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Abstract. Using the construction of Containing Spaces given in [1] we define some kind of
games considered on topological classes of spaces.
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Agreement

In the present paper we denote by τ a fixed infinite cardinal. The first infinite
cardinal larger than τ is denoted by τ+. By ω we denote the first infinite cardinal.
An ordinal α is identified with the set of all ordinals less than α. A cardinal
is identified with the corresponding initial ordinal. The cardinality of a set X
is denoted by |X|. By F we denote the set of all finite subsets (including the
empty set) of τ .

An arbitrary considered space is assumed to be a T0-space of weight less
than or equal to τ .

Let S be an indexed collection of spaces. In [1] a poset C(S), whose order
is denoted by ≺S, is constructed. This poset is directed and each subset A of
C(S) of cardinality ≤ τ has supremum denoted by sup(A). (Therefore C(S) is
directed and τ -complete) Also, for each element c ∈ C(S) a topological space,
denoted by T(c) and called a Containing Space, is constructed. The purpose of
the introduction of these notions is the construction of some special spectrum
in the “theory of Containing Spaces”.

We shall use the above notions to introduce games on classes of spaces. We

iThe research is funded by the European Social Fund (ESF), Operational Program for Edu-
cational and Vocational Training II (EPEAEK II), and particularly the Program PYTHAGO-
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start given some necessary notions and notations of [1] in order to explain briefly
the constructions of C(S) and T(c).

1 The constructions of the poset C(S) and spaces
T(c), c ∈ C(S)

An indexed collection

M ≡ {{UX
δ : δ ∈ τ } : X ∈ S }, (1)

where {UX
δ : δ ∈ τ } is an indexed base for X, is called a co-mark of S.

A co-mark (1) of S is called a co-extension of a co-mark

M+ ≡ {{V X
δ : δ ∈ τ } : X ∈ S }

of S if there exists an one-to-one mapping θ of τ into itself such that V X
δ = UX

θ(δ),
for every X ∈ S and δ ∈ τ .

Consider the co-mark (1) of S. We define a family

RM ≡ {∼s
M: s ∈ F }

of equivalence relations on S as follows: two elements X and Y of S are ∼s
M

-
equivalent if and only if there exists an isomorphism i of the algebra of subsets
of X generated by the finite set {UX

δ : δ ∈ s } of X onto the algebra of subsets
of Y generated by the finite set {UY

δ : δ ∈ s } of Y such that i(UX
δ ) = UY

δ ,
δ ∈ s.

An indexed family R ≡ {∼s: s ∈ F } of equivalence relations on S is said to
be admissible if the following conditions are satisfied:

(a) ∼t ⊂ ∼s, if s ⊂ t ∈ F ,

(b) the number of ∼s-equivalence classes is finite for every s ∈ F , and

(c) ∼s= S × S if s = ∅.

The set of all ∼s-equivalence classes for all s ∈ F , is denoted by C(R). By C♦(R)
we denote the ring of subsets of S generated by C(R).

Note that the family RM is admissible.
Let

R0 ≡ {∼s
0: s ∈ F }

and
R1 ≡ {∼s

1: s ∈ F }
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be two indexed families of equivalence relations on S. It is said that R1 is a final
refinement of R0 if for every s ∈ F there exists an element t ∈ F such that
∼t

1 ⊂∼s
0.

A family R of equivalence relations on S is called M-admissible if R is final
refinement of RM.

Let R ≡ {∼s: s ∈ F } be an M-admissible family of equivalence relations on
S. On the set of all pairs (x,X), where x ∈ X ∈ S, we consider an equivalence
relation, denoted by ∼M

R , as follows: (x,X) ∼M

R (y, Y ) if and only if X ∼s Y
for every s ∈ F , and either x ∈ UX

δ and y ∈ UY
δ or x /∈ UX

δ and y /∈ UY
δ for

every δ ∈ τ . The set of all equivalence classes of the relation ∼M

R is denoted
by T ≡ T(M,R). For every s ∈ F , an equivalence class H of ∼s, and δ ∈ τ
we denote by UT

δ (H) (respectively, by T(M,R,H)) the set of all elements a

of T(M,R) such that there exists a pair (x,X) of a for which x ∈ UX
δ and

X ∈ H (respectively, for which X ∈ H). The set of all UT
δ (H) is denoted by

BT. This set is a base for a topology on the set T and the corresponding space
is a T0-space of weight ≤ τ .

For every element X of S there exists a natural embedding iXT of X into the
space T defined as follows: for every x ∈ X, iXT (x) = a, where a is the element
of T containing the pair (x,X). Thus, we have constructed Containing Spaces
T(M,R) for S of weight ≤ τ .

A class IP of spaces is said to be saturated if for every indexed collection
S of elements of IP there exists a co-mark M+ of S satisfying the following
condition: for every co-extension M of M+ there exists an M-admissible family
R+ of equivalence relations on S such that T(M,R,H) ∈ IP for every admissible
family R, which is final refinement of R+, and H ∈ C♦(R). The above co-mark
M+ is called an initial co-mark of S corresponding to the class IP and the family
R+ is called an initial family of S corresponding to the co-mark M and the class
IP .

Now, we give the construction of C(S). Any indexed collection

{UX : X ∈ S },

where UX is an open subset of X ∈ S, is called an S-open set. Let M =
{ {UX

ε : ε ∈ τ } : X ∈ S } be a co-mark of S. For every ε ∈ τ the S-open set
{UX

ε : X ∈ S } is called the ε-component (or a component) of M.
On the set of all co-marks of S we define a partial order, denoted by ≺cm, as

follows. For two co-marks M0 and M1 we write M0 ≺cm M1 if for every δ ∈ τ
there exists an element ε of τ such that the δ-component of M0 coincides with
the ε-component of M1. We note that if M1 is a co-extension of M0 of S, then
M0 ≺cm M1.

By P(S) we denote the set of all pairs (M,R), where M is a co-mark of S

and R is an M-admissible family of equivalence relations on S. On the set P(S)
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we define a (partial) preorder, denoted by ≺cm
af , and an equivalence relation on

S, denoted by ∼cm
af , as follows. For two elements (M0,R0) and (M1,R1) of P(S)

we write:

(1) (M0,R0) ≺cm
af (M1,R1) if M0 ≺cm M1 and R1 is final refinement of R0.

(2) (M0,R0) ∼cm
af (M1,R1) if

(M0,R0) ≺cm
af (M1,R1) and (M1,R1) ≺cm

af (M0,R0).

By C(S) we denote the set of all ∼cm
af -equivalence classes. On the set C(S)

we define a partial order, denoted by ≺S, as follows: for two elements c0 ≡
{(M0,R0)} and c1 ≡ {(M,R1)} of C(S) we write c0 ≺S c1 if and only if
(M0,R0) ≺cm

af (M1,R1). The partial ordered set C(S) is directed and each
subset A of C(S) of cardinality ≤ τ has supremum denoted by sup(A).

If (M0,R0), (M1,R1) ∈ c ∈ C(S), then T(M0,R0) = T(M1,R1). By T(c)
we denote the space T(M,R), where (M,R) ∈ c.

For a class IP of spaces we set

C(IP ) = { c ∈ C(S) : T(c) ∈ IP }.

A non-empty class IP of spaces is said to be second-type saturated if for every
indexed collection S of elements of IP the set C(IP ) contains a cofinal τ -closed
subset of C(S) (that is the set C(IP ) contains a cofinal subset A such that for
every chain A′ of A with |A′| ≤ τ , we have sup(A′) ∈ A whenever the sup(A′)
exists).

In what follows, we denote by IP (S) the class of all spaces homeomorphic to
an element of S.

2 The game Gν(S)

Let ν be an infinite cardinal, ν ≤ τ . Players I and II take turns in playing
elements of C(S) as follows:

Player I: c10 c11 · · · c1δ · · ·
· · ·

Player II: c20 c21 · · · c2δ · · ·

Note that at all limit stages Player I goes first. So, we have two (transfinite)
sequences (c1δ : δ ∈ ν) and (c2δ : δ ∈ ν) of elements of C(S). We say that Player
II wins this run of the game provided that T(c) belongs to IP (S), where c is the
supremum of the set

{ c1δ : δ ∈ ν } ∪ { c2δ : δ ∈ ν }.

Thus, Player I wins if T(c) 6∈ IP (S). This game is denoted by Gν(S).
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3 The game Gcm(S)

This game is defined as follows: Players I and II take turns in playing S-open
sets US

δ ≡ {UX
δ : X ∈ S }, δ ∈ τ , as follows:

Player I: US
0 US

2 · · · US

δ · · ·
· · ·

Player II: US
1 US

3 · · · US

δ+1 · · ·

Note that at all limit stages Player I goes first.

We say that player II wins this run of the game if the indexed collection

M ≡ {{UX
δ : δ ∈ τ } : X ∈ S }

is a co-mark of S and T(M,RM) ∈ IP (S). Thus, player I wins if either M is not
a co-mark of S or M is a co-mark of S and T(M,RM) 6∈ IP (S).

1 Proposition. Let S be an indexed collection of spaces such that IP (S) is
a second type saturated class of spaces. Then, Player II has a winning strategy
in the game Gν(S).

Proof. Since IP (S) is a second type saturated class the set C(IP (S)) con-
tains a cofinal τ -closed subset of C(S). Denote this subset by A and let { aδ :
δ ∈ µ } be an indication of A, where µ is the cardinal of A.

We define a strategy for the Player II choosing the element c2δ , δ ∈ ν, as
follows. Let

Cδ = { c1η : η ∈ δ } ∪ { c2η : η ∈ δ } ∪ { c1δ }.

Obviously |Cδ| ≤ ν. If sup(Cδ) ∈ A, then we set c2δ = sup(Cδ). If sup(Cδ) 6∈ A,
then we denote by ε the minimal of all ordinals η such that sup(Cδ) ≺S aη. In
this case, we set c2δ = aε. Thus, c2δ ∈ A for every δ ∈ ν.

Since A is τ -closed and ν ≤ τ , by the choose of elements of c2δ we have

c ≡ sup({ c1δ : δ ∈ ν } ∪ { c2δ : δ ∈ ν }) = sup({ c2δ : δ ∈ ν }) ∈ A,

which means that T (c) ∈ IP (S). Thus, the defined strategy for the Player II is
winning. QED

2 Proposition. Let S be an indexed collection of spaces such that IP (S) is
a second type saturated class of spaces. Then, Player II has winning strategy in
the game Gcm(IP (S)).

Proof. Since IP (S) is a second type saturated class there exists a set A
which is a cofinal τ -closed subset of C(S) such that T (c) ∈ IP (S) for every
c ∈ A.
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For every S-open set US we denote by c(US) an element of A and by
(M(US),R(US)) an element of c(US) such that US is the ε-component of M(US)
for some ε ∈ τ . In what follows, we shall identify the S-open set US with the
sequence s ≡ (US

0 ) consisting of one element.
By induction, for every (transfinite) sequence s ≡ (US

0 , U
S
1 , . . . , U

S

δ ) of S-
open sets of the ordinal-type δ + 1, where δ ∈ τ \ { 0 }, we denote by c(s) an
element of A and by (M(s),R(s)) an element of c(s) such that: (a) for every
δ′ ∈ δ we have

(M(s′),R(s′)) ≺cm
af (M(s),RM(s)) ≺

cm
af (M(s),R(s)),

where s′ ≡ (US
0 , U

S
1 , . . . , U

S

δ′), (therefore, c(s′) ≺S c(s)), and (b) US

δ is the ε-
component of M(s) for some ε ∈ τ . Note that the existence of a co-mark M(s)
satisfying relation

(M(s′),R(s′)) ≺cm
af (M(s),RM(s))

follows by Lemma 8.2.6 of [1].
We denote by ψ a one-to-one map of τ × τ into τ satisfying the following

conditions: (a) the subset ψ(τ × τ) coincides with the set of all odd ordinal of
τ (the limits ordinal are considered to be even) and (b) for every odd ordinal δ
of τ , ψ−1(δ) is an element of the set τ × { δ′ } for some δ′ ∈ δ. The existence of
such a map is clear.

Now, we define a strategy for the Player II. This means that for each odd
ordinal δ = δ0 + 1 the (transfinite) sequence sδ0 ≡ (US

0 , . . . , U
S

δ0
) must uniquely

determine the S-open set US

δ . For this purpose, this set is chosen by induction
as follows. If ψ−1(δ) = (ε, η), then the sequence sη ≡ (US

0 , . . . , U
S
η ) is already

defined and, therefore, is defined the pair (M(sη),R(sη)). Let

M(sη) = { {Uη,X
κ : κ ∈ τ } : X ∈ S }.

Then, we set US

δ = {Uη,X
ε : X ∈ S }.

Now, we prove that the defined strategy for the Player II is winning. That
is, if US

δ = {UX
δ : X ∈ S }, δ ∈ τ , then the indexed collection

M ≡ {{UX
δ : δ ∈ τ } : X ∈ S }

is a co-mark of S and T(M,RM) ∈ IP (S). Note that US

δ is the δ-component of
M.

First, we prove that for every η ∈ τ , any component of M(sη) is a component
of M. Indeed, let ε ∈ τ . There exists an odd ordinal δ ∈ τ such that ψ−1(δ) =
(ε, η). By construction

US

δ = {Uη,X
ε : X ∈ S }.
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This means that the ε-component of M(sη) is a δ-component of M. Thus, M is
a co-mark of S and M(sη) ≺cm M for η ∈ δ. The last relation implies that

(M(sη),RM(sη)) ≺
cm
af (M,RM)

and, therefore,

{(M(sη),RM(sη))} ≺S {(M,RM)}, η ∈ τ.

Now, suppose that there exists {(M′,R′)} ∈ C(S) such that

{(M(sη),R(sη))} ≺S {(M′,R′)}.

Then,
(M(sη),RM(sη)) ≺

cm
af (M′,R′).

In particular, this imply that any component of M(sη) is a component of M′ and,
therefore, any component of M is a component of M′, which means M ≺cm M′.
Thus, in order to prove that

{(M,RM)} ≺S {(M′,R′)}

it is suffices to prove that R′ is a final refinement of RM. Suppose that

RM = {∼s
M: s ∈ F },

RM′ = {∼s
M′ : s ∈ F },

R(sη) = {∼s
η: s ∈ F }, η ∈ τ,

and
R′ = {∼′,s: s ∈ F }.

Let s ≡ { δ0, . . . , δn } ∈ F . For every i ∈ { 0, . . . , n }, there exist εi, ηi ∈ τ
such that εi-component of M(sηi) coincides with δi-component of M. Also, there
exist ε′i such that ε′i-component of M′ coincides with δi-component of M. Let
t′ = { ε′0, . . . , ε

′
n } ∈ F . Since R′ is final refinement of RM′ , there exists t ∈ F

such that ∼′,t⊆∼t′

M′ . On the other hand, ∼s
M

=∼t′

M′ and, therefore, ∼′,t
M′⊆∼s

M
,

which means that R′ is final refinement of RM. Hence,

{(M,RM)} ≺S {(M′,R′)}

which means that

c = {(M,RM)} = sup{ {(M(sη),R(sη))} : η ∈ δ }.

Since A is τ -closed, c ∈ A and, therefore, T (c) ∈ IP (S). Thus, the defined
strategy of Player II is winning. QED
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3 Corollary. Let S be an indexed collection of spaces such that IP (S) is one
of the following classes of spaces:

(1) The class of all spaces.

(2) The class of countably-dimensional spaces.

(3) The class of all strongly countable dimensional spaces.

(4) The class of all locally finite-dimensional spaces.

(5) The class of all spaces of dimension ind ≤ α, where α ∈ τ+.

Then, Player II has a winning strategy in the games Gν(S) and Gcm(S).

Proof. The proof of this corollary follows by the fact that the mentioned
classes of spaces are second type saturated classes (see [1]). QED

4 Problem. Let S be an indexed collection of spaces such that Player II
has a winning strategy in the game Gν(S) (respectively, in the game Gcm(S)).
Is the class IP (S) second type saturated?

In our opinion the answer to Problem 1 is negative. In this case, it is inter-
esting to study topological properties of the class IP (S). One of such property
is the existence of universal elements. We have the following proposition.

5 Proposition. Let S be an indexed collection of spaces such that Player II
has a winning strategy in the game Gν(S) (respectively, in the game Gcm(S)).
Then, the class IP (S) of spaces has a universal element.

Proof. Since the Player II has a winning strategy in the game Gν(S) (re-
spectively, in the game Gcm(S)) there exists an element c ∈ C(S) (respectively,
a co-mark

M ≡ {{UX
δ : δ ∈ τ } : X ∈ S }

of S) such that T(c) ∈ IP (S) (respectively, T(M,RM) ∈ IP (S)). Since T(c) and
T(M,RM) are Containing Spaces, each element X of S and, therefore, each
element X of IP (S) is contained topologically in these spaces, which means that
they are universal elements in IP (S). QED
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