Several comments about the combinatorics of \(\tau \)-covers

Boaz Tsaban

Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel; and
Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

http://www.cs.biu.ac.il/~tsaban

Received: 03/01/2006; accepted: 03/09/2006.

Abstract. In a previous work with Mildenberger and Shelah, we showed that the combinatorics of the selection hypotheses involving \(\tau \)-covers is sensitive to the selection operator used. We introduce a natural generalization of Scheepers' selection operators, and show that:

(1) A slight change in the selection operator, which in classical cases makes no difference, leads to different properties when \(\tau \)-covers are involved.

(2) One of the newly introduced properties sheds some light on a problem of Scheepers concerning \(\tau \)-covers.

Improving an earlier result, we also show that no generalized Luzin set satisfies \(U_{\text{fin}}(\Gamma, T) \).

Keywords: combinatorial cardinal characteristics of the continuum, \(\gamma \)-cover, \(\omega \)-cover, \(\tau \)-cover, selection principles, Borel covers, open covers

MSC 2000 classification: 03E05, 54D20, 54D80

1 Introduction

Topological properties defined by diagonalizations of open or Borel covers have a rich history in various areas of general topology and analysis, and they are closely related to infinite combinatorial notions, see \([8, 12, 5, 13]\) for surveys on the topic and some of its applications and open problems.

Let \(X \) be an infinite set. By a cover of \(X \) we mean a family \(U \) with \(X \not\in U \) and \(X = \cup U \). A cover \(U \) of \(X \) is said to be

(1) a large cover of \(X \) if: \((\forall x \in X) \{ U \in U : x \in U \} \) is infinite.

(2) an \(\omega \)-cover of \(X \) if: \((\forall \text{ finite } F \subseteq X) (\exists U \in U) F \subseteq U. \)

(3) a \(\tau \)-cover of \(X \) if: \(U \) is a large cover of \(X \), and \((\forall x, y \in X) \{ U \in U : x \in U \text{ and } y \not\in U \} \) is finite, or \(\{ U \in U : y \in U \text{ and } x \not\in U \} \) is finite.

\(^1\)Partially supported by the Koshland Center for Basic Research.
(4) a γ-cover of X if: \mathcal{U} is infinite and $(\forall x \in X) \{ U \in \mathcal{U} : x \not\in U \}$ is finite.

Let X be an infinite, zero-dimensional, separable metrizable topological space (in other words, a set of reals). Let Ω, T and Γ denote the collections of all open ω-covers, τ-covers and γ-covers of X, respectively. Additionally, denote the collection of all open covers of X by \mathcal{O}. Similarly, let C_Ω, C_T, C_Γ, and C denote the corresponding collections of clopen covers. Our restrictions on X imply that each member of any of the above classes contains a countable member of the same class [11]. We therefore confine attention in the sequel to countable covers, and restrict the above four classes to contain only their countable members. Having this in mind, we let \mathcal{B}_Ω, \mathcal{B}_T, \mathcal{B}_Γ, and \mathcal{B} denote the corresponding collections of countable Borel covers.

Let \mathcal{A} and \mathcal{B} be any of the mentioned classes of covers (but of the same descriptive type, i.e., both open, or both clopen, or both Borel). Scheepers [7] introduced the following selection hypotheses that X might satisfy:

- $S_1(\mathcal{A}, \mathcal{B})$: For each sequence $\langle U_n : n \in \mathbb{N} \rangle$ of members of \mathcal{A}, there exist members $U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$, such that $\{ U_n : n \in \mathbb{N} \} \in \mathcal{B}$.

- $S_{\text{fin}}(\mathcal{A}, \mathcal{B})$: For each sequence $\langle U_n : n \in \mathbb{N} \rangle$ of members of \mathcal{A}, there exist finite (possibly empty) subsets $F_n \subseteq U_n$, $n \in \mathbb{N}$, such that $\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{B}$.

- $U_{\text{fin}}(\mathcal{A}, \mathcal{B})$: For each sequence $\langle U_n : n \in \mathbb{N} \rangle$ of members of \mathcal{A} which do not contain a finite subcover, there exist finite (possibly empty) subsets $F_n \subseteq U_n$, $n \in \mathbb{N}$, such that $\{ \bigcup F_n : n \in \mathbb{N} \} \in \mathcal{B}$.

Some of the properties are never satisfied, and many equivalences hold among the meaningful ones. The surviving properties appear in Figure 1, where an arrow denotes implication [10]. It is not known whether any other implication can be added to this diagram – see [6] for a summary of the open problems concerning this diagram.

Below each property P in Figure 1 appears its critical cardinality, $\text{non}(P)$, which is the minimal cardinality of a space X not satisfying that property. The definitions of most of the cardinals appearing in this figure can be found in [2, 1], whereas o_δ is defined in [6], and the results were established in [4, 10, 9, 6].

A striking observation concerning Figure 1 is, that in the top plane of the figures, the critical cardinality of $\Pi(\Gamma, \mathcal{B})$ for $\Pi \in \{ S_1, S_{\text{fin}}, U_{\text{fin}} \}$ is independent of Π in all cases except for that where $\mathcal{B} = T$. We demonstrate this anomaly further in Section 2, where we also give a partial answer to a problem of Scheepers. In Section 3 we show that no Luzin set satisfies $U_{\text{fin}}(\Gamma, T)$, improving a result from [10].
2 Generalized selection hypotheses

1 Definition. Let $\kappa < \lambda$ be any (finite or infinite) cardinal numbers. Denote

- $S_{[\kappa, \lambda]}(\mathcal{A}, \mathcal{B})$: For each sequence $\langle U_n : n \in \mathbb{N} \rangle$ of members of \mathcal{A}, there exist subsets $\mathcal{F}_n \subseteq U_n$ with $\kappa \leq |\mathcal{F}_n| < \lambda$ for each $n \in \mathbb{N}$, and $\bigcup_n \mathcal{F}_n \in \mathcal{B}$.

- $U_{[\kappa, \lambda]}(\mathcal{A}, \mathcal{B})$: For each sequence $\langle U_n : n \in \mathbb{N} \rangle$ of members of \mathcal{A} which do not contain subcovers of size less than λ, there exist subsets $\mathcal{F}_n \subseteq U_n$ with $\kappa \leq |\mathcal{F}_n| < \lambda$ for each $n \in \mathbb{N}$, and $\{ \cup \mathcal{F}_n : n \in \mathbb{N} \} \in \mathcal{B}$.

So that $S_{[1,2]}(\mathcal{A}, \mathcal{B})$ is $S_1(\mathcal{A}, \mathcal{B})$, $S_{[0,\omega_0]}(\mathcal{A}, \mathcal{B})$ is $S_{\infty}(\mathcal{A}, \mathcal{B})$, and $U_{[0,\omega_0]}(\mathcal{A}, \mathcal{B})$ is $U_{\infty}(\mathcal{A}, \mathcal{B})$.

2 Definition. Say that a family $\mathcal{A} \subseteq \mathcal{A}$ of members of \mathcal{A} is semi τ-diagonalizable if there exists a partial function $g : \mathbb{N} \to \mathbb{N}$ such that:

1. For each $A \in \mathcal{A}$: $(\exists \infty n \in \text{dom}(g)) A(n, g(n)) = 1$;

2. For each $A, B \in \mathcal{A}$:
 - Either $(\forall \infty n \in \text{dom}(g)) A(n, g(n)) \leq B(n, g(n))$,
 - or $(\forall \infty n \in \text{dom}(g)) B(n, g(n)) \leq A(n, g(n))$.

 In the following theorem, note that $\min\{ s, b, \omega \} \geq \min\{ s, b, \text{cov}(\mathcal{M}) \} = \min\{ s, \text{add}(\mathcal{M}) \}$.

3 Theorem.
(1) \(X\) satisfies \(S_{[0,2]}(\mathcal{B}_T, \mathcal{B}_T)\) if, and only if, for each Borel function \(\Psi : X \rightarrow \{0,1\}^{\mathbb{N} \times \mathbb{N}}\): If \(\Psi[X]\) is a \(\tau\)-family, then it is semi \(\tau\)-diagonalizable (Definition 2). The corresponding clopen case also holds.

(2) The minimal cardinality of a \(\tau\)-family that is not semi \(\tau\)-diagonalizable is at least \(\min\{a, b, od\}\).

(3) \(\min\{a, b, od\} \leq \text{non}(S_{[0,2]}(\mathcal{B}_T, \mathcal{B}_T)) = \text{non}(S_{[0,2]}(T, T)) = \text{non}(S_{[0,2]}(C_T, C_T))\).

Proof. (1) is proved as usual, (2) is shown in the proof of Theorem 4.1 of [6], and (3) follows from (1) and (2).

4 Definition ([9]). For functions \(f, g, h \in \mathbb{N}^\mathbb{N}\), and binary relations \(R, S\) on \(\mathbb{N}\), define subsets \([f R g]\) and \([f R g S h]\) of \(\mathbb{N}^\mathbb{N}\) by:

\[[f R g] = \{n : f(n) R g(n)\}, \quad [f R g S h] = [f R g] \cap [g S h]\].

For a subset \(Y\) of \(\mathbb{N}^\mathbb{N}\) and \(g \in \mathbb{N}^\mathbb{N}\), we say that \(g\) avoids middles in \(Y\) with respect to \(\langle R, S \rangle\) if:

1. for each \(f \in Y\), the set \([f R g]\) is infinite;
2. for all \(f, h \in Y\) at least one of the sets \([f R g S h]\) and \([h R g S f]\) is finite.

\(Y\) satisfies the \(\langle R, S \rangle\)-excluded middle property if there exists \(g \in \mathbb{N}^\mathbb{N}\) which avoids middles in \(Y\) with respect to \(\langle R, S \rangle\).

In [10] it is proved that \(U_{\text{fin}}(\mathcal{B}_T, \mathcal{B}_T)\) is equivalent to having all Borel images in \(\mathbb{N}^\mathbb{N}\) satisfying the \(\langle \leq, < \rangle\)-excluded middle property (the statement in [10] is different but equivalent).

5 Theorem. For a set of reals \(X\), the following are equivalent:

1. \(X\) satisfies \(U_{[1,\aleph_0]}(\mathcal{B}_T, \mathcal{B}_T)\).
2. Each Borel image of \(X\) in \(\mathbb{N}^\mathbb{N}\) satisfies the \(\langle \leq, < \rangle\)-excluded middle property.

The corresponding assertion for \(U_{[1,\aleph_0]}(C_T, C_T)\) holds when “Borel” is replaced by “continuous”.

Proof. The proof is similar to the one given in [10] for \(U_{\text{fin}}(\mathcal{B}_T, \mathcal{B}_T)\), but is somewhat simpler.

1 \(\Rightarrow\) 2: Assume that \(Y \subseteq \mathbb{N}^\mathbb{N}\) is a Borel image of \(X\). Then \(Y\) satisfies \(U_{[1,\aleph_0]}(\mathcal{B}_T, \mathcal{B}_T)\). For each \(n\), the collection \(\mathcal{U}_n = \{U_m : m \in \mathbb{N}\}\), where \(U_m = \{f \in \mathbb{N}^\mathbb{N} : f(n) \leq m\}\), is a clopen \(\gamma\)-cover of \(\mathbb{N}^\mathbb{N}\). By standard arguments (see (1 \(\Rightarrow\) 2) in the proof of Theorem 2.3 of [6]) we may assume that no \(\mathcal{U}_n\)
contains a finite cover. For all \(n \), the sequence \(\{ U^n_m : m \in \mathbb{N} \} \) is monotonically increasing with respect to \(\subseteq \), therefore—as large subcovers of \(\tau \)-covers are also \(\tau \)-covers—we may use \(S_1(\mathcal{B}_\Gamma, \mathcal{B}_T) \) instead of \(U_{[1,\aleph_0)}(\mathcal{B}_\Gamma, \mathcal{B}_T) \) to get a \(\tau \)-cover \(U = \{ \Psi^{-1}[U^n_m] : n \in \mathbb{N} \} \) for \(X \). Let \(g \in \mathbb{N}^\mathbb{N} \) be such that \(g(n) = m_n \) for all \(n \). Then \(g \) avoids middles in \(Y \) with respect to \(\langle \leq, < \rangle \).

2 \(\Rightarrow \) 1: Assume that \(U_n = \{ U^n_m : m \in \mathbb{N} \} \), \(n \in \mathbb{N} \), are Borel covers of \(X \) which do not contain a finite subcover. Replacing each \(U^n_m \) with the Borel set \(U_{k \leq m} U^n_m \) we may assume that the sets \(U^n_m \) are monotonically increasing with \(m \). Define \(\Psi : X \to \mathbb{N}^\mathbb{N} \) by: \(\Psi(x)(n) = \min \{ m : x \in U^n_m \} \). Then \(\Psi \) is a Borel map, and so \(\Psi[X] \) satisfies the \(\langle \leq, < \rangle \)-excluded middle property. Let \(g \in \mathbb{N}^\mathbb{N} \) be a witness for that. Then \(U = \{ U^n_g(n) : n \in \mathbb{N} \} \) is a \(\tau \)-cover of \(X \).

The proof in the clopen case is similar.

6 Corollary. The critical cardinalities of \(U_{[1,\aleph_0)}(\mathcal{B}_\Gamma, \mathcal{B}_T) \), \(U_{[1,\aleph_0)}(\Gamma, T) \), and \(U_{[1,\aleph_0)}(\mathcal{C}_T, \mathcal{C}_T) \) are all equal to \(b \).

Proof. This follows from Theorem 5 and the corresponding combinatorial assertion, which was proved in [9].

Recall from Figure 1 that the critical cardinality of \(U_{\text{fin}}(\Gamma, T) = U_{[0,\aleph_0)}(\Gamma, T) \) is \(\max \{ s, b \} \). Contrast this with Corollary 6.

According to Scheepers [12, Problem 9.5], one of the more interesting problems concerning Figure 1 is whether \(S_1(\Omega, T) \) implies \(U_{\text{fin}}(\Gamma, \Gamma) \). If \(U_{[1,\aleph_0)}(\Gamma, T) \) is preserved under taking finite unions, then we get a positive solution to Scheepers’ Problem. (Note that \(S_1(\Omega, T) \) implies \(S_1(\Gamma, T) \).)

7 Corollary. If \(U_{[1,\aleph_0)}(\Gamma, T) \) is preserved under taking finite unions, then it is equivalent to \(U_{\text{fin}}(\Gamma, \Gamma) \) and \(S_1(\Gamma, T) \) implies \(U_{\text{fin}}(\Gamma, \Gamma) \).

Proof. The last assertion of the theorem follows from the first since \(S_1(\Gamma, T) \) implies \(U_{[1,\aleph_0)}(\Gamma, T) \).

Assume that \(X \) does not satisfy \(U_{\text{fin}}(\Gamma, \Gamma) \). Then, by Hurewicz’ Theorem [3], there exists an unbounded continuous image \(Y \) of \(X \) in \(\mathbb{N}^\mathbb{N} \). For each \(f \in Y \), define \(f_0, f_1 \in \mathbb{N}^\mathbb{N} \) by \(f_i(2n + i) = f(n) \) and \(f_i(2n + (1 - i)) = 0 \). For each \(i \in \{ 0, 1 \} \), \(Y_i = \{ f_i : f \in Y \} \) is a continuous image of \(Y \). It is not difficult to see that \(Y_0 \cup Y_1 \) does not satisfy the \(\langle \leq, < \rangle \)-excluded middle property [9]. By Theorem 5, \(Y_0 \cup Y_1 \) does not satisfy \(U_{[1,\aleph_0)}(\Gamma, T) \), thus, by the theorem’s hypothesis, one of the sets \(Y_i \) does not satisfy that property. Therefore \(Y \) (and therefore \(X \)) does not satisfy \(U_{[1,\aleph_0)}(\Gamma, T) \) either.

We do not know whether \(U_{[1,\aleph_0)}(\Gamma, T) \) is preserved under taking finite unions. We also do not know the situation for \(U_{\text{fin}}(\Gamma, T) \). The following theorem is only interesting when \(s < b \).
8 Theorem. If there exists a set of reals \(X \) satisfying \(\mathcal{U}_{\text{fin}}(\Gamma, \Gamma) \) but not \(\mathcal{U}_{\text{fin}}(\Gamma, T) \), then \(\mathcal{U}_{\text{fin}}(\Gamma, T) \) is not preserved under taking unions of \(s \) many elements.

Proof. The proof is similar to the last one, except that here we define \(s \) many continuous images of \(Y \) as we did in [9] to prove that the critical cardinality of \(\mathcal{U}_{\text{fin}}(\Gamma, T) \) is \(\max\{ s, b \} \).

3 Luzin sets

A set of reals \(L \) is a generalized Luzin set if for each meager set \(M \), \(|L \cap M| < |L|\). In [10] we constructed (assuming a portion of the Continuum Hypothesis) a generalized Luzin set which satisfies \(S_1(\mathcal{B}_0, \mathcal{B}_1) \) but not \(\mathcal{U}_{\text{fin}}(\Gamma, T) \). We now show that the last assertion always holds.

9 Theorem. Assume that \(L \subseteq \mathbb{N} \) is a generalized Luzin set. Then \(L \) does not satisfy the \((<, \leq) \)-excluded middle property. In particular, \(L \) does not satisfy \(\mathcal{U}_{\text{fin}}(C_T, CT) \).

Proof. We use the following easy observation.

10 Lemma ([10]). Assume that \(A \) is an infinite set of natural numbers, and \(f \in \mathbb{N} \). Then the sets

\[
M_{f,A} = \{ g \in \mathbb{N} : [g \leq f] \cap A \text{ is finite} \}
\]

\[
\tilde{M}_{f,A} = \{ g \in \mathbb{N} : [f < g] \cap A \text{ is finite} \}
\]

are meager subsets of \(\mathbb{N} \).

Fix any \(f \in \mathbb{N} \). We will show that \(f \) does not avoid middles in \(Y \) with respect to \((<, \leq) \). The sets \(M_{f,N} = \{ g \in \mathbb{N} : [g \leq f] \text{ is finite} \} \) and \(\tilde{M}_{f,N} = \{ g \in \mathbb{N} : [f < g] \text{ is finite} \} \) are meager, thus there exists \(g_0 \in L \setminus (M_{f,N} \cup \tilde{M}_{f,N}) \). Now consider the meager sets \(M_{f,[f < g_0]} = \{ g \in \mathbb{N} : [g \leq f < g_0] \text{ is finite} \} \) and \(\tilde{M}_{f,[g_0 \leq f]} = \{ g \in \mathbb{N} : [g_0 \leq f < g] \text{ is finite} \} \), and choose \(g_1 \in L \setminus (M_{f,[f < g_0]} \cup \tilde{M}_{f,[g_0 \leq f]}) \). Then both sets \([g_0 < f \leq g_1]\) and \([g_1 < f \leq g_0]\) are infinite.

References

Several comments about the combinatorics of τ-covers

