abstract. The set of j-planes with spreads in PG(3, K), for K a field admitting a quadratic
field extension K+ is shown to be equivalent to the set of all det K+-monomial partial flocks of a
quadratic cone. Using this connection, when K is GF (2r), the set of j-planes is determined and
j = 0, 1, or 2 and correspond to the linear, Walker/Betten or Payne conical flocks, respectively.
When K is the field of real numbers, the set of j-planes is completely determined and j is any
real number > − 1

2
.
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1 Introduction

The ‘geometry’ of flocks of quadratic cones has now reached into many
diverse areas of incidence geometry. For example, it is known that if there is a
translation plane of order q2 with spread in PG(3, q) that admits a Baer group
of order q (fixes a Baer subplane pointwise) there is a corresponding flock of
a quadratic cone. In Johnson [2] it was shown that the q − 1 orbits of length
q of the Baer group on the components of the spread define reguli that share
the pointwise fixed subspace, which, in turn, defines a partial flock of deficiency
one of a quadratic cone. Payne and Thas [7], then show that any deficiency one
partial flock may always be extended to a flock of a quadratic cone. This means
that the net of degree q+1 defined by the components of the Baer subplane is a
regulus net and by derivation of this net, there is an associated translation plane
with spread in PG(3, q) where the Baer group now becomes an affine elation
group. We call such elation groups ‘regulus-inducing’.

Hence, translation planes admitting regulus-inducing elation groups are e-
quivalent to flocks of quadratic cones. However, using the fundamental analysis
of Baker, Ebert and Penttila [1], it has now been shown in Johnson [4] that it
is always possible to connect flocks of quadratic cones with translation planes
admitting cyclic homology groups.

1 Theorem (Johnson [4]). The set of translation planes of order q2 with
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78 N. L. Johnson

spread in PG(3, q) that admit cyclic affine homology groups of order q + 1 is
equivalent to the set of flocks of a quadratic cone.

So, there are intrinsic connections and a complete equivalence between the
set of translation planes q2 admitting regulus-inducing elation groups and with
the set of translation planes of order q2 admitting cyclic homology groups of
order q + 1.

An important class of translation planes of order q2 admitting cyclic ho-
mology groups of order q + 1 are the j-planes that cyclic collineation groups
of order q2 − 1, within which there is an affine cyclic homology group of order
q + 1. Another equally important subset is the class of planes obtained from a
Desarguesian plane by the replacement of a (q + 1)-nest of reguli. These planes
admit a collineation group of order (q+ 1)(q2− 1)/2, that contains two distinct
cyclic affine homology groups of order q + 1.

One of the questions that we are concerned with in this article is how the
j-planes are related to flocks of quadratic cones. We consider this in the general
case of j-planes in PG(3,K), for K a field that admits a quadratic extension.

In Baker, Ebert and Penttila [1], the connection with a flock is not particu-
larly with a given translation plane but with a set of translation planes and the
connection between what are called ‘regular hyperbolic fibrations with constant
back’.

A ‘hyperbolic fibration’ is a set Q of q− 1 hyperbolic quadrics and two car-
rying lines L and M such that the union L ∪M ∪ Q is a cover of the points
of PG(3, q). The term ‘regular hyperbolic fibration’ is used to describe hyper-
bolic fibrations such that for each of its q − 1 quadrics, the induced polarity
interchanges L and M . When this occurs, and (x1, x2, y1, y2) represent points
homogeneously, the hyperbolic quadrics have the form V (x2

1ai+x1x2bi+x2
2ci+

y2
1ei+y1y2fi+y2gi), for i = 1, 2, . . . , q−1 (the variety defined by the quadrics).

When (ei, fi, gi) = (e, f, g) for all i = 1, 2, . . . , q − 1. The regular hyperbolic
quadric is said to have ‘constant back half’.

We recall the principle theorem of Baker, Ebert and Penttila [1].

2 Theorem (Baker, Ebert, Penttila [1]).

(1) Let H: V (x2
1ai + x1x2bi + x2

2ci + y2
1e+ y1y2f + y2g), for i = 1, 2, . . . , q − 1

be a regular hyperbolic fibration with constant back half.

Consider PG(3, q) as (x1, x2, x3, x4) and let C denote the quadratic cone
with equation x1x2 = x2

3.

Define

π0 : x4 = 0, πi : x1ai + x2ci + x3bi + x4 = 0, for 1, 2, . . . , q − 1.

________________________________________________________________________________________________



Homology groups and flocks 79

Then
{πj, j = 0, 1, 2, . . . , q − 1} ,

is a flock of the quadratic cone C.

(2) Conversely, if F is a flock of a quadratic cone, choose a representation as
{πj, j = 0, 1, 2, . . . , q − 1} above. Then, choosing any convenient constant
back half (e, f, g), and defining H as V (x2

1ai+x1x2bi+x2
2ci+y

2
1e+y1y2f+

y2g), for i = 1, 2, . . . , q − 1, then H is a regular hyperbolic fibration with
constant back half.

But all of this works for infinite translation planes as well. In particular, it
is possible to construct infinite flocks of quadratic cones and translation planes
admitting regulus-inducing elation groups. But here we are interested in how
certain homology groups in translation planes produce flocks of quadratic cones
in the finite case and also what happens in the infinite case. In particular, we
consider regulus-inducing homology groups in PG(2,K), where K is the field
of real numbers and show how easy it is to determine such planes from an
arbitrary real function that is continuous and non-decreasing on the positive
real numbers.

Is also of interest to consider collineation groups isomorphic to the mul-
tiplicative group of a field L, since often the group becomes what we call a
H-group, where H is a multiplicative endomorphism of L− {0}. When L is ei-
ther finite or the field of real numbers, such that H is Lebesque integrable then
H(t) = ctj , where j is a real number. In this setting, we obtain a ‘j-plane’. In
this situation, we may utilize the connection between regulus-inducing homology
groups and partial flocks of quadratic cones to show that the associated partial
flocks are monomial. When L is isomorphic to GF (2r), all monomial flocks are
known by the work of Penttila and Storme [8]. Hence, this implies that all j-
planes are determined. When L is the field of real numbers, again analysis of
the associated detK+-partial flock completely determines all possible j-planes.

2 Homology groups and regular hyperbolic fibrations

revisited

In order to understand the method of going back and forth between flocks
of quadratic cones and translation planes admitting affine homology groups, we
remind the reader of the constructions of Johnson [4] by revisiting the various
results.

3 Lemma.

________________________________________________________________________________________________



80 N. L. Johnson

(1) Let H be a hyperbolic fibration of PG(3, q) (a covering of the points by a
set λ of hyperbolic quadrics union two disjoint carrying lines). For each
quadric in λ, choose one of the two reguli (a regulus or its opposite). The
union of these reguli and the carrying lines form a spread in PG(3, q).

(2) Conversely, any spread in PG(3, q) that is a union of hyperbolic quadrics
union two disjoint carrying lines produces a hyperbolic fibration.

4 Lemma. Let π be a translation plane with spread in PG(3,K), for K a
field isomorphic to GF (q), that admits a cyclic affine homology group H. Let Γ
be any H-orbit of components.

(1) Then there is a unique Desarguesian spread Σ containing Γ and the axis
and coaxis of H.

(2) Furthermore, we may represent the coaxis, axis and Γ as follows:

x = 0, y = 0, y = xm;mq+1 = 1;m ∈ K+

where m is in the field K+, a 2-dimensional quadratic extension of K, so
K+ is isomorphic to GF (q2).

(3) A basis may be chosen so that Σ may be coordinatized by K+ as
[
u t
ft u+gt

]
,

for all u, t in K, for suitable constants f and g.

(4) If {1, e} is a basis for K+ over K then e2 = eg + f , and eσ = −e + g,
eσ+1 = −f . Furthermore, (et + u)q+1 = 1 if and only in matrix form
et+ u =

[
u t
ft u+gt

]
, such that u(u+ gt)− ft2 = 1.

(5) The opposite regulus
y = xqm;mq+1 = 1,

may be written in the form

y = x

[
1 0
g −1

] [
u t
ft u+ gt

]
;u(u+ gt)− ft2 = 1.

5 Lemma.

(1) The spread for π has the following form:

x = 0, y = 0, y = xMi

[
u t
ft u+ gft

]
;u(u+ gt)− ft2 = 1

and Mi a set of 2× 2 matrices over K, where i ∈ ρ, some index set., Let

Ri =
{
y = xMiT ; T q+1 = 1

}
, for i ∈ ρ.

________________________________________________________________________________________________



Homology groups and flocks 81

(2) Then Ri is a regulus in PG(3,K).

6 Lemma. The quadratic form for Ri is

V

(
xMi

[
1 g
0 −f

]
M t
i x
t − y

[
1 g
0 −f

]
yt
)
.

xMi

[
1 g
0 −f

]t
M t
ix
t is self-transpose and thus equal to xMi

[
1 g
0 −f

]t
M t
ix
t.

7 Theorem. Let π be a translation plane with spread in PG(3,K), for K
a field. Assume that π admits an affine homology group H

so that some orbit of components is a regulus in PG(3,K).

(1) Then π produces a regular hyperbolic fibration with constant back half.

(2) Conversely, each translation plane obtained from a regular hyperbolic fi-
bration with constant back half admits an affine homology group H, one
orbit of which is a regulus in PG(2,K).

H is isomorphic to a subgroup of the collineation group of a Pappian
spread Σ, coordinatized by a quadratic extension field K+,

H 	
〈
gσ+1; g ∈ K+ − {0)

〉
,

where σ is the unique involution in GalKK
+.

(3) Let H be a regular hyperbolic fibration with constant back half of PG(3,K).
The subgroup of ΓL(4,K) that fixes each hyperbolic quadric of a regular
hyperbolic fibration H and acts trivially on the front half is isomorphic to

〈
ρ,

〈
gσ+1; g ∈ K+ − {0)

〉〉
,

where ρ is defined as follows: If e2 = ef + g, f, g in K and 〈e, 1〉K = K+

then ρ is
[
I 0
0 P

]
, where

P =
[
1 0
g −1

]
.

In particular,
〈
gσ+1; g ∈ K+ − {0)

〉
fixes each regulus and opposite regulus

of each hyperbolic quadric of H and ρ inverts each regulus and opposite regulus
of each hyperbolic quadric.
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82 N. L. Johnson

3 General matrix forms

If we consider the arbitrary case of spreads in PG(3,K), the connection
between translation planes admitting appropriate affine homology groups and
flocks of quadratic cones is not direct when K is infinite. We recall the pertinent
theorem of Johnson [1].

8 Theorem. A regular hyperbolic fibration with constant back half in
PG(3,K), K a field, with carrier lines x = 0, y = 0, may be represented as
follows:

V

(
x

[
δ g(δ)
0 −f(δ)

]
xt − y

[
1 g
0 −f

]
yt
)

for all δ in

{[
u t
ft u+ gt

]σ+1

;u, t ∈ K, (u, t) �= (0, 0)

}
,

where{[
δ g(δ)
0 −f(δ)

]
; δ ∈

{[
u t
ft u+ gt

]σ+1

;u, t ∈ K, (u, t) �= (0, 0)

}}
∪
{[

0 0
0 0

]}

corresponds to a partial flock of a quadratic cone in PG(3,K), and where f and
g are functions on detK+.

9 Theorem. The correspondence between any spread π in PG(3,K) corre-
sponding to the hyperbolic fibration and the partial flock of a quadratic cone in
PG(3,K) is as follows:

If π is

x = 0, y = 0, y = x

[
u t

F (u, t) G(u, t)

]
then the partial flock is given by

[
δu,t g(δu,t)
0 −f(δu,t)

]
with

δu,t = det
[
u t
ft u+ gt

]
,

g(δu,t) = g(uG(u, t) + tF (u, t)) + 2(uF (u, t) − tfG(u, t)),
−f(δu,t) = δF (u,t),G(u,t),

where
δMi = detMi

and

δF (u,t),G(u,t) = det
[
F (u, t) G(u, t)
fG(u, t) F (u, t) + gG(u, t)

]
∈ detK+.
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Homology groups and flocks 83

10 Theorem. If we have a hyperbolic fibration in PG(3,K), there are cor-
responding functions given in the previous theorem such that the corresponding
functions

φs(t) = s2t+ sg(t)− f(t)

are injective for all s in K and for all t ∈ detK+.
Indeed, the functions restricted to detK+ are surjective on detK+.
Furthermore, we obtain.
11 Theorem. Any partial flock of a quadratic cone in PG(3,K), with defin-

ing set λ (i.e., so t ranges over λ and planes of the partial flock are defined via
functions in t) equal to detK+, whose associated functions on detK+, as above,
are surjective on detK+ (K+ some quadratic extension of K), produces a reg-
ular hyperbolic fibration in PG(3,K) with constant back half.

4 Real hyperbolic fibrations

Let R denote the field of real numbers. In Johnson and Liu [5], there is quite
a variety of flocks of quadratic cones in PG(3,R).

Let −f(t) denote a continuous, non-decreasing function on the reals such
that f(0) = 0, such that limt→±∞(−f(t)) = ±∞. It is shown in Johnson and
Liu [5] that the functions φs are bijective, so that there is an associated flock of
a quadratic cone in PG(3, R). Let −f(1) = −f . Then{[

u t
ft u

]
;u, t ∈ R

}
,

is a field, and note that the determinant is u2− t2f , which is non-negative, since
−f(1) > 0. Furthermore, when t > 0 if and only if −f(t) > 0, so it follows the
conditions of the theorem of the previous section are valid. Thus, there is an
induced hyperbolic fibration over the reals R

We first observe that if

C1 =
{
(v, s); v2 +−fs2 = 1

}
,

is an ellipse with center (0, 0) in the real affine plane Π and P = (u, t) is any
point of Π then the line joining (u, t) and (0, 0) nontrivially intersects C1 in a
point (v, s). This means that there is a real number k such that k(v, s) = (u, t).
This implies that any spread in PG(3,R), that admits an affine homology group
one orbit of which is a regulus then the spread is a union of the axis and coaxis
x = 0, y = 0 and a union of reguli, where the reguli are defined as follows:

Dk; y = x

[
k 0

F (k) G(k)

]
T,

________________________________________________________________________________________________



84 N. L. Johnson

such that T is a determinant 1 matrix in the associated field{[
u t
ft u

]
;u, t ∈ R

}
.

We have chosen the notation so that F (k, 0) = F (k) and G(k, 0) = G(k). Recall
that we have generally:[

δu,t g(δu,t)
0 −f(δu,t)

]
; δu,t = det

[
u t
ft u+ gt

]
,

g(δu,t) = g(uG(u, t) + tF (u, t)) + 2(uF (u, t) − tfG(u, t)) ,
−f(δu,t) = δF (u,t),G(u,t) ,

where δMi = detMi, and

δF (u,t),G(u,t) = det
[
F (u, t) G(u, t)
fG(u, t) F (u, t) + gG(u, t)

]
.

It then follows that F (u) = 0 for all u and G(u)2(−f) = −f(u2). For conve-
nience, we note that for any u, t, the derivation of the corresponding regulus of
a given hyperbolic quadric spread will change G(u, t) to −G(u,−t), since the
involution σ is given by the matrix

[[
1 0
0 −1

]]
. In other words, we may take as

one spread
G(u) =

√
f(u2)/f .

Actually,
[
u 0
0 G(u)

]
and

[
u 0
0 G(u)

] [−1 0
0 −1

]
=

[−u 0
0 −G(u)

]
, are in the same regulus

(hence, we require G(−u) = −G(u)). That is, we may assume that u is posi-
tive. Therefore, we may assume that we also have

[−u 0

0 −
√
f((−u)2)/f

]
within the

spread. Hence, we obtain the following theorem:
12 Theorem. Let −f(x) be any continuous function on the reals R, such

that f(0) = 0, which is non-decreasing and limx→±∞−f(x) = ±∞.
Then there is a spread of PG(3,R)

x = 0, y = 0, y = x

[
u 0
0

√
f(u2)/f

]
T, u ≥ 0

where f = f(1) and

T =
{[

u t
ft u

]
;u2 − ft2 = 1

}
.

Furthermore, the spread produces a hyperbolic fibration.

________________________________________________________________________________________________
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Let h(u) =
√
f(u2)/f for u > 0 and assume that h(−u) = −h(u). Then[

k 0
0 h(k)

] [
v s
fs v

]
=

[
kv ks

h(k)fs h(k)v

]
,

where the determinant of
[
u t
ft u

]
is 1.

In general, the determinant of
[
u t
ft u

]
is positive, hence, for k > 0, there is a

given matrix with determinant k = δu,t. Now assume that H is a multiplicative
homomorphism on R− {0}. Then

G =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

1 0 0 0
0 H(δu,t)−1 0 0
0 0 u t
0 0 ft u

⎤
⎥⎥⎦ ;u, t ∈ R − {0}

⎫⎪⎪⎬
⎪⎪⎭

is a group isomorphic to R+. Moreover, the matrix[
1 0
0 H(δu,t)

] [
u t
ft u

]
=

[
u t

H(δu,t)ft H(δu,t)u

]
,

has determinant δu,tH(δu,t) = kH(k2). Now let kv = u and ks = t, and h(k) =
kH(k2). This means that

f(k2) = fk2H(h2)2,

or rather that
f(v) = fvH(v)2, v > 0.

In other words, suppose H is a multiplicative endomorphism defined on
the positive real numbers. Then there is an associated collineation group G
isomorphic to R − {0}, which fixes two components x = 0, y = 0 and acts
transitively on the remaining components of the spread. Conversely, let h be a
multiplicative endomorphism on the positive real numbers such that h(u) > 0,
where u > 0.

Now to connect to the notation:

x = 0, y = 0, y = x

[
u 0
0

√
f(u2)/f

]
T, u ≥ 0,

we would require that
f(v) = fvH(v)2, v > 0.

is continuous on the positive reals, is non-decreasing and has range all positive
reals. If H is a function differentiable on the positive reals then H(v) = vj , for
some real number. In this case, we consider

f(v) = fv2j+1 for v > 0.
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86 N. L. Johnson

To be non-decreasing, we would require that f(2j + 1) > 0 and to have range
all positive reals requires that f > 0 and so

2j + 1 > 0.

As this function may be extended to a continuous function with the property
required, we obtained an associated hyperbolic fibration plane.

13 Theorem. Let h be an endomorphism on the positive real numbers such
that f ·h(√v)2, for v > 0 is continuous, strictly increasing and surjective on the
positive real numbers. Then, there is an associated flock and partial flock and
therefore an associated hyperbolic fibration.

We generalize this over any field that admits a quadratic extension field K+

with matrix field {[
u t
ft u+ gt

]
;u, t ∈ K

}
.

14 Definition. Let K be a field which admits a quadratic extension field
K+. Consider the following group{[

1 0 0 0
0 H(δu,t)−1 0 0
0 0 u t
0 0 ft u+gt

]
; x2 + xg − f is K-irreducible, u, t ∈ K, not both 0,

H an endomorphism on
{
δu,t = det

[
u t
ft u+ gt

]
;u, t ∈ K

}}
.

If {
x = 0, y = 0, y = x

[
1 0
0 H(δu,t)

] [
u t
ft u+ gt

]
;u, t ∈ K

}
is a spread in PG(3,K), we call this an H-spread and the corresponding trans-
lation plane, an H-plane. Clearly, there is an associated affine homology group
obtained from post-multiplication of

[
u t
ft u+gt

]
of determinant 1.

Hence, the spread components other than x = 0, y = 0 are

y = x

[
u t

H(δu,t)ft H(δu,t)(u+ gt)

]
T

where T is the group of field matrices of determinant 1. There is therefore, an
associated partial detK+-partial flock.

5 j-planes

In Johnson, Pomareda and Wilke [6], j-planes are constructed and developed
in the finite case. Here we wish to consider this is a more general manner and
over any PG(4,K), where K is a field.

________________________________________________________________________________________________
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15 Definition. Let K be a field and K+ a quadratic field extension of K
represented as follows:

K+ =
{[

u t
ft u+ gt

]
;u, t ∈ K

}
.

Consider the following group:

GK+,j =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣
1 0 0 0
0 δ−ju,t 0 0
0 0 u t
0 0 ft u+ gt

⎤
⎥⎥⎦ ; ∈ K, (u, t) �= (0, 0)

⎫⎪⎪⎬
⎪⎪⎭ ,

where j is a fixed integer and δu,t = det
[
u t
ft u+gt

]
.

A ‘j-plane’ is any translation plane π containing x = 0, y = 0 and y = x
that admits G+

K ,j as a collineation group acting transitively on the components
of π − {x = 0, y = 0}.

16 Proposition. A j-plane produces a regular hyperbolic fibration with con-
stant back half and hence a corresponding detK+-partial flock of a quadratic
cone in PG(3,K).

17 Theorem. A j-plane with spread set{
x = 0, y = 0, y = x

[
1 0
0 δju,t

] [
u t
ft u+ gt

]
;u, t ∈ K, (u, t) �= (0, 0),K a field

}
,

produces a monomial detK+ partial flock of a quadratic cone with monomial
functions

f(δu,t) = fδ2j+1
u,t , g(δu,t) = gδj+1

u,t .

18 Theorem. An H-plane with spread set

{
x = 0, y = 0, y = x

[
1 0
0 H(δju,t)

] [
u t
ft u+ gt

]
;u, t ∈ K,

(u, t) �= (0, 0),K a field
}
,

produces a detK+ partial flock of a quadratic cone with functions:

g(δu,t) = gH(δu,t)δu,t
f(δu,t) = fH(δu,t)2δu,t.

________________________________________________________________________________________________
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Proof. Let π be a j-plane, so has a spread set of the following form:{
x = 0, y = 0, y = x

[
1 0
0 δju,t

] [
u t
ft u+ gt

]
; u, t ∈ K, (u, t) �= (0, 0)

}
,

where δu,t = det
[
u t
ft u+gt

]
.

Again, we have[
δu,t g(δu,t)
0 −f(δu,t)

]
; δu,t = det

[
u t
ft u+ gt

]
,

g(δu,t) = g(uG(u, t) + tF (u, t)) + 2(uF (u, t) − tfG(u, t)),
−f(δu,t) = δF (u,t),G(u,t),

where δMi = detMi, and δF (u,t),G(u,t) = det
[
F (u,t) G(u,t)
fG(u,t) F (u,t)+gG(u,t)

]
.

In this case,

F (u, t) = δju,tft, G(u, t) = δju,t(u+ gt).

Hence,

g(δu,t) = g(uG(u, t) + tF (u, t)) + 2(uF (u, t) − tfG(u, t))

= g(uδju,t(u+ gt) + tδju,tft) + 2(uδju,tft− tf(δju,t(u+ gt))) = gδj+1
u,t .

Also,

− f(δu,t) = δF (u,t),G(u,t) = F (u, t)(F (u, t) + gG(u, t)) − fG(u, t)2

= δju,tft(δ
j
u,tft+ g(δju,t(u+ gt))) − f(δju,t(u+ gt))2

= δ2ju,tf(ft2 + gt(u+ gt)− (u2 + 2ugt + g2t2))

= δ2ju,tf(−(u2 + ugt − ft2)) = −fδ2j+1
u,t .

Hence,
f(δu,t) = fδ2j+1

u,t .

This proves the result.
Going through the same argument with H(δu,t) in place of δju,t, we obtain

g(δu,t) = gH(δu,t)δu,t
−f(δu,t) = −fH(δu,t)2δu,t.

QED
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Let H(u) = ur, for u > 0, and equal to 0 when u = 0. Define H(−u) = −ur,
for u > 0. Consider putative associated functions

g(δu,t) = gH(δu,t)δu,t = gδr+1
u,t

f(δu,t) = fH(δu,t)2δu,t = fδu,t

Now we consider the question is what is the detK+, when K is a field of
real numbers? The elements in this set are u2 + ugt − ft2, where g2 + 4f < 0.
Hence, −f > 0 so that we know that u = t = 0, 0 is in the detK+ and if t = 0,
we obtain the positive real numbers and for t �= 0, we see that

y = x2 + xg − f > 0, for all x.

Hence, detK+ is the set of positive real numbers when (u, t) �= (0, 0). So, the
question is whether the functions φs restricted to the positive reals are surjective
and injective on the positive real numbers, for any s ∈ K.

6 Classification of the real j-planes

19 Theorem. A translation plane π is a real j-plane if and only if j is a
real number and j > −1/2. In all cases, there is a partial monomial flock over
the non-negative real numbers. The partial monomial flock may be extended to
a monomial flock over the field of real numbers if and only if (−1)j is defined
when g is not zero and if and only if (−1)2j+1 is defined when g = 0.

Proof. We know that a real j-plane produces a detK+ partial monomial
flock with the following functions:

f(t) = ft2j+1, g(t) = gtj+1,

where t ∈ detK+. Furthermore, we note that[
u t
ft u+ gt

]
;u, t ∈ K,

forces
u2 + ugt− ft2 = 0

if and only if u = t = 0. When t = 0, and K is the field of real numbers, detK+

contains the non-negative reals. And, since g2 + 4f < 0 (the discriminant must
be negative), it follows that detK+ is the set of all non-negative reals. Thus,
consider the functions:

φs : φs(t) = s2t+ g(t)s − f(t).

________________________________________________________________________________________________
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For each s ∈ K, φs must be injective restricted to t > 0, and f(0) = 0, g(0) = 0
(which we require if the original functions are defined only for t > 0) and
surjective on detK+.

Therefore, we consider

φs(t) = s2t+ gtj+1s− ft2j+1.

We note that

φs(t) = t((s+ gtj/2)2 − (g2 + 2f)t2j/4) > 0, for t > 0.

The given function is differentiable on t > 0, regardless of j, hence, the derivative
is

s2 + (j + 1)gtjs− (2j + 1)ft2j .

We claim that for each s, the derivative is ≥ 0. Furthermore, when s = 0,
−ft2j+1 is clearly injective for t > 0. For s non-zero, the derivative at 0 is
s2 > 0. Since the derivative function is continuous for t > 0, assume that for
some positive value of t, the derivative is negative. Then there is a root of

s2 + (j + 1)gtjs− (2j + 1)ft2j .

But note considering the functions as a polynomial in s, we assert that the
discriminant is negative. To see this simply note that

((j + 1)g)2 + 4(2j + 1)f = (j + 1)2(g + 4f)− 4j2 < 0

since (g + 4f) < 0. Hence, the derivative is ≥ 0, which implies that φs is
injective. In order that the function be surjective on detK+, we see that we
must have

lim
t→∞φs(t) = ∞ and lim

t→0+
φs(t) = 0.

We consider the cases: j > 0, and j < 0 (j = 0 produces a Pappian affine plane).
First assume that j > 0. Then the two required limits are clearly valid, since

φs(t) = t((s + gtj/2)2 − (g2 + 2f)t2j/4) > 0, for t > 0 .

Now assume that j < 0 then limt→∞ φs(t) = ∞. Consider

φs(t) = s2t+ tj(gt− ftj+1).

Then we require
lim
t→0+

tj(gt− ftj+1) = 0.
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Note that when s = 0, we require that limt→0+(−f(t) = −ft2j+1) = 0. There-
fore, 2j + 1 > 0. Thus, we must also have limt→0+ gtj+1 = 0, but if 2j + 1 > 0
then j > −1/2 so that j + 1 > 1/2. This completes the proof that a j-plane is
obtained if and only if j > −1/2. The question remains if we may extend the
partial monomial flock to a monomial flock. If so, then the same functions must
be used and must be defined on the negative real numbers. Hence, the ques-
tion is whether (−1)j+1 and (−1)2j+1 are defined, for g non-zero and whether
(−1)2j+1 is defined for g = 0. In the former case, the necessary and sufficient
condition is whether (−1)j is defined. If g is non-zero and (−1)j is defined then
(−t)j = (−1)jtj , for t > 0, implies that (−t)j is defined. It now follows analo-
gously as in the previous argument that the functions φs are defined for all real
elements t and that these functions are bijective on K, implying that there is
an associated monomial flock of a quadratic cone. QED

Now assume that we have a real H-plane, so that H is an endomorphism
of multiplicative group of non-negative real numbers, which we are assuming
is Lebesque integrable. In this setting, we know that H(t) = tj , for j a real
number. Hence, we have the following corollary.

20 Corollary. The Real H-planes are completely determined as j planes
for j > −1/2, provided H is Lebesque integrable.

7 Extension of partial det K+-partial flocks

We have noted that a partial monomial flock may not always be extended
to a monomial flock at least when K is the field of real numbers. However, can
the partial monomial flock be extended to a flock?

21 Theorem. Assume that K is the field of real numbers. Every partial
detK+-partial flock may be extended to a flock in non-countably infinitely many
ways.

Proof. A partial detK+ exists if and only if the functions φs(t) = s2t +
g(t)s − f(t) are injective and surjective onto the non-negative real numbers,
where t ≥ 0. Take any function f1(t) when is defined on (−∞, 0] such that
f1(0) = 0 and f1 is continuous and non-decreasing and limt→−∞ f1(t) = −∞.
Then define

g2(t) = 0 if t ≤ 0 and g1(t) = g(t) for t > 0 ,
f2(t) = f1(t) for t ≤ 0 and f2(t) = f(t) , for t > 0 .

Then clearly,
φs(t) = s2t+ g2(t)s − f2(t)

is bijective on the set of real numbers. QED
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22 Theorem. For any conical flock plane defined on the real numbers, let P
and N denote the components with positive and negative slopes. Then there are
non-countably infinitely many replacements of N producing conical flock planes.

8 Finite even order

In this section, assume that we have a j-plane of order q2, where q = 2r.
Then there is a corresponding monomial flock of a quadratic cone. These are
completely determined in Penttila-Storme, where is it shown that j = 0, 1, 2
and correspond to the linear, Betten and Payne flocks respectively. Hence, the
associated j-planes are also completely determined. We note that originally the
j-planes for j = 1 are constructed in Johnson [3] and are due to Kantor as a
particular slice of a unitary ovoid (see, in particular, section 3 and (3.6)). Fur-
thermore, for j = 2, the planes are constructed in Johnson-Pomareda-Wilke [6].

Hence, we have the following theorem.
23 Theorem. Let π be a j-plane of even order q2. Then j = 0, 1 or 2 and

the plane is one of the following types of planes:

(1) Desarguesian (j = 0 and corresponding to the linear flock),

(2) Slice of a unitary ovoid (j = 1 and corresponding to the Betten flock), or

(3) The Johnson-Pomareda-Wilke j = 2-plane (corresponding to the Payne
flock).
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