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Abstract. We study the nonlinear Neumann problem (1) involving a critical Sobolev expo-
nent and a nonlinearity of lower order. Our main results assert that for every k € N problem
(1) admits at least k pairs of nontrivial solutions provided a parameter u belongs to some
interval (0, p*).
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1 Introduction and preliminaries

In this paper we are concerned with the existence of solutions of the nonlinear
Neumann problem

—Au = plu)’ 2u+ f(z,u) inQ,
@:0 on 09, u > 0 on {2, 1)
ov
where Q C RY is a bounded domain with a smooth boundary 02, v is the
outward normal to the boundary, i > 0 is a parameter and 2* = %, N > 3,
is the critical Sobolev exponent.

Throughout this work we assume that the nonlinearity f : @ x R — R
satisfies the Carathéodory condition and (x) for every M > 0 sup{|f(z,s)|; = €
Q, |s| <M} < 0.

We impose the following conditions on f:

(f1) There exist constants aj,as > 0 and o € [0,2) such that

1
if(x,s)s — F(z,s) > —aj — asls|?

for (z,s) € Q x R, where F(z,s) = [} f(x,t)dt.
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(f2) limg oo |}sc\(21—*7i)1 = 0 uniformly a. e. in z € Q.
(f3) There exist constants by, be > 0 and 2 < ¢ < 2* such that
F(z,s) < by + ba|s|?
for all s € R and a. e. in z € (.

(f1) There exist a constant ¢; > 0 and h € L'(Q2) and Q, C Q with Q] > 0
such that
F(z,5) > —h(z)|s]* — a1

for all s € R and a. e. in z € Q and

F
lim (x2, 5)
[s| 00 S8

= 0

uniformly a.e. in x € €., where |€),| denotes the Lebesgue measure of the
set .

It is easy to see that (%) and (f2) yield: for every e > 0 there exists C, > 0
such that

|f (@, 8)s], | F(z,5)| < els|”” + Ce (2)

for every s € R and a. e. in x € Q. The assumption (f;) replaces the usual
Ambrosetti-Rabinowitz type assumption in order to apply the mountain-pass
principle.

Solutions of (1) are sought in the Sobolev space H'(£2). We recall that by
H'(Q) we denote the usual Sobolev space equipped with the norm

HuH2:/Q(]Vu\2+u2) dz.

We recall that a C' functional ¢ : X — R on a Banach space X satisfies the
Palais-Smale condition at level ¢ ((PS). condition for short), if each sequence
{z,} C X such that (i) ¢(z,) — ¢ and (i) ¢'(z,) — 0 in X* is relatively
compact in X. Finally, any sequence {z,} satisfying (i) and (i7) is called a
Palais-Smale sequence at level ¢ (a (PS). for short).

Throughout this paper we denote strong convergence by “—” and weak
convergence by “—”. The norms in the Lebesgue spaces LP(RY) are denoted by

[
The Neumann problem for the equation

—Au+u=Q(z)ul* u in Q, (**)
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where \ > 0 is a parameter and @ is a positive and continuous function on Q, has
an extensive literature. If Q) = 1, we refer to the papers [1, 3, 4, 6, 21], where the
existence of least energy solutions and their properties have been investigated.
The least-energy solutions are one-peak solutions and concentrate on 0f) as
A — oo (see [17], [18]). These results have been extended to the case when @ is
not constant in the papers [7] and [8]. The existence of multi-peak solutions has
been studied in the papers [11, 22, 23]. If @Q = 1, then problem (**) obviously
admits also constant solutions. If A is small then these are the only least energy
solutions [5]. It appears that the first result on the existence of multiple solutions
were given in [23] and [16] for (**) with @ = 1. The multiplicity of solutions
in these two papers is expressed in terms of a relative category of 9. If § is
a ball, @ = 1 and the right side of (**) has a nontrivial perturbation of lower
order, then there exist infinitely many solutions [9, 10].

The paper is organized as follows. In Section 2 we establish the Palais-Smale
condition for the variational functional corresponding to problem (1). To obtain
the existence of solutions we apply some versions of the mountain-pass theorem
due to E.A.B. Silva [20]. These existence results are discussed in Sections 3 and
4. In this paper we follow the approach from the paper [19] where the existence
of multiple solutions for equation (1) with the Dirichlet boundary conditions
has been obtained.

2 Palais-Smale condition

We look for solutions of (1) as critical points of the variational functional

1 *
Iu(u):§/ﬂ\Vu]2dx—2—'li/ﬂ\u]2 dx—/QF(x,u)dx.

It is easy to see that under our assumptions on f I, is a C ! functional on H!(2).
To show that I, satisfies the Palais-Smale condition we shall use the following
version of the concentration-compactness principle (see [14]). Let u,, — w in
H'(Q). Then up to a subsequence there exist positive measures x4 and v on
such that

V> = p and |u,|? —v

weakly in the sense of measure. Moreover, there exist at most countable set J
and a collection of points {z;,j € J} C Q and numbers v; >0, u; >0, j € J,
such that
v=|u* dx+ Z 210
JjeJ
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and
p > |Vul? dx + Z,ujém]..

jed
The numbers v; and p; satisfy
2
SI/J?* <y if ;e (3)
and
S 2

where S is the best Sobolev constant for the continuous embedding of H!(€2)
into L% (Q). Here d;; denotes the Dirac measure concentrated at x;. Moreover,
2
2*

we have 3 . ;v
1 Proposition. Suppose that (f1) and (f2) hold. Then for every M > 0
there exists p* > 0 such that I, satisfies the (PS). condition for ¢ < M and
0<p<p*
PROOF. Let {u,,} C H'(Q) be a (PS). sequence with ¢ < M. First we show
that {u,,} is bounded in H'(Q). For large m we have

< o0.

1 .
1 [ 2 Lu(tm) = 5 (TaCtm) ) = [ P
1
+/ [—f(x,um)um—F(x,um)} dx.
o 12

It follows from (f1) that

41+ [fum]| > ﬁ/ |2 dm—al\Q]—ag/ upn” (5)
N Jq Q

In the sequel we always denote by C' a positive constant independent of m
which may change from one inequality to another. Using the Young inequality

we obtain
/ |t |” dz < Ii/ Jum |* dx + ¢
Q Q

for every k > 0, where C' > 0 is a constant depending on on x and |{2|. Inserting

this inequality with £ = 537 into (5) we derive

5 <O (luml +1) (6)

[|tm
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for some constant C' > (0. To proceed further we use the equality

1
L(tm) — oL (1) ) = %/vaum,zdx

2
1
t o [ F i de [ B de. @)
2* Jq Q
Using (2) we deduce from (7) that

[P ar<c (/ s+ | + 1) |
Q Q

This combined with (6) leads to the estimate

[ 9l e < € un + 1. )
We now need the decomposition H'(Q2) = R @V, where

V ={ve H(Q); /de:c = 0}.

We equip H'(2) with an equivalent norm

1
2
ully = (/ |Vo|? dz —|—t2)
Q

foru =t4wv,v € V and t € R. Using this decomposition we can write w,, = vy +
tm, Um €V, t,,, € R. We claim that {¢,,} is bounded. Arguing by contradiction
we may assume that t¢,, — co. The case t,,, — —o0 is similar. We put w,, = ;’—Z
It then follows from (8) that

d:c] .

This yields [, [Vwm|? dz — 0 and hence wy, — 0 in LP() for every 2 < p < 2*.

1
2

NI

/ |Vw,,|? dz < C [t;f + ¢! / (|Vwm|2d:c +1)
Q Q

Here we have used the fact that the space V equipped with norm ( Jo |Vol? d:c)
is continuously embedded into LP(Q2) for 2 < p < 2*. We now observe that

* 1 *
o (Bl = 5T ) ) = % [ a1

b E /Q (@, )ty d — /Q F(x,um)dx]. )
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Using (2) and letting m — oo in (9) we obtain & [, dz = 0. This is a contradic-
tion. Since {t,,} is bounded we deduce from (8) that |Vuv,,| is bounded in L2Q.
Thus {u,,} is bounded in H'(2). By the concentration-compactness principle
we have up to a subsequence that

|Vt |? = and |u,|*2 — v
in the sense of measure. It is easy to check that the constants v; and p; from

N
(3) and (4) satisfy p; = pv;. Therefore, if v; > 0, then (a) v; > (%) * and if
N

zj € 08, then (b) v; > 3 (%) ? Hence the set J is finite. We now consider the

inequality

2079 (10)

1 *
I(um) — §<IL(um),um> > % /Q [t |* dz — a1]Q| — ag|Q ||

which follows from (f1), where a = 252 < 1. Put A = a1|Q| + a2|Q|* and

1

N

* . 2 S? %7é
p*=min | 27N S| T
2(N(M+ A))a
It is easy to see that
N
z

1< % (g) (11)

()’ 3 2

for 0 < p < p*. In the final part of the proof we show that

and

w2

[w<t(5)" 0

If [, dv <1, then (11) yields (13). Hence it remains to consider the case [, dv >
1. Letting m — oo in (10) we obtain

1-a -«
ﬁ/dv§c+a1|§2|+a2|9|a (/ dl/) < (M+A) (/ du> .
N Jo Q Q

In view of (12) we have

(42 4 )

ol
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and this establishes inequality (13). Using (13), (a) and (b) we see that v; = 0
for every j € J. This means that [, |um|? dz — [ |u> dz. It is now routine
to show that up to a subsequence u,, — u in H'(£2).

We point out here that if © = 0, then the Palais-Smale condition is not
satisfied (see [19]).

3 Existence of multiple solutions

First, we recall the symmetric version of the mountain-pass theorem [20].

2 Theorem. Let E =V & X, where E is a real Banach space and dim'V <
. Let I € CY(E,R) be an even functional satisfying 1(0) = 0 and

(I1) there exists a constant p > 0 such that
118BNX > p.

(I2) there exists a subspace W C E with dimV < dim W < oo and there exists
a constant M > 0 such that

max I (u) < M.
ueW

(I3) I satisfies the (PS).-condition for 0 < c¢ < M.

Then I has at least dim W — dim V' pairs of nontrivial critical points.

To establish the existence of multiple solutions of problem (1) we check that
functional I, with 0 < pu < p* satisfies the assumptions of Theorem 2. We
denote by {\;}, j € N, the eigenvalues of the problem

—Au=MAu in €,
14
%:O on OfL. a4
ov

Let {e;} be the corresponding orthonormal sequence of eigenfunctions. The first
eigenvalue A\; = 0 and the corresponding eigenfunctions are constant. Then for
each u € H'(Q) we have a unique representation

o]
u = E ajej.
j=1

Let e, n € N, be continuous linear functionals on H'(Q2) defined by e}, (u) = .
We define the following decomposition of the space H'(Q):

V;={ue H'(Q); ej(u) =0, i> j},
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Xy ={u e H(Q); ef(w) =0,i < j},
so HY(Q2) = V; ® X,. Since e; =

1 * — —
b on Q and ef(u) = [, uer dz = o, we see

that [, udz = 0 for every u € Xj, j € N. Therefore || V|| is a norm equivalent
to || - ||, on each subspaces X;. Consequently, functions belonging to X; satisfy
the Gagliardo-Nirenberg type inequality (see [13, p. 66, inequality 2.10]). These
observations allow us to formulate

3 Lemma. Let 2 < r < 2* and § > 0 be given. Then there exists a j € N
such that
[[ullr < 6[[Vullz
for all u € X;.
For the proof we refer to [19] (see Lemma 4.1 there).

4 Lemma. Suppose (f3) holds. Then there exist p >0, j € N and p,a > 0
such that I,,(u) > a for all u € X; with ||ul| = p and 0 < p < fi.

PRrROOF. In the proof we shall use the equivalent norm ||Vull2 on X;. It
follows from (f3) that

1 .
]Auﬁz—/WVm%m—Ch—b?/thm—f%/WMQdm
2 Ja Q 2* Jo

where C7 = 01]9|. Let 6 > 0 and ||Vul|2 = p. We choose p > 0 so that

_ 1
5b2pq 2 = Z

Since p(d) — oo as § — 0 we select ¢ > 0 so that

2 2
p p
£ _o>E.
4 1=

With this choice of § we apply Lemma 3 and the Sobolev inequality to obtain

1 _ * 2 * *
Li(u) > p? (5 — bydp? 2) — Cy — Cypp® > pz — Cy — Cspp® > g — Capp?

for some constant C'3 > 0 and for all u € X; with ||Vul|s = p. (Here the existence
of j has been guaranteed by Lemma 3). Finally, we choose i > 0 so that

2
I,(u) > % — Caup® >0

for uw € X; with ||Vull2 = pand 0 < p < fi. QED
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5 Lemma. Suppose that (fy) holds. Then for every m € N there exists
a subspace W C HY(Q2) (more precisely of HX(Q))) and a constant M,, > 0
independent of p such that dim W = m and maxyew lo(w) < M,y,.

PROOF. It is easy to construct a family of functions vy, ...,v,, in C°()
with supports in B(z1,71), ..., B(Zm, rm), respectively, so that supp v; N supp v;
= () for ¢ # j and |(suppv;) N Q| > 0 for every j. We recall that Q, is a set
from assumption (fs). Let W = span{vy,...,vp}. It is clear that dimW = m
and [, [v|P dz > 0 for every v € W — {0}. We now observe that

1 1
max Ip(u) = max 2= - —/ F(x,tv)dz ) ¢ .
ueW —{0} t>0,]|Voll2=1,veW 2 2 Q

To complete the proof it is sufficient to show that

o1 1
tli)r&t—2/QF(x,tv) dx > 3 (15)

uniformly in v € W with |Vul||a = 1. In view of (f4) given L > 0 we can find
C > 0 such that
F(x,s) > Ls* - C

for every s € R and a. e. x € Q,. Hence, for v € W with ||[Vv||2 =1 we have

/ F(z,tv)dz > LtQ/ v? dx — C|Q,| — t2/ hv? dz — ¢|Q — Qo|.  (16)
Q o Q—Q

Here we have used the lower estimate for F' from the assumption (fy). Since
dim W < oo, we obviously have

r= min v?dr and 0 < R = max  |jv||% < oo
(IVvll2=1,veW Jq, IVv]|2=1,veW

Combining this with (16) and choosing L > 0 sufficiently large we derive (15).

We are now in a position to formulate our first existence result.

6 Theorem. Suppose that (f1), (f2), (fs) and (f1) hold and that f is odd
in s. Then for every k € N there exists uy € (0,00] such that problem (1) has
at least k nontrivial solutions for all p € (0, pug).

PRrROOF. We apply Theorem 1 with decomposition H!(Q) = V; ® X;. By
Lemma 4 there exist j € N and fi such I, satisfies (I;) with X = X; for
0 < pu < fi. With the aid of Lemma 5 we can find a subspace W € H!({Q)
with dimW = k + j = k + dim Vj such that I, satisfies (I2). Finally, we select
@ smaller if necessary so that (PS). hold for p € (0,4) with ¢ < M, where
maxyew I, (u) < M. The result follows from Theorem 2.
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Theorem 6 can be applied to the problem

—Au = |u|? 2u+ Mu+ Blu)? % in Q
17
% =0 on 01, a7
ov

where A € R and § > 0 are constants and 2 < ¢ < 2*. By changing the unknown
1
function u: v = Be—2u the above equation can be reduced to

—Av = plv[* "2 4+ A + |v]7 2,

where y = ﬁ_qTQQ. Therefore, by Theorem 6, given &k € N we can find G > 0
so that problem (17) has at least k pairs of nontrivial solutions for 5 > . We
point out here that problem (17) admits at most one constant solution v = ¢,
where t satisfies the equation

tZ 2+ A4 3t|T2 =0.

4 Case of interference of nonlinearity with eigenval-
ues

First we consider the case where f interferes with the first eigenvalue Ay = 0.

7 Lemma. Let a(x) be bounded and measurable function on Q0 such that
a(x) < 0 with strict inequality on a set of positive measure. Then there exists
n > 0 such that

/ (|Vu|2 - a(m)uZ) dx > 77/ u? dx (18)
Q Q
for every u € HY(Q).

PrOOF. If —a(z) is bounded from below by a positive constant then (18) is
obvious. In a general situation we argue by contradiction. Assume that for each
m € N there exists u,, € H'(Q) with [Ju,|/2 = 1 such that

1
/ (|Vum|® — a(z)uZ,) dv < —.
Q

m

Then {u,,} is bounded in H'(Q2). We may assume that w,, — u in H'(Q2) and
Um — u in L?(Q). By the lower semicontinuity of norm with respect to weak
convergence, we derive

/ (|Vul? — a(z)u?) dz = 0.
Q

This is a contradiction since fQ wdr = 1. QED
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8 Theorem. Suppose that (f1), (f2) and (fa) hold and that

(f3) lims_ %ﬁ’s) = a(x) uniformly a.e. in v € Q, where a(zx) satisfies as-

sumptions of Lemma 7.

If f(x,s) is odd in s, then for every k € N there exists u > 0 such that problem
(1) has at least k pairs of nontrivial solutions for every p € (0, ).

PrROOF. We apply Theorem 2 with V' = {0}. Since assumption ( fg) replaces
(f3) we only need to check that I, satisfies (I;) of Theorem 2. It is clear that
for a given € > 0 we can find C; > 0 such that

F(z,s) < %32 + Ccls)*

for every (z,s) € Q x R. Applying Lemma 7 we have

1+e€ €
I,(u) > i) /Q (IVul? — a(z)u?) dz — 3 /Qu2 dx

_ (£ 2*
(2*+C€>/§2\ul dx
77—6(1+6)/ 2 € / 2
S n—elTe de+ — | |vul2d
o0+ St T anse Q| ul*de

— () (/Q (1Vuf? + ) dx) :

We choose € > 0 so that n — €(1 +¢€) > 0. Put

n—e(l+e € )
21te) '201+0))"

8o = min (
Thus
L(u) = Bollull® = C(e)ull*"-
Obviously this implies (I;) of Theorem 2.

We now consider the situation where f interferes with eigenvalues of higher
order. We need the following two assumptions:

(fa) Let k> 1. There exists a constant B > 0 such that

2
F(x,s) > Ak? - B

for all s€ R and a. e. in z € Q.
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(f5) lims_g QFS’S) = a(z) uniformly a. e. in z € Q, where a(z) is a bounded
and measurable function such that a(xz) < A; < A for some j < k and
with strict inequality on a set of positive measure.

For j > 1 we set V; = span{ei,...,ej_1} and W = span{ey, ..., e;}.
Lemma 9 below follows from the variational characterization of eigenfunc-
tions.

9 Lemma. Suppose that f satisfies (f4). Then there exists a constant My >
0 independent of u such that

I M.
max I, (u) < Mj,

10 Lemma. Suppose that a(x) is a measurable and bounded function such
that a(x) < \j on Q with a strict inequality on a set of positive measure. Then
there exists 3 > 0 such that

/Q(|Vu|2 —at(z)u?) dx > ﬂ/ﬂuQ da

for allu e HY(2) N V}J-.
This follows from the continuation property of eigenfunctions and the fact

that ||Vul|2 is a norm on le. The proof is similar to that of Lemma 7.

11 Theorem. Suppose that (f1), (f2), (f1) and (fs) hold. If f(x,s) is odd
in s, then for every k € N there exists p, > 0 such that problem (1) has at least
k — j+ 1 pairs of nontrivial solutions for p € (0, pg).

Proor. With the aid of Lemma 10 and repeating the argument used in
the proof of Theorem 8 we show that assumption (I;3) of Theorem 2 holds.
Applying this theorem and Proposition 1 we derive the existence of k — j + 1
pairs of nontrivial solutions. QED

Finally, we establish the existence of solutions which do not change sign. We
need the following abstract result (see [20]).

12 Theorem. Let E be a real Banach space. Suppose that I € C'(E,R)
satisfies I(0) =0 and

(I1) there exists a constant p > 0 such that I(u) > 0 for |ju| = p.

(I3) there exist vy € E with ||v1|| =1 and a constant M such that

sup [ (tvy) <M
t>0

and
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(I3) if M is a constant from (Iy), then I satisfies the (PS). condition for
O0<c< M.

Then I has a nontrivial critical point.

13 Theorem. Suppose that f(x,0) =0 on Q and that (f1), (f2), (f1) with
Ap = A1, and (fg) hold. (In fact, we need only the estimate from below for F
from assumption (f4)). Then there exists p1 > 0 such that problem (1) has a
nontrivial nonnegative and nontrivial nonpositive solution for every p € (0, u1).

PRrROOF. We only show the existence of nonnegative nontrivial solution. Put
f(z,s) = f(x,s) for s > 0 and f(z,s) =0 for s < 0. A solution will be obtained
as a critical point of the functional

Jyu(u) = %/Q\Vulzdx — %/Q(zﬁ)z* dx — /QF(x,u) dx,

where F(z,s) = [; f(z,t)dt. To check (I5) we use v = ﬁ Then for t > 0

2

hdx + ¢1]9].
9] Jo

Ju(tv) < ]Q\“_tQ +—
It is clear that max;>o J,(tv) < oo. To check the (PS). condition, let {u,,} be
a (PS). sequence. It is easy to show that u,,, — 0 in H'(£2). Then it suffices to
apply Proposition 1 to {u}}.
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