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The selection principle S1(.A, B) states: There is for each sequence (A, : n €
N) of elements of A a corresponding sequence (b, : n € N) such that for each n
we have b, € A,,, and { b, : n € N} is an element of B. There are many examples
of this selection principle in the literature. One of the earliest examples of it is
known as the Rothberger property, S1(O, O). Here, O is the collection of all open
covers of a topological space.

The following game, G1 (A, B), is naturally associated with Sy (A, B): Players
ONE and TWO play an inning per positive integer. In the n-th inning ONE first
chooses an element O,, of A; TWO responds by choosing an element T, € O,,.
A play

O1,T1, 09, To, ...,0p, Ty, ...

is won by TWO if {T,, : n € N} is in B, else ONE wins.

TWO has a winning strategy in Gy (A, B)
\
ONE has no winning strategy in Gy (A, B)

X2
S1(A, B).
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There are many known examples of 4 and BB where neither of these implications
reverse.

Several classes of open covers of spaces have been defined by the following
schema: For a space X, and a collection 7 of subsets of X, an open cover U
of X is said to be a 7-cover if X is not a member of U, but there is for each
T €T aU € U with T C U. The symbol O(7) denotes the collection of
T-covers of X. In this paper we consider only A which are of the form O(7)
and B = O. Several examples of open covers of the form O(7) appear in the
literature. To mention just a few: When 7 is the family of one-element subsets
of X, O(T) = O. When 7 is the family of finite subsets of X, then members of
O(T) are called w-covers in [3]. The symbol © denotes the family of w-covers of
X. When 7 is the collection of compact subsets of X, then members of O(7)
are called k-covers in [5]. In [5] the collection of k-covers is denoted K.

Though some of our results hold for more general spaces, in this paper “topo-
logical space” means separable metric space, and “dimension” means Lebesgue
covering dimension. We consider only infinite-dimensional separable metric spa-
ces. By classical results of Hurewicz and Tumarkin these are separable metric
spaces which cannot be represented as the union of finitely many zerodimen-
sional subspaces.

1 Properties of strategies of player TWO

1 Lemma. Let F be a strategy of TWO in the game Gi1(O(7T),B). Then
there is for each finite sequence (U, ..., Uy) of elements of O(T), an element
C € T such that for each open set U O C there is a U € O(T) such that
U=FQh,... U,U).

PRrROOF. For suppose on the contrary this is false. Fix a finite sequence
(Ui, ..., Uy,) witnessing this, and choose for each set C' C X which is in 7 an
open set Uo O C witnessing the failure of Claim 1. Then 4 = {U¢ : C C
X and C € 7 } is a member of O(7), and as F(U1,...,U,,U) = Uc for some
C € 7, this contradicts the selection of Uc. QED

When 7 has additional properties, Lemma 1 can be extended to reflect that.
For example: The family 7 is up-directed if there is for each A and B in 7, a
Cin7 with AUB C C.

2 Lemma. Let T be an up-directed family. Let F be a strategy of TWO in
the game G1(O(T),B). Then there is for each D € T and each finite sequence
(Ui, ... ,Uy) of elements of O(T), an element C € T such that D C C and for
each open set U O C there is ald € O(T) such that U = F(Uy, ..., Un, U).
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PRrROOF. For suppose on the contrary this is false. Fix a finite sequence
(Ui, ..., U,) and a set D € T witnessing this, and choose for each set C C X
which is in 7 and with D C C an open set Uo O C' witnessing the failure of
Claim 1. Then, as 7 is up-directed, = {Us : D Cc C C X and C € T}
is a member of O(7), and as F(U,...,Up,U) = Uc for some C € T, this
contradicts the selection of Ug. QED

We shall say that X is 7-first countable if there is for each T' € 7 a sequence
(Up :m = 1,2,...) of open sets such that for all n, T C U,41 C U,, and for
each open set U D T there is an n with U,, C U. Let (7) denote the subspaces
which are unions of countably many elements of 7.

3 Theorem. If F is any strategy for TWO in G1(O(T),0) and if X is
T -first countable, then there is a set S € (T) such that: For any closed set
C C X\S, thereis an F-play Oy, Th, ..., Oy, T, ... such that ;- T,, € X\C.
More can be proved for up-directed 7:

4 Theorem. Let T be up-directed. If F is any strategy for TWO in
G1(O(7),0) and if X is T-first countable, then there is for each set T € (T)
a set S € (T) such that: T C S and for any closed set C C X \ S, there is an
F-play

O1,Th,...,0n T, ...

such that T C ;2 T, € X\ C.

PROOF. Let F be a strategy of TWO. Let T be a given element of (7, and
write T' = ;2| T, where each T;, is an element of 7.

Starting with 77 and the empty sequence of elements of O(7), apply Lemma 2
to choose an element Sy of 7" such that 77 C Sy, and for each open set U D Sy
there is an element & € O(7) with U = F(U). Since X is 7-first countable,
choose for each n an open set U, such that U, D U,41, and for each open set
U with Sy C U there is an n with U,, C U. Using Lemma 2, choose for each n
an element U, of O(7) such that U,, = F(U,).

Now consider T, and for each n the one-term sequence (U,) of elements
of O(T). Since T is up-directed, choose an element T of 7 with Sy U Ty C T.
Applying Lemma 2 to T" and () choose an element S,y € 7 such that for
each open set U 2 S, there is a U € O(7) with U = F(Uyp,U). Since X
is T-first countable, choose for each k an open set U,y 2 S, such that
Uiy 2 Unik+1) 2 S(n)» and for each open set U D S, there is a k with
U D Uiy Then choose for each n and k an element U, 1,y of O(7) such that
U(n,k:) = F(u(n)vu(n,k))

In general, fix k and suppose we have chosen for each finite sequence (n1, ...,
ny) of positive integers, sets S(,, . n,) € 7, open sets Uy, |, ny and elements
Uin,,...npm) of O(T), n < oo, such that:
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(1) Ty U---UTk CSny,omg)s

(2) {Umn,,...npm) : 1 < 00 } witnesses the T-first countability of X at S(,,, . »

k)
(3) U(n1,...,nk,n) =F (u(nl)a s 7u(n1,...,nk)7Z’[(n1,...,nk,n));

Now consider a fixed sequence of length k, say (ni,...,ng). Since 7 is up-
directed choose an element 7" of 7 such that Ty1 U S(y,, .. n,) C T For each
n apply Lemma 2 to T" and the finite sequence Uy, ), - --,Um, ... n.n)): Choose
a set Si, npm) € 7 such that T C S, n, »n) and for each open set U 2
Sny,...ng,m) there is a U € O(T) such that U = F (Z/{(m),...,Z/{(m,m,nk’n),L{).
Since X is 7-first countable, choose for each j an open set Uy, ., n.j) Such
that Uy, ngit 1) © Utng,.oongon,j)» @nd for each open set U D Sy, n) there
isa j with U 2 U, n,j)- Then choose for each j an U, . nynj) € O(T)
such that U(m,...,nk,n,j) =F (u(m)a . 7u(nl,...,nk,n)7u(nl,...,nk,n,j))'

This shows how to continue for all £ the recursive definition of the items
Snr,.m) € T, open sets Uy, |y ny and elements U,y ) of O(T), n < o0
as above.

Finally, put S = U,c<wnSr. It is clear that S € (7), and that T C S.
Consider a closed set C C X \ S. Since C N Sy = 0, choose an n; so that
Utn,)NC = 0. Then since C'NS(y,,y = B, choose an ny such that Uy, ,,,)NC = 0.
Since C' N S(y, ny) = @ choose an nz so that Uy, n, ne) N C = 0, and so on. In
this way we find an F-play

u(nl)v U(n1)7u(n1,n2)7 U(nl,ng)a <.
such that T C ;2 Ugn,,...n) € X \ C. QED

When 7 is a collection of compact sets in a metrizable space X then X is
T-first countable. Call a subset C of 7 cofinal if there is foreach T € T a C € C
with T' C C. As an examination of the proof of Theorem 4 reveals, we do not
need full 7-first countability of X, but only that X is C-first countable for some
cofinal set C C 7. Thus, we in fact have:

5 Theorem. Let T be up-directed. If F is any strategy for TWO in
G1(O(T),0) and if X is C-first countable where C C T ‘is cofinal in T, then
there is for each set T € (T) a set S € (C) such that: T C S and for any closed
set C C X\ S, there is an F-play

O1, T, ...,0p Tp ...

such that T C U2 T, € X\ C.
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2 When player TWO has a winning strategy

Recall that a subset of a topological space is a Gg-set if it is an intersection
of countably many open sets.

6 Theorem. If the family T has a cofinal subset consisting of Gs subsets of
X, then TWO has a winning strategy in G1(O(T), O) if, and only if, the space
s a union of countably many members of T .

PROOF. 2 = 1 is easy to prove. We prove 1 = 2. Let F' be a winning
strategy for TWO. Let C C 7 be a cofinal set consisting of Gs-sets.

By Lemma 1 choose Cjy € T associated to the empty sequence. Since C is cofinal
in 7, choose for Cj a Gs set Gy in C with Cyp C Gy. Choose open sets (U, : n € N)
such that for each n we have Gy C Up41 C Uy, and Gy = NpenUnp,.

For each n choose by Lemma 1 a cover U, € O(7T) with U,, = F'(U,,). Choose
for each n a C), € T associated to (U,,) by Lemma 1. For each n also choose a Gg-
set Gy, € C with C,, C G,,. For each n; choose a sequence (Up,, : n € N) of open
sets such that G, = NpenUn,n and for each n, Uy, n+1 C Uy, pn. For each ning
choose by Lemma 1 a cover Uyp,n, € O(T) such that Uy, pn, = F(Un,,Unyn,)-
Choose by Lemma 1 a Cy,,p, € 7 associated to (Up,,Un,n,), and then choose a
Gs-set Gpyn, € C with Cp pny, C Gpyn,, and so on.

Thus we get for each finite sequence (nyng---ng) of positive integers

(1) aset Cpyony €7,
(2) a Gs-set Gi,..n, € T with Cpp.pyy € Gryovomy s

(3) a sequence (Up,..nun : 1 € N) of open sets with G, ...n,, = NnenUny-npn
and for each n Up,..ipnt+1 € Upy.myn, and

(4) aUp,y..n,, € O(y such that for all n

Unyorign = FUp, s - Uny o)

Now X is the union of the countably many sets G, € 7 where T ranges over
<@N. For if not, choose # € X which is not in any of these sets. Since x is not
in Gy, choose Uy, with x ¢ U,,. Now z is not in Gy, so choose Uy, ,, with
x & Upyny, and so on. In this way we obtain the F-play

u?’Ll) U?’Ll) Z/{n1n27 Un1n27 ct

lost by TWO, contradicting that F' is a winning strategy for TWO. QED

Examples of up-directed families 7 include:

e [X]<M0, the collection of finite subsets of X;
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KC, the collection of compact subsets of X;

KFD, the collection of compact, finite dimensional subsets of X.

CFD, the collection of closed, finite dimensional subsets of X.
e FD, the collection of finite dimensional subsets of X.

A subset of a topological space is said to be countable dimensional if it is a
union of countably many zero-dimensional subsets of the space. A subset of a
space is strongly countable dimensional if it is a union of countably many closed,
finite dimensional subsets. Let X be a space which is not finite dimensional. Let
Ocfg denote O(CFD), the collection of CFD-covers of X. And let Oy denote
O(FD), the collection of FD-covers of X.

7 Corollary. For a metrizable space X the following are equivalent:
(1) X is strongly countable dimensional.
(2) TWO has a winning strategy in Gi(Ocq, O).

PROOF. 1 = 2 is easy to prove. To see 2 = 1, observe that in a metric
space each closed set is a Gg-set. Thus, 7 = CFD meets the requirements of
Theorem 6. QED

For the next application we use the following classical theorem of Tumarkin:

8 Theorem (Tumarkin). In a separable metric space each n-dimensional
set is contained in an n-dimensional Gg-set.

9 Corollary. For a separable metrizable space X the following are equiva-
lent:

(1) X is countable dimensional.
(2) TWO has a winning strategy in G1(Ogqg, O).

PROOF. 1 = 2 is easy to prove. We now prove 2 = 1. By Tumarkin’s The-
orem, 7 = FD has a cofinal subset consisting of Gs-sets. Thus the requirements
of Theorem 6 are met. QED

Recall that a topological space is perfect if every closed set is a Gg-set.

10 Corollary. In a perfect space the following are equivalent:
(1) TWO has a winning strategy in G1 (K, O).

(2) The space is o-compact.
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PrROOF. In a perfect space the collection of closed sets are Gs-sets. Apply
Theorem 6.

And when 7 is up-directed, Theorem 6 can be further extended to:

11 Theorem. If T is up-directed and has a cofinal subset consisting of
Gs-subsets of X, the following are equivalent:

(1) TWO has a winning strategy in G1(O(7T),T).
(2) TWO has a winning strategy in G1(O(7T), ).
(8) TWO has a winning strategy in G1(O(7), O).

PRrROOF. We must show that 3 = 1. Since X is a union of countably many
sets in 7, and since 7 is up-directed, we may represent X as (J. -, X, where
for each n we have X,, C X,,+1 and X,, € 7. Now, when ONE presents TWO
with O,, € O(7) in inning n, then TWO chooses T}, € O,, with X,, C T},. The
sequence of T,,’s chosen by TWO in this way results in a y-cover of X. QED

3 Longer games and player TWO

Fix an ordinal a. Then the game G{ (A, B) has « innings and is played as
follows. In inning 3 ONE first chooses an Og € A, and then TWO responds
with a T € Og. A play

Oo,To,...,Oﬁ,T/g,..., 0 <«
is won by TWO if {7 : f < o} is in B; else, ONE wins.
In this notation the game G; (A, B) is GY (A, B). For a space X and a family
T of subsets of X with U7 = X, define:
covx(7) =min{|S|: S C7 and X =US }.

When X = UT, there is an ordinal o < covx(7) such that TWO has a winning
strategy in G{(O(7), O). In general, there is an ordinal o < | X| such that TWO
has a winning strategy in G{*(O(7), O).

tps, (0(7),0)(X) = min{ @ : TWO has a winning strategy in G{'(O(7), 0) }.

3.1 General properties

The proofs of the general facts in the following lemma are left to the reader.

12 Lemma.
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(1) If Y is a closed subset of X then tps, o(1),0)(Y) < tPs, (o(1),0)(X)-

(2) If a is a limit ordinal and if tps o(1),0)(Xn) < «a for each n, then
tps, (0(1),0) (Un<oo Xn) < a.

We shall now give examples of ordinals « for which TWO has winning strate-
gies in games of length a. First we have the following general lemma.

13 Lemma. Let X be T -first countable. Assume that:
(1) T is up-directed;

(2) X ¢(T);

(3) « is the least ordinal such that there is an element B of (T) such that for
any closed set C C X \ B with C ¢ T, tps, (o(1),0)(C) < a.

Then tpsl(O(T),O) (X) =w-+a.

PROOF. We must show that TWO has a winning strategy for G{*(O(7), O)
and that there is no 8 < w + «a for which TWO has a winning strategy in
Gl (O(T),0).

To see that TWO has a winning strategy in Gy™*(O(7), ), fix a B as in
the hypothesis, and for each closed set F' disjoint from B, fix a winning strategy
7r for TWO in the game G§(O(7),O) played on F. Now define a strategy o
for TWO in GYT*(O(T),0) on X as follows: During the first w innings, TWO
covers B. Let 11, T, ... be TWQO’s moves during these w innings, and put
C =X \U,2, T Then C is a closed subset of X, disjoint from B. Now TWO
follows the strategy 7¢ in the remaining « innings, to also cover C.

To see that there is no § < w + « for which TWO has a winning strategy
in Gf((’)(’]’), O), argue as follows: Suppose on the contrary that 8 < w + « is
such that TWO has a winning strategy o for Gf(O(T), O) on X. We will show
that there is a set S € (7) and an ordinal v < « such that for each closed set C'
disjoint from S, TWO has a winning strategy in GJ(O(7),O) on C. This gives
a contradiction to the minimality of « in hypothesis 3.

We consider cases: First, it is clear that a < 3, for otherwise TWO may
merely follow the winning strategy on X and relativize to any closed set C' to
win on C in # < « innings, a contradiction. Thus, w + a > «. Then we have
a < w? say @ = w-n+ k. Since then w + a = w- (n + 1) + k, we have that
B with o < f < w4+ «a has the form 8 = w-n + ¢ with £ > k. The other
possibility, 3 =w - (n+ 1) + j for some j < k, does not occur because it would
giveat+w>pf=w-n+(w+j)=wn+k)+w+j)=a+w+j.

Let F be a winning strategy for TWO in Gf((’)(’]’),(’)). By the second
hypothesis and Theorem 6 we have § > w. By Theorem 4 fix an element
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S € (T') such that B C S, and for any closed set C C X \ S, there is an
F-play (01, T1, ...,0n, Ty, ...) with S C (U, Tp), and C' 1 (U, T,) = 0.
Choose a closed set C C X \ S with C' € 7. This is possible by the second hy-
pothesis. Choose an F-play (O1, T, ...,0Oy, T, ...) with S C (U2, T»), and
CnN(U,2,T,) = 0. This F-play contains the first w moves of a play according
to the winning strategy F' for TWO in Gf((’)(’]'), 0), and using it as strategy to
play this game on C, we see that it requires (an additional) v = w-(n—1)+¢ < «
innings for TWO to win on C'. Here, ¢ is fixed and the same for all such C'. Thus:
tps, (0(1),0)(C) <7 < . This is in contradiction to the minimality of a. QED

3.2 Examples

For each n put R, = {z € RY : (¥m > n)(z(m) = 0)}. Then R, is
homeomorphic to R™ and thus is o-compact, and n-dimensional. Thus Ry, =
U,~, Ry, is a o-compact strongly countable dimensional subset of RN,

We shall now use the Continuum Hypothesis to construct for various infinite
countable ordinals a subsets of RY in which TWO has a winning strategy in
G{(O(T), ). The following is one of our main tools for these constructions:

14 Lemma. IfG is any Gs-subset of RN with Ry, C G, then G\Rq, contains
a compact nowhere dense subset C which is homeomorphic to [0, 1]N.

We call [0,1]Y the Hilbert cube. From now on assume the Continuum Hy-
pothesis. Let (F, : @ < wy) enumerate all the finite dimensional Gs-subsets of
RN, and let (Cq : @ < wy) enumerate the Gg-subsets which contain Ry,. Recur-
sively choose compact sets D, C RY, each homeomorphic to the Hilbert cube
and nowhere dense, such that Dy C Cp \ (R U Fp), and for all a > 0,

Da C (Ng<aC) \ | Roo U (U{Dﬁ LB < a}) ul U Fs
B<a
Version 1: For each «, choose a point z, € D, and put
B:=RoU{zq:a<w}

Version 2: For each «, choose a strongly countable dimensional set S, C D,
and put

B::ROOU(U{SQ:a<w1}).

Version 3: For each «, choose a countable dimensional set S, C D, and put

B::ROOU(U{SQ:a<w1}).
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In all three versions, B is not countable dimensional: Otherwise it would be,
by Tumarkin’s Theorem, for some o < wy a subset of | J;_, Fjg. Thus TWO
has no winning strategy in the games Gi(Ocq, O) and G;1(Ogqy, O). Also, in all
three versions the elements of the family C of finite unions of the sets .S, are
Gg-sets in X, and in fact X is C-first-countable. This is because the D,’s are
compact and disjoint, and RY is D-first countable, where D is the family of
finite unions of the D, ’s, and this relativizes to X.

For Version 1 TWO has a winning strategy in G‘f“(@cfd, O) and in

GY (O, 0), and in GYT(KC, O). For Version 2 TWO has a winning strategy
in G (O, O), and for Version 3 TWO has a winning strategy in

G{ (0, 0).

To see this, note that in the first w innings, TWO covers Ry,. Let

{Un :n € N} be TWO’s responses in these innings. Then G = J;-, Uy is an
open set containing R, and so there is an o < wj such that:

Version 1: B\ G C {z3: 3 < a} is a closed, countable subset of X and thus
closed, zero-dimensional. In inning w 4+ 1 TWO chooses from ONE’s cover an
element containing the set B\ G.

Version 2: B\ G C s, Sp- But Us,, Sa is strongly countable dimensional,
and so TWO can cover this part of B in the remaining w innings. By
Lemma 13 TWO does not have a winning strategy in fewer then w + w innings.

Version 3: B\ G C Jg_, Sp. But g, Sa is strongly countable dimensional,
and so TWO can cover this part of B in the remaining w innings. By

Lemma 13 TWO does not have a winning strategy in fewer then w + w innings.
With these examples established, we can now upgrade the construction as
follows: Let o be a countable ordinal for which we have constructed an
example of a subspace S of RY for which tps, (0(1),0)(S) = a. Then choose
inside each Dg a set Cj for which tps, (o(7),0)(Cp) = @. Then the resulting
subset B constructed above has, by Lemma 13, tps, (o(7),0)(B) = w + a. In
this way we obtain examples for each of the lengths w-n and w-n + 1, for all
finite n.

By taking topological sums and using part 2 of Lemma 12 we get examples for
w?.

4 Conclusion

One obvious question is whether there is, under the Continuum Hypothesis,
for each limit ordinal o subsets X, and Y, of RN such that

tPs, (04,0)(Xa) = @, and tps, (0, 0)(Ya) = @+ 1. And the same question can
be asked for tps, (o, 0)-
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In [1] countable dimensionality of metrizable spaces were characterized in
terms of the selective screenability game. A natural question is how S1(Ogq, O)
and S;(Ocfq, O) are related to selective screenability. It is clear that

S1(Os4, O) = S1(Octq, O). The relationship among these two classes and
selective screenability is further investigated in [2] where it is shown, for
example, that S1(Ocq, O) implies selective screenability, but the converse does
not hold. Thus, these two classes are new classes of weakly infinite dimensional
spaces.
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