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Abstract. We study the nonlinear Neumann problem (1) involving a critical Sobolev expo-
nent and a nonlinearity of lower order. Our main results assert that for every k ∈ N problem
(1) admits at least k pairs of nontrivial solutions provided a parameter µ belongs to some
interval (0, µ∗).
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1 Introduction and preliminaries

In this paper we are concerned with the existence of solutions of the nonlinear
Neumann problem ⎧⎨

⎩
−∆u = µ|u|2∗−2u+ f(x, u) in Ω,
∂u

∂ν
= 0 on ∂Ω, u > 0 on Ω,

(1)

where Ω ⊂ R
N is a bounded domain with a smooth boundary ∂Ω, ν is the

outward normal to the boundary, µ > 0 is a parameter and 2∗ = 2N
N−2 , N ≥ 3,

is the critical Sobolev exponent.
Throughout this work we assume that the nonlinearity f : Ω × R → R

satisfies the Carathéodory condition and (∗) for every M > 0 sup{|f(x, s)|; x ∈
Ω, |s| ≤M} <∞.

We impose the following conditions on f :

(f1) There exist constants a1, a2 > 0 and σ ∈ [0, 2) such that

1
2
f(x, s)s− F (x, s) ≥ −a1 − a2|s|σ

for (x, s) ∈ Ω× R, where F (x, s) =
∫ s
0 f(x, t) dt.
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16 J. Chabrowski

(f2) lim|s|→∞
f(x,s)

|s|2∗−1 = 0 uniformly a. e. in x ∈ Ω.

(f3) There exist constants b1, b2 > 0 and 2 < q < 2∗ such that

F (x, s) ≤ b1 + b2|s|q

for all s ∈ R and a. e. in x ∈ Ω.

(f4) There exist a constant c1 > 0 and h ∈ L1(Ω) and Ω◦ ⊂ Ω with |Ω◦| > 0
such that

F (x, s) ≥ −h(x)|s|2 − c1

for all s ∈ R and a. e. in x ∈ Ω and

lim
|s|→∞

F (x, s)
s2

= ∞

uniformly a.e. in x ∈ Ω◦, where |Ω◦| denotes the Lebesgue measure of the
set Ω◦.

It is easy to see that (∗) and (f2) yield: for every ε > 0 there exists Cε > 0
such that

|f(x, s)s|, |F (x, s)| ≤ ε|s|2∗ + Cε (2)

for every s ∈ R and a. e. in x ∈ Ω. The assumption (f1) replaces the usual
Ambrosetti-Rabinowitz type assumption in order to apply the mountain-pass
principle.

Solutions of (1) are sought in the Sobolev space H1(Ω). We recall that by
H1(Ω) we denote the usual Sobolev space equipped with the norm

‖u‖2 =
∫

Ω

(
|∇u|2 + u2

)
dx.

We recall that a C1 functional φ : X → R on a Banach space X satisfies the
Palais-Smale condition at level c ((PS)c condition for short), if each sequence
{xn} ⊂ X such that (i) φ(xn) → c and (ii) φ′(xn) → 0 in X∗ is relatively
compact in X. Finally, any sequence {xn} satisfying (i) and (ii) is called a
Palais-Smale sequence at level c (a (PS)c for short).

Throughout this paper we denote strong convergence by “→” and weak
convergence by “⇀”. The norms in the Lebesgue spaces Lp(RN) are denoted by
‖ · ‖p.

The Neumann problem for the equation

−∆u+ u = Q(x)|u|2∗−2u in Ω , (**)
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Multiple solutions for a nonlinear Neumann problem 17

where λ > 0 is a parameter and Q is a positive and continuous function on Ω̄, has
an extensive literature. If Q ≡ 1, we refer to the papers [1, 3, 4, 6, 21], where the
existence of least energy solutions and their properties have been investigated.
The least-energy solutions are one-peak solutions and concentrate on ∂Ω as
λ→∞ (see [17], [18]). These results have been extended to the case when Q is
not constant in the papers [7] and [8]. The existence of multi-peak solutions has
been studied in the papers [11, 22, 23]. If Q ≡ 1, then problem (**) obviously
admits also constant solutions. If λ is small then these are the only least energy
solutions [5]. It appears that the first result on the existence of multiple solutions
were given in [23] and [16] for (**) with Q ≡ 1. The multiplicity of solutions
in these two papers is expressed in terms of a relative category of ∂Ω. If Ω is
a ball, Q ≡ 1 and the right side of (**) has a nontrivial perturbation of lower
order, then there exist infinitely many solutions [9, 10].

The paper is organized as follows. In Section 2 we establish the Palais-Smale
condition for the variational functional corresponding to problem (1). To obtain
the existence of solutions we apply some versions of the mountain-pass theorem
due to E.A.B. Silva [20]. These existence results are discussed in Sections 3 and
4. In this paper we follow the approach from the paper [19] where the existence
of multiple solutions for equation (1) with the Dirichlet boundary conditions
has been obtained.

2 Palais-Smale condition

We look for solutions of (1) as critical points of the variational functional

Iµ(u) =
1
2

∫
Ω
|∇u|2 dx− µ

2∗

∫
Ω
|u|2∗ dx−

∫
Ω
F (x, u) dx.

It is easy to see that under our assumptions on f Iµ is a C1 functional on H1(Ω).
To show that Iµ satisfies the Palais-Smale condition we shall use the following
version of the concentration-compactness principle (see [14]). Let um ⇀ u in
H1(Ω). Then up to a subsequence there exist positive measures µ and ν on Ω̄
such that

|∇um|2 ⇀ µ and |um|2
∗
⇀ ν

weakly in the sense of measure. Moreover, there exist at most countable set J
and a collection of points {xj , j ∈ J} ⊂ Ω̄ and numbers νj > 0, µj > 0, j ∈ J ,
such that

ν = |u|2∗ dx+
∑
j∈J

νjδxj

________________________________________________________________________________________________



18 J. Chabrowski

and
µ ≥ |∇u|2 dx+

∑
j∈J

µjδxj .

The numbers νj and µj satisfy

Sν
2
2∗
j ≤ µj if xj ∈ Ω, (3)

and
S

2
2
N

ν
2
2∗
j ≤ µj if xj ∈ ∂Ω, (4)

where S is the best Sobolev constant for the continuous embedding of H1◦ (Ω)
into L2∗(Ω). Here δxj denotes the Dirac measure concentrated at xj . Moreover,

we have
∑

j∈J ν
2
2∗
j <∞.

1 Proposition. Suppose that (f1) and (f2) hold. Then for every M > 0
there exists µ∗ > 0 such that Iµ satisfies the (PS)c condition for c < M and
0 < µ < µ∗.

Proof. Let {um} ⊂ H1(Ω) be a (PS)c sequence with c < M . First we show
that {um} is bounded in H1(Ω). For large m we have

c+ 1 + ‖um‖ ≥ Iµ(um)− 1
2
〈I ′µ(um), um〉 =

µ

N

∫
Ω
|um|2

∗
dx

+
∫

Ω

[
1
2
f(x, um)um − F (x, um)

]
dx.

It follows from (f1) that

c+ 1 + ‖um‖ ≥
µ

N

∫
Ω
|um|2

∗
dx− a1|Ω| − a2

∫
Ω
|um|σ dx. (5)

In the sequel we always denote by C a positive constant independent of m
which may change from one inequality to another. Using the Young inequality
we obtain ∫

Ω
|um|σ dx ≤ κ

∫
Ω
|um|2

∗
dx+ c

for every κ > 0, where C > 0 is a constant depending on on κ and |Ω|. Inserting
this inequality with κ = µ

2Na2
into (5) we derive

‖um‖2∗
2∗ ≤ C (‖um‖+ 1) (6)
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Multiple solutions for a nonlinear Neumann problem 19

for some constant C > 0. To proceed further we use the equality

Iµ(um)− 1
2∗
〈I ′µ(um), um〉 =

µ

N

∫
Ω
|∇um|2 dx

+
1
2∗

∫
Ω
f(x, um)um dx−

∫
Ω
F (x, um) dx. (7)

Using (2) we deduce from (7) that∫
Ω
|∇um|2 dx ≤ C

(∫
Ω
|um|2

∗
dx+ ‖um‖+ 1

)
.

This combined with (6) leads to the estimate∫
Ω
|∇um|2 dx ≤ C (‖um‖+ 1) . (8)

We now need the decomposition H1(Ω) = R⊕ V , where

V = {v ∈ H1(Ω);
∫

Ω
v dx = 0}.

We equip H1(Ω) with an equivalent norm

‖u‖V =
(∫

Ω
|∇v|2 dx+ t2

) 1
2

for u = t+v, v ∈ V and t ∈ R. Using this decomposition we can write um = vm+
tm, vm ∈ V , tm ∈ R. We claim that {tm} is bounded. Arguing by contradiction
we may assume that tm →∞. The case tm → −∞ is similar. We put wm = vm

tm
.

It then follows from (8) that∫
Ω
|∇wm|2 dx ≤ C

[
t−2
m + t−1

m

∫
Ω

(
|∇wm|2 dx+ 1

) 1
2 dx

]
.

This yields
∫
Ω |∇wm|2 dx→ 0 and hence wm → 0 in Lp(Ω) for every 2 ≤ p ≤ 2∗.

Here we have used the fact that the space V equipped with norm
(∫

Ω |∇v|2 dx
) 1

2

is continuously embedded into Lp(Ω) for 2 ≤ p ≤ 2∗. We now observe that

t−2∗
m

(
Iµ(um)− 1

2
〈I ′µ(um), um〉

)
=

µ

N

∫
Ω
|wm + 1|2∗ dx

+ t−2∗
m

[
1
2

∫
Ω
f(x, um)um dx−

∫
Ω
F (x, um) dx

]
. (9)

________________________________________________________________________________________________



20 J. Chabrowski

Using (2) and letting m→∞ in (9) we obtain µ
N

∫
Ω dx = 0. This is a contradic-

tion. Since {tm} is bounded we deduce from (8) that |∇vm| is bounded in L2Ω.
Thus {um} is bounded in H1(Ω). By the concentration-compactness principle
we have up to a subsequence that

|∇um|2 ⇀ µ and |um|2
∗
⇀ ν

in the sense of measure. It is easy to check that the constants νj and µj from

(3) and (4) satisfy µj = µνj. Therefore, if νj > 0, then (a) νj >
(
S
µ

)N
2 and if

xj ∈ ∂Ω, then (b) νj > 1
2

(
S
µ

)N
2 . Hence the set J is finite. We now consider the

inequality

Iµ(um)− 1
2
〈I ′µ(um), um〉 ≥

µ

N

∫
Ω
|um|2

∗
dx− a1|Ω| − a2|Ω|α‖um‖2∗(1−α)

2∗ , (10)

which follows from (f1), where α = 2∗−σ
2∗ < 1. Put A = a1|Ω|+ a2|Ω|α and

µ∗ = min

⎛
⎝2−

2
N S,

[
S

N
2

2 (N(M +A))
1
α

] 1
N
2 − 1

α

⎞
⎠ .

It is easy to see that

1 <
1
2

(
S

µ

)N
2

(11)

and (
N(M +A)

µ

) 1
α

<
1
2

(
S

µ

)N
2

(12)

for 0 < µ < µ∗. In the final part of the proof we show that∫
Ω
dν <

1
2

(
S

µ

)N
2

. (13)

If
∫
Ω dν ≤ 1, then (11) yields (13). Hence it remains to consider the case

∫
Ω dν >

1. Letting m→∞ in (10) we obtain

µ

N

∫
Ω
dν ≤ c+ a1|Ω|+ a2|Ω|α

(∫
Ω
dν

)1−α
≤ (M +A)

(∫
Ω
dν

)1−α
.

In view of (12) we have∫
Ω
dν ≤

(
N(M +A)

µ

) 1
α

<
1
2

(
S

µ

)N
2
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Multiple solutions for a nonlinear Neumann problem 21

and this establishes inequality (13). Using (13), (a) and (b) we see that νj = 0
for every j ∈ J . This means that

∫
Ω |um|2

∗
dx →

∫
Ω |u|2

∗
dx. It is now routine

to show that up to a subsequence um → u in H1(Ω). QED

We point out here that if µ = 0, then the Palais-Smale condition is not
satisfied (see [19]).

3 Existence of multiple solutions

First, we recall the symmetric version of the mountain-pass theorem [20].
2 Theorem. Let E = V ⊕X, where E is a real Banach space and dimV <

∞. Let I ∈ C1(E,R) be an even functional satisfying I(0) = 0 and

(I1) there exists a constant ρ > 0 such that

I | ∂B1 ∩X ≥ ρ.

(I2) there exists a subspace W ⊂ E with dimV < dimW <∞ and there exists
a constant M > 0 such that

max
u∈W

I(u) < M.

(I3) I satisfies the (PS)c-condition for 0 ≤ c ≤M .

Then I has at least dimW − dimV pairs of nontrivial critical points.
To establish the existence of multiple solutions of problem (1) we check that

functional Iµ with 0 < µ < µ∗ satisfies the assumptions of Theorem 2. We
denote by {λj}, j ∈ N, the eigenvalues of the problem⎧⎨

⎩
−∆u = λu in Ω,
∂u

∂ν
= 0 on ∂Ω.

(14)

Let {ei} be the corresponding orthonormal sequence of eigenfunctions. The first
eigenvalue λ1 = 0 and the corresponding eigenfunctions are constant. Then for
each u ∈ H1(Ω) we have a unique representation

u =
∞∑
j=1

αjej .

Let e∗n, n ∈ N, be continuous linear functionals on H1(Ω) defined by e∗n(u) = αn.
We define the following decomposition of the space H1(Ω):

Vj = {u ∈ H1(Ω); e∗i (u) = 0, i > j},

________________________________________________________________________________________________



22 J. Chabrowski

Xj = {u ∈ H1(Ω); e∗i (u) = 0, i ≤ j},

so H1(Ω) = Vj ⊕Xj . Since e1 = 1

|Ω| 12
on Ω and e∗1(u) =

∫
Ω ue1 dx = α1, we see

that
∫
Ω u dx = 0 for every u ∈ Xj , j ∈ N. Therefore ‖∇v‖2 is a norm equivalent

to ‖ · ‖, on each subspaces Xj . Consequently, functions belonging to Xj satisfy
the Gagliardo-Nirenberg type inequality (see [13, p. 66, inequality 2.10]). These
observations allow us to formulate

3 Lemma. Let 2 ≤ r < 2∗ and δ > 0 be given. Then there exists a j ∈ N

such that
‖u‖rr ≤ δ‖∇u‖r2

for all u ∈ Xj .

For the proof we refer to [19] (see Lemma 4.1 there).

4 Lemma. Suppose (f3) holds. Then there exist µ̄ > 0, j ∈ N and ρ, α > 0
such that Iµ(u) ≥ α for all u ∈ Xj with ‖u‖ = ρ and 0 < µ < µ̄.

Proof. In the proof we shall use the equivalent norm ‖∇u‖2 on Xj . It
follows from (f3) that

Iµ(u) ≥
1
2

∫
Ω
|∇u|2 dx− C1 − b2

∫
Ω
|u|q dx− µ

2∗

∫
Ω
|u|2∗ dx

where C1 = b1|Ω|. Let δ > 0 and ‖∇u‖2 = ρ. We choose ρ > 0 so that

δb2ρ
q−2 =

1
4
.

Since ρ(δ) →∞ as δ → 0 we select δ > 0 so that

ρ2

4
− C1 >

ρ2

8
.

With this choice of δ we apply Lemma 3 and the Sobolev inequality to obtain

Iµ(u) ≥ ρ2

(
1
2
− b2δρ

q−2

)
− C1 − C3µρ

2∗ ≥ ρ2

4
− C1 − C3µρ

2∗ ≥ ρ

8
−C3µρ

2∗

for some constant C3 > 0 and for all u ∈ Xj with ‖∇u‖2 = ρ. (Here the existence
of j has been guaranteed by Lemma 3). Finally, we choose µ̄ > 0 so that

Iµ(u) ≥
ρ2

8
−C3µρ

2∗ > 0

for u ∈ Xj with ‖∇u‖2 = ρ and 0 < µ < µ̄. QED
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Multiple solutions for a nonlinear Neumann problem 23

5 Lemma. Suppose that (f4) holds. Then for every m ∈ N there exists
a subspace W ⊂ H1(Ω) (more precisely of H1◦ (Ω)) and a constant Mm > 0
independent of µ such that dimW = m and maxw∈W I0(w) < Mm.

Proof. It is easy to construct a family of functions v1, . . . , vm in C∞◦ (Ω)
with supports in B(x1, r1), . . . , B(xm, rm), respectively, so that supp vi ∩ supp vj
= ∅ for i �= j and |(supp vj) ∩ Ω◦| > 0 for every j. We recall that Ω◦ is a set
from assumption (f4). Let W = span{v1, . . . , vm}. It is clear that dimW = m
and

∫
Ω◦ |v|

p dx > 0 for every v ∈W − {0}. We now observe that

max
u∈W−{0}

I0(u) = max
t>0,‖∇v‖2=1, v∈W

{
t2

(
1
2
− 1
t2

∫
Ω
F (x, tv) dx

)}
.

To complete the proof it is sufficient to show that

lim
t→∞

1
t2

∫
Ω
F (x, tv) dx >

1
2

(15)

uniformly in v ∈ W with ‖∇v‖2 = 1. In view of (f4) given L > 0 we can find
C > 0 such that

F (x, s) ≥ Ls2 − C

for every s ∈ R and a. e. x ∈ Ω◦. Hence, for v ∈W with ‖∇v‖2 = 1 we have∫
Ω
F (x, tv) dx ≥ Lt2

∫
Ω◦
v2 dx− C|Ω◦| − t2

∫
Ω−Ω◦

hv2 dx− c1|Ω− Ω◦|. (16)

Here we have used the lower estimate for F from the assumption (f4). Since
dimW <∞, we obviously have

0 < r = min
‖∇v‖2=1, v∈W

∫
Ω◦
v2 dx and 0 < R = max

‖∇v‖2
2=1, v∈W

‖v‖2
∞ <∞.

Combining this with (16) and choosing L > 0 sufficiently large we derive (15).
QED

We are now in a position to formulate our first existence result.
6 Theorem. Suppose that (f1), (f2), (f3) and (f4) hold and that f is odd

in s. Then for every k ∈ N there exists µk ∈ (0,∞] such that problem (1) has
at least k nontrivial solutions for all µ ∈ (0, µk).

Proof. We apply Theorem 1 with decomposition H1(Ω) = Vj ⊕ Xj . By
Lemma 4 there exist j ∈ N and µ̃ such Iµ satisfies (I1) with X = Xj for
0 < µ < µ̃. With the aid of Lemma 5 we can find a subspace W ∈ H1(Ω)
with dimW = k + j = k + dimVj such that Iµ satisfies (I2). Finally, we select
µ̃ smaller if necessary so that (PS)c hold for µ ∈ (0, µ̃) with c < M , where
maxw∈W Iµ(u) < M . The result follows from Theorem 2. QED
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24 J. Chabrowski

Theorem 6 can be applied to the problem⎧⎨
⎩
−∆u = |u|2∗−2u+ λu+ β|u|q−2u in Ω
∂u

∂ν
= 0 on ∂Ω,

(17)

where λ ∈ R and β > 0 are constants and 2 < q < 2∗. By changing the unknown
function u: v = β

1
q−2u the above equation can be reduced to

−∆v = µ|v|2∗−2v + λv + |v|q−2v,

where µ = β
− 2∗−2

q−2 . Therefore, by Theorem 6, given k ∈ N we can find βk > 0
so that problem (17) has at least k pairs of nontrivial solutions for β > βk. We
point out here that problem (17) admits at most one constant solution u = t,
where t satisfies the equation

|t|2∗−2 + λ+ β|t|q−2 = 0.

4 Case of interference of nonlinearity with eigenval-
ues

First we consider the case where f interferes with the first eigenvalue λ1 = 0.
7 Lemma. Let a(x) be bounded and measurable function on Ω such that

a(x) ≤ 0 with strict inequality on a set of positive measure. Then there exists
η > 0 such that ∫

Ω

(
|∇u|2 − a(x)u2

)
dx ≥ η

∫
Ω
u2 dx (18)

for every u ∈ H1(Ω).
Proof. If −a(x) is bounded from below by a positive constant then (18) is

obvious. In a general situation we argue by contradiction. Assume that for each
m ∈ N there exists um ∈ H1(Ω) with ‖um‖2 = 1 such that∫

Ω

(
|∇um|2 − a(x)u2

m

)
dx ≤ 1

m
.

Then {um} is bounded in H1(Ω). We may assume that um ⇀ u in H1(Ω) and
um → u in L2(Ω). By the lower semicontinuity of norm with respect to weak
convergence, we derive ∫

Ω

(
|∇u|2 − a(x)u2

)
dx = 0.

This is a contradiction since
∫
Ω u

2 dx = 1. QED
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Multiple solutions for a nonlinear Neumann problem 25

8 Theorem. Suppose that (f1), (f2) and (f4) hold and that

(f̃3) lims→0
2F (x,s)
s2 = a(x) uniformly a.e. in x ∈ Ω, where a(x) satisfies as-

sumptions of Lemma 7.

If f(x, s) is odd in s, then for every k ∈ N there exists µk > 0 such that problem
(1) has at least k pairs of nontrivial solutions for every µ ∈ (0, µk).

Proof. We apply Theorem 2 with V = {0}. Since assumption (f̃3) replaces
(f3) we only need to check that Iµ satisfies (I1) of Theorem 2. It is clear that
for a given ε > 0 we can find Cε > 0 such that

F (x, s) ≤ a(x) + ε

2
s2 + Cε|s|2

∗

for every (x, s) ∈ Ω× R. Applying Lemma 7 we have

Iµ(u) ≥
1 + ε

2(1 + ε)

∫
Ω

(
|∇u|2 − a(x)u2

)
dx− ε

2

∫
Ω
u2 dx

−
( µ

2∗
+ Cε

)∫
Ω
|u|2∗ dx

≥ η − ε(1 + ε)
2(1 + ε)

∫
Ω
u2 dx+

ε

2(1 + ε)

∫
Ω
|∇u|2 dx

− C(ε)
(∫

Ω

(
|∇u|2 + u2

)
dx

) 2∗
2

.

We choose ε > 0 so that η − ε(1 + ε) > 0. Put

β◦ = min
(
η − ε(1 + ε)

2(1 + ε)
,

ε

2(1 + ε)

)
.

Thus
Iµ(u) ≥ β◦‖u‖2 − C(ε)‖u‖2∗ .

Obviously this implies (I1) of Theorem 2. QED

We now consider the situation where f interferes with eigenvalues of higher
order. We need the following two assumptions:

(f̃4) Let k > 1. There exists a constant B ≥ 0 such that

F (x, s) ≥ λk
s2

2
−B

for all s ∈ R and a. e. in x ∈ Ω.

________________________________________________________________________________________________
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(f̃5) lims→0
2F (x,s)
s2

= a(x) uniformly a. e. in x ∈ Ω, where a(x) is a bounded
and measurable function such that a(x) ≤ λj ≤ λk for some j ≤ k and
with strict inequality on a set of positive measure.

For j > 1 we set Vj = span{e1, . . . , ej−1} and W = span{e1, . . . , ek}.
Lemma 9 below follows from the variational characterization of eigenfunc-

tions.
9 Lemma. Suppose that f satisfies (f̃4). Then there exists a constant Mk >

0 independent of µ such that

max
u∈W

Iµ(u) < Mk.

10 Lemma. Suppose that a(x) is a measurable and bounded function such
that a(x) ≤ λj on Ω with a strict inequality on a set of positive measure. Then
there exists β > 0 such that∫

Ω

(
|∇u|2 − a+(x)u2

)
dx ≥ β

∫
Ω
u2 dx

for all u ∈ H1(Ω) ∩ V ⊥
j .

This follows from the continuation property of eigenfunctions and the fact
that ‖∇u‖2 is a norm on V ⊥

j . The proof is similar to that of Lemma 7.

11 Theorem. Suppose that (f1), (f2), (f̃4) and (f̃5) hold. If f(x, s) is odd
in s, then for every k ∈ N there exists µk > 0 such that problem (1) has at least
k − j + 1 pairs of nontrivial solutions for µ ∈ (0, µk).

Proof. With the aid of Lemma 10 and repeating the argument used in
the proof of Theorem 8 we show that assumption (I1) of Theorem 2 holds.
Applying this theorem and Proposition 1 we derive the existence of k − j + 1
pairs of nontrivial solutions. QED

Finally, we establish the existence of solutions which do not change sign. We
need the following abstract result (see [20]).

12 Theorem. Let E be a real Banach space. Suppose that I ∈ C1(E,R)
satisfies I(0) = 0 and

(I1) there exists a constant ρ > 0 such that I(u) ≥ 0 for ‖u‖ = ρ.

(Î2) there exist v1 ∈ E with ‖v1‖ = 1 and a constant M such that

sup
t≥0

I(tv1) ≤M

and

________________________________________________________________________________________________
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(I3) if M is a constant from (Î2), then I satisfies the (PS)c condition for
0 < c < M .

Then I has a nontrivial critical point.
13 Theorem. Suppose that f(x, 0) = 0 on Ω and that (f1), (f2), (f̃4) with

λk = λ1, and (f̃3) hold. (In fact, we need only the estimate from below for F
from assumption (f4)). Then there exists µ1 > 0 such that problem (1) has a
nontrivial nonnegative and nontrivial nonpositive solution for every µ ∈ (0, µ1).

Proof. We only show the existence of nonnegative nontrivial solution. Put
f̄(x, s) = f(x, s) for s ≥ 0 and f̄(x, s) = 0 for s < 0. A solution will be obtained
as a critical point of the functional

Jµ(u) =
1
2

∫
Ω
|∇u|2 dx− µ

2∗

∫
Ω
(u+)2

∗
dx−

∫
Ω
F̄ (x, u) dx,

where F̄ (x, s) =
∫ s
0 f̄(x, t) dt. To check (Î2) we use v = 1√

|Ω| . Then for t ≥ 0

Jµ(tv) ≤ − µ

2∗
|Ω|1− 2∗

2 t2
∗
+

t2

|Ω|

∫
Ω
hdx+ c1|Ω|.

It is clear that maxt≥0 Jµ(tv) <∞. To check the (PS)c condition, let {um} be
a (PS)c sequence. It is easy to show that u−m → 0 in H1(Ω). Then it suffices to
apply Proposition 1 to {u+

m}. QED
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