Note di Matematica 27, suppl. n. 1, 2007, 41-46.

On dense subspaces of $C_p(X)$

Masami Sakai Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan sakaim01@kanagawa-u.ac.jp

Received: 17/06/2006; accepted: 10/10/2006.

Abstract. For a Tychonoff space X, we denote by $C_p(X)$ the space of all real-valued continuous functions on X with the topology of pointwise convergence. We show the following: (1) if ω_1 is a caliber for every dense subspace of $C_p(X)$, then $C_p(X)$ is (ω_1, ω_1) -narrow; (2) if every dense subspace of $C_p(X)$ is compact-dense in $C_p(X)$, then every non-trivial countable ω -cover of open sets of X contains a γ -cover. The first result gives the positive answer to Problem 4.4 in [6], and the second one is a partial answer to Problem 4.3 in [6].

Keywords: function space, dense subspace, caliber, (κ, κ) -compact, (κ, κ) -narrow, linearly Lindelöf, ω -cover, γ -cover, Fréchet

MSC 2000 classification: primary 54C35; 54D20

1 Introduction

All spaces considered in this paper are Tychonoff topological spaces. Unexplained notions and terminology are the same as in [3]. Throughout this paper, \mathbb{N} and \mathbb{R} will be used to denote the positive integers and the real line, respectively. For a set X, we denote by $[X]^{<\omega}$ the set of finite subsets of X. For a space X, we denote by $C_p(X)$ the space of all real-valued continuous functions on X with the topology of pointwise convergence. The basic open sets of $C_p(X)$ are of the form

 $[x_0, \ldots, x_k; O_0, \ldots, O_k] = \{ f \in C_p(X) : f(x_i) \in O_i, i = 0, \ldots, k \},\$

where $x_i \in X$ and each O_i is a non-empty open subset of \mathbb{R} . The symbol **0** is the constant function with the value 0.

Let us recall some definitions.

1 Definition ([3]). An infinite regular cardinal κ is called a *caliber* of a space X if for an arbitrary family \mathcal{U} of non-empty open sets of X with $|\mathcal{U}| = \kappa$, there is a subfamily $\mathcal{V} \subset \mathcal{U}$ satisfying $|\mathcal{V}| = \kappa$ and $\bigcap \{ V : V \in \mathcal{V} \} \neq \emptyset$.

2 Definition ([1]). A point x in a space X is called a *complete accumulation* point of a set $E \subset X$ if for every neighborhood U of x we have $|U \cap E| = |E|$. For an infinite regular cardinal κ , a space X is called (κ, κ) -compact if every subset $E \subset X$ of cardinality κ has a complete accumulation point in X. Obviously a space X is (ω, ω) -compact iff it is countably compact. The following is well-known.

3 Lemma ([1]). Let κ be an infinite regular cardinal. Then the following are equivalent.

- (1) X is (κ, κ) -compact;
- (2) every open cover \mathcal{U} of X with $|\mathcal{U}| = \kappa$ has a subcover \mathcal{V} of cardinality less than κ .

4 Definition ([6]). Let \mathcal{U} be a family of open subsets of X. For $x \in X$, let $\operatorname{ord}(\mathcal{U}, x) = |\{U \in \mathcal{U} : x \in U\}|$. For an infinite regular cardinal κ , a space X is called (κ, κ) -narrow if for every open family \mathcal{U} of X, the set $\{x \in X : \operatorname{ord}(\mathcal{U}, x) \geq \kappa\}$ is open in X.

Okunev and Tkachuk noted in [6, Remark 3.13] that: if ω_1 is a caliber of X and X is (ω_1, ω_1) -narrow, then every dense subspace of X has caliber ω_1 , see Theorem 7. And they asked in [6, Problem 4.4] whether the converse is true among function spaces.

5 Problem ([6]). Suppose that ω_1 is a caliber for every dense subspace of $C_p(X)$. Is it true that $C_p(X)$ is (ω_1, ω_1) -narrow?

They posed one more problem [6, Problem 4.3] on dense subspaces of function spaces.

6 Problem ([6]). Suppose that every dense subspace A of $C_p(X)$ is compact-dense in $C_p(X)$ in the sense that for each $f \in C_p(X)$, there is a compact set $K \subset C_p(X)$ such that $f \in \overline{K \cap A}$. Must $C_p(X)$ be Fréchet?

In the second section we show that Problem 5 is positive, and in the third section we give a partial answer to Problem 6.

2 Calibers of dense subspaces of $C_p(X)$

7 Theorem. Let κ be an uncountable regular cardinal. For a space X, the following are equivalent.

- (1) κ is a caliber of $C_p(X)$ and $C_p(X)$ is (κ, κ) -narrow;
- (2) κ is a caliber for every dense subspace of $C_p(X)$.

PROOF. The implication $(1) \to (2)$ is noted in [6, Remark 3.13]. For completeness, we give a proof. Let D be an arbitrary dense subspace of $C_p(X)$ and let $\mathcal{U} = \{U_{\alpha} : \alpha < \kappa\}$ be an arbitrary family of non-empty open subsets of D. For each $\alpha < \kappa$, take an open set \tilde{U}_{α} in $C_p(X)$ with $\tilde{U}_{\alpha} \cap D = U_{\alpha}$. On dense subspaces of $C_p(X)$

Since κ is a caliber of $C_p(X)$, there is a subset $J \subset \kappa$ satisfying $|J| = \kappa$ and $\bigcap \{ \tilde{U}_{\alpha} : \alpha \in J \} \neq \emptyset$. Let $\tilde{\mathcal{U}} = \{ \tilde{U}_{\alpha} : \alpha \in J \}$. Since $C_p(X)$ is (κ, κ) -narrow, the set $\{ f \in C_p(X) : \operatorname{ord}(\tilde{\mathcal{U}}, f) \geq \kappa \}$ is open in $C_p(X)$, and it is non-empty by

$$\emptyset \neq \bigcap \{ \tilde{U}_{\alpha} : \alpha \in J \} \subset \{ f \in C_p(X) : \operatorname{ord}(\tilde{\mathcal{U}}, f) \ge \kappa \}.$$

Hence there is $g \in D \cap \{ f \in C_p(X) : \operatorname{ord}(\mathcal{U}, f) \geq \kappa \}$. Therefore $g \in \bigcap \{ U_\alpha : \alpha \in J' \}$ for some $J' \subset J$ with $|J'| = \kappa$.

We show the implication $(2) \to (1)$. Okunev and Tkachuk proved in [6, Theorem 3.11] that $C_p(X)$ is (κ, κ) -narrow iff every finite power of X is (κ, κ) compact. Therefore we prove that every finite power of X is (κ, κ) -compact. Fix an arbitrary $n \in \mathbb{N}$. In view of Lemma 3, we have only to show that every open cover \mathcal{U} of X^n with $|\mathcal{U}| = \kappa$ has a subcover \mathcal{V} of cardinality less than κ . Let \mathcal{U} be an open cover of X^n with cardinality κ . We put $\mathcal{U} = \{U_\alpha : \alpha < \kappa\}$ and $V_\alpha = \bigcup \{U_\beta : \beta \leq \alpha\}$ for $\alpha < \kappa$. For each $F \in [X]^{<\omega}$, choose $\alpha_F < \kappa$ with $F^n \subset V_{\alpha_F}$. Then we can take an open set W_F of X such that $F \subset W_F$ and $W^n_F \subset V_{\alpha_F}$. Let

$$D = \{ f \in C_p(X) : \exists F \in [X]^{<\omega} \text{ such that } f(x) = 0 \text{ for } x \in X \setminus W_F \}.$$

The set D is dense in $C_p(X)$. Indeed, let $B = [x_0, \ldots, x_l; O_0, \ldots, O_l]$ be a nonempty basic open set of $C_p(X)$. Since $F = \{x_0, \ldots, x_l\} \subset W_F$ holds, there is $g \in C_p(X)$ satisfying g(x) = 1 for $x \in F$ and g(x) = 0 for $x \in X \setminus W_F$. Take an arbitrary $h \in B$. Then the pointwise product $g \cdot h \in B \cap D$.

Suppose that for every $\alpha < \kappa$, there is a point $(z_1^{\alpha}, \ldots, z_n^{\alpha}) \in X^n \setminus V_{\alpha}$. For each $\alpha < \kappa$, let $F_{\alpha} = \{z_1^{\alpha}, \ldots, z_n^{\alpha}\}$ and let

$$N_{\alpha} = \{ f \in C_p(X) : f(x) \neq 0 \text{ for all } x \in F_{\alpha} \}.$$

Since each N_{α} is a non-empty open set in $C_p(X)$, by our assumption there is a subset $J \subset \kappa$ such that $|J| = \kappa$ and

$$\bigcap \{ D \cap N_{\alpha} : \alpha \in J \} \neq \emptyset.$$

Let $f \in \bigcap \{ D \cap N_{\alpha} : \alpha \in J \}$. As $f \in D$, there is $E \in [X]^{<\omega}$ such that f(x) = 0for every $x \in X \setminus W_E$. Since $f \in N_{\alpha}$ $(\alpha \in J)$ implies $F_{\alpha} \subset W_E$, $(z_1^{\alpha}, \ldots, z_n^{\alpha}) \in F_{\alpha}^n \subset W_E^n \subset V_{\alpha_E}$. Thus $\{ (z_1^{\alpha}, \ldots, z_n^{\alpha}) : \alpha \in J \} \subset V_{\alpha_E}$. This is a contradiction. Therefore $X^n = V_{\alpha}$ for some $\alpha < \kappa$. This implies that $\{ U_{\beta} : \beta \leq \alpha \}$ is a subcover of X^n . QED

A space X is called *linearly Lindelöf* [5] if every open cover of X that is linearly ordered by inclusion has a countable subcover of X. It is well-known that a space X is linearly Lindelöf iff X is (κ, κ) -compact for each uncountable regular cardinal κ .

A space X is called a $\check{S}anin \ space \ [8]$ if every uncountable regular cardinal is a caliber of X.

8 Corollary. If every dense subspace of $C_p(X)$ is a Šanin space, then each finite power of X is linearly Lindelöf.

PROOF. Apply Theorem 7 and Theorem 3.11 in [6].

9 Example. There is a space Y which is not (ω_1, ω_1) -narrow, but every dense subspace of Y is a Šanin space. Let X be a subspace of \mathbb{R}^{ω_1} which is homeomorphic to the compact space $\omega_1 + 1$. Since \mathbb{R}^{ω_1} is separable [3, Theorem 2.3.15] and X is nowhere dense closed in \mathbb{R}^{ω_1} , there is a countable dense subset D of \mathbb{R}^{ω_1} such that $D \cap X = \emptyset$. Let Y be the space obtained from the space $D \cup X \subset \mathbb{R}^{\omega_1}$ by isolating every point in D. Since each point of D is isolated in Y, every dense subspace of Y is separable. Note that every separable space is a Šanin space. Hence every dense subspace of Y is a Šanin space. But Y is not (ω_1, ω_1) -narrow. Indeed, consider the decreasing family $\mathcal{U} = \{(\alpha, \omega_1] \cup D : \alpha < \omega_1\}$ of open sets of Y. The set $\{y \in Y : \operatorname{ord}(\mathcal{U}, y) \geq \omega_1\} = \{\omega_1\} \cup D$ is not open in Y.

3 Compact-dense subspaces in $C_p(X)$

10 Definition. A family \mathcal{A} of subsets of a set X is called an ω -cover of X if every finite subset of X is contained in some member of \mathcal{A} . An ω -cover \mathcal{A} of X is called non-trivial if $A \neq X$ for all $A \in \mathcal{A}$. A family \mathcal{A} of subsets of a set X is called an γ -cover of X if it is countably infinite and every point of X is contained in all but finitely many members of \mathcal{A} . A space X is said to have property (γ) if every non-trivial ω -cover of open sets of X contains a γ -cover.

The terms of an ω -cover and a γ -cover are introduced in [4]. Note that a non-trivial ω -cover contains infinitely many members.

Gerlits and Nagy proved in [4] that $C_p(X)$ is Fréchet iff X satisfies property (γ) .

11 Definition. A subset $A \subset X$ is called *sequentially dense* in X if for each $x \in X$, there is a sequence $\{x_n : n \in \omega\} \subset A$ converging to x.

In [6, Theorem 2.12], the authors proved that: if each dense subspace of $C_p(X)$ is sequentially dense, then $C_p(X)$ is Fréchet. This result is a motivation of Problem 6.

The following is a partial answer to Problem 6.

12 Theorem. If every dense subspace of $C_p(X)$ is compact-dense in $C_p(X)$, then every non-trivial **countable** ω -cover of open sets of X contains a γ -cover.

On dense subspaces of $C_p(X)$

PROOF. Let $\mathcal{U} = \{ U_n : n \in \mathbb{N} \}$ be a non-trivial ω -cover of open sets of X. For each $n \in \mathbb{N}$, let

$$A_n = \{ f \in C_p(X) : f(x) \ge n \text{ for } x \in X \setminus U_n \}.$$

Then it is easy to see that each A_n is closed in $C_p(X)$. The set $A = \bigcup \{A_n : n \in \mathbb{N}\}$ is dense in $C_p(X)$. Indeed, for an arbitrary $f \in C_p(X)$ and a basic open neighborhood $B = [x_0, \ldots, x_l; O_0, \ldots, O_l]$ of f, choose $n \in \mathbb{N}$ with $\{x_0, \ldots, x_l\} \subset U_n$. Since X is Tychonoff, there is $g \in C_p(X)$ such that $g(x_i) = f(x_i)$ for $0 \le i \le l$ and f(x) = n for $x \in X \setminus U_n$. Then $g \in B \cap A_n$.

Since \mathcal{U} is non-trivial, $\mathbf{0} \notin A$. By our assumption, there is a compact set $K \subset C_p(X)$ such that $\mathbf{0} \in \overline{K \cap A}$. Let

$$S = \{ n \in \mathbb{N} : K \cap A_n \neq \emptyset \}.$$

Assume that there is $N \in \mathbb{N}$ such that for all $n \geq N$, $K \cap A_n = \emptyset$. Then $K \cap A \subset \bigcup \{A_n : n \leq N\}$, and therefore $\mathbf{0} \in \bigcup \{A_n : n \leq N\} = \bigcup \{A_n : n \leq N\} \subset A$, a contradiction. Hence S is infinite. For each $k \in S$, choose $f_k \in K \cap A_k$ and let $V_k = \{x \in X : f_k(x) < k\}$. Obviously $V_k \subset U_k$ for $k \in S$. Let x be an arbitrary point in X. Since $\{f_k : k \in S\}$ is contained in the compact set K, the set $\{f_k(x) : k \in S\}$ is bounded in \mathbb{R} . Take $m \in \mathbb{N}$ such that $f_k(x) < m$ for $k \in S$. Then for each k > m with $k \in S$, $x \in V_k$ holds. Therefore $\{U_k : k \in S\}$ is a γ -cover of X.

A space X is called *countably tight* if $A \subset X$ and $x \in \overline{A}$ imply that there is a countable set $B \subset A$ such that $x \in \overline{B}$. It is known that $C_p(X)$ is countably tight iff every finite power of X is Lindelöf, see [2] and [7]. Also it is known in [4] that every finite power of X is Lindelöf iff every ω -cover of open sets of X contains a countable ω -cover of X.

13 Corollary. $C_p(X)$ is Fréchet iff $C_p(X)$ is countably tight and every dense subspace of $C_p(X)$ is compact-dense in $C_p(X)$.

So, Problem 6 is equivalent to: Assume that every dense subspace of $C_p(X)$ is compact-dense in $C_p(X)$. Must $C_p(X)$ be countably tight?

References

- P. ALEXANDROV, P. URYSOHN: Memoire sur les espaces topologiques compacts, Verh. Kon. Akad. van Weten. Te Amsterdam XIV, (1929), 1–96.
- [2] A. V. ARHANGEL'SKII: On some topological spaces that arise in functional analysis, Russian Mathematical Surveys, **31** (1976), 14–30.
- [3] R. ENGELKING: General Topology, Helderman Verlag, Berlin 1989.
- [4] J. GERLITS, ZS. NAGY: Some properties of C(X), I, Topology Appl., 14 (1982), 151–161.

- [5] N. R. HOWES: Ordered coverings and their relationship to some unsolved problems in topology, in: Proc. Washington State Univ. Conf. on General Topology, (1970), 60–68.
- [6] O. G. OKUNEV, V. V. THACHUK: Density properties and points of uncountable order for families of open sets in function spaces, Topology Appl., 122 (2002), 397–406.
- [7] E. G. PYTKEEV: The tightness of spaces of continuous functions, Russian Mathematical Surveys, 37 (1982), 176–177.
- [8] V. V. TKAČUK: Approximation of \mathbb{R}^X with countable subsets of $C_p(X)$ and calibers of the space $C_p(X)$, Comment. Math. Univ. Calolin., **27** (1986), 267–276.