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Abstract. Let M = G/H be a homogeneous Riemannian manifold. Given a Lie subgroup
G ⊂ G and a reductive decomposition of the homogeneous structure of M , we analyze a
canonical reductive decomposition for the orbits of the action of G. These leaves of the G-
action are extrinsic homogeneous submanifolds and the analysis of the reductive decomposition
of them is related with their extrinsic properties. We connect the study with works in the
literature and initiate the relationship with the Ambrose-Singer theorem and homogeneous
structures of submanifolds.
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1 Introduction

Two classical topics in Differential Geometry are those of homogeneous man-
ifolds and the geometry of submanifolds. The combination of both has been one
main research interest in classical and recent articles. More precisely, given a
homogeneous ambient space where a group G is acting transitively, the objective
is to analyze the geometry of the leaves induced by the action of a subgroup
G ⊂ G. Furthermore, characterization of those submanifolds of M that are
leaves of any action is an essential question.

The geometry of homogeneous spaces when they are reductive is particu-
larly rich because they are equipped with a canonical connection that reflects
deeply the symmetries of these spaces. These canonical connections, defined
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through reductive decompositions, provide fundamental tools to analyze curva-
ture properties and symmetry groups of homogeneous manifolds. Furthermore,
the canonical connection is the main character of the Ambrose-Singer theorem:
In the Riemannian case, a manifold (M, g) is locally homogeneous if and only
if there is a connection ∇̃ such that ∇̃R̃ = 0, ∇̃T̃ = 0 and ∇̃g = 0, where R̃
and T̃ are the curvature and torsion of ∇̃. We can upgrade local homogeneity
to global homogeneity if some topological conditions are added (connectedness,
simply connectedness, and completeness). A version for manifolds equipped with
geometry defined by tensors (non-necessarily Riemannian) can be found in [5]).

In this paper, our objects to study are reductive extrinsically homogeneous
submanifolds of homogeneous manifold M = G/H, that is, closed submanifolds
M ⊂ M that are orbits M = G · o (o ∈ M) of a closed subgroup G ⊂ G.
These spaces are homogeneous spaces M = G/H, with H = G ∩H, and admit
reductive decomposition of the corresponding Lie algebra g = h+m. A classical
reference on extrinsically homogeneous submanifolds is [6] and since its analysis
is performed in non-necessarily Riemannian ambient spaces, reductivity (which
is taken as an assumption) is not guaranteed neither for M nor M . In particular,
[6, Thm. 2] aligns each reductive decomposition of the homogeneous submanifold
with a G-connection on E = TM |M which can be thought of as canonical since
it comes from the choice of a reductive decomposition on M . When we focus
the attention to the Riemannian setting in the literature, the analysis have been
mainly developed in specific geometric contexts (for example, space forms, or
symmetric spaces, see [9], [10]). In this article, we investigate the relationship
between reductive decompositions of an arbitrary Riemannian homogeneous
manifold M and reductive decompositions in the leaves M and, in particular,
we propose a canonical one in these submanifolds starting from every initial
decomposition of the ambient manifold induced by the metric structure.

The article is organized as follows: In Section 2, we recall basic definitions
and known results concerning reductive extrinsically homogeneous submani-
folds. In Section 3, we analyze the particular setting of homogeneous Rieman-
nian manifolds, obtaining a natural reductive decomposition of an extrinsically
homogeneous submanifold from the given decomposition of the ambient space.
Furthermore, we investigate the geometric properties induced by such decompo-
sitions. In Section 4, we define the concept of Riemannian homogeneous struc-
tures on submanifolds of homogeneous spaces, this definition generalizes the
known definition for homogeneous structures of spaces forms, see [3, Rmk. 6.1.5].
We prove that reductive extrinsically homogeneous submanifolds naturally ad-
mit such structures. Moreover, we propose and discuss an open problem regard-
ing minimal conditions ensuring homogeneity of a submanifold endowed with a
homogeneous structure. Finally, Section 5 provides explicit examples illustrat-



Canonical Reductive Decomposition of Extrinsic Homogeneous Submanifolds 119

ing the general theory developed in previous sections, including the canonical
connections for submanifolds such as horospheres in hyperbolic spaces and con-
centric spheres in Euclidean spaces.

2 Extrinsically Homogeneous Submanifolds

Let M = G/H be a homogeneous manifold and let g and h be the Lie
algebras of G and H, respectively. A homogeneous manifold M is said to be
reductive if there exists an Ad(H)-invariant subspace m such that g = h+m. If
we denote o = [e]H , then the linear map

ϕ : g −→ ToM,

X 7−→ d

dt

∣∣∣∣
t=0

exp(tX) · o

has kernel h, so that if X1, X2 ∈ g satisfy

d

dt

∣∣∣∣
t=0

exp(tX1) · o =
d

dt

∣∣∣∣
t=0

exp(tX2) · o,

then X1 −X2 ∈ h. In particular, the restriction ϕm of ϕ to m,

ϕm : m −→ Tp0M, (1)

is a bijection. A reductive decomposition determines a canonical linear connec-
tion ∇̃ which is characterized by the condition

(∇̃X∗B∗)o = − [X, B]∗o, (2)

for B ∈ g, X ∈ m, where the star stands for the fundamental vector fields, i.e.,
X∗p = d

dt

∣∣
t=0

exp(tX) · p, X ∈ g.

We consider a Lie subgroup G ⊂ G such that the orbit M = G · o is a
closed submanifold. The homogeneous space M = G/H, with H = H ∩ G, is
said to be a reductive orbit or a reductive extrinsically homogeneous submanifold
(known in [6] simply as reductive homogeneous) in M if there exists an Ad(H)-
invariant subspace m such that g = h + m. Furthermore, a linear connection D
on E = TM |M is called a G-connection if, for every piecewise smooth curve
c : [a, b]→ M , the D-parallel transport τc : Tc(a)M → Tc(b)M is determined by

some element of G. In other words, there exists some g ∈ G such that, for all
v ∈ Tc(a)M , it holds that

τc(v) = (Lg)∗v.

We recall the following result of [6, Thm. 2].
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Theorem 1. Let M be a reductive homogeneous manifold with canonical
connection ∇̃. A closed submanifold M ⊂M is reductive extrinsic homogeneous
if and only if there exists a linear G-connection D on E := TM |M such that
TM ⊂ E is a parallel subbundle and the tensor Γ = ∇̃ −D : TM −→ End(E)
is parallel with respect to D.

The connection D above is not unique and comes from a choice of a reductive
decomposition g = h + m. In fact, D can be thought of as canonical connection
with respect to that decomposition. Indeed, the left-invariant distribution of
subspaces defined by m is a principal connection for the principal bundle G →
M = G/H. The canonical connection on M is the induced linear connection by
this principal connection when TM is regarded as the associated vector bundle
with respect to the linear action of H on the vector space ToM . When we let
H ⊂ H act on the full tangent vector space ToM , the associated vector bundle
is TM |M and D is the induced linear connection. In particular, we can give an
expression of this connection as follows.

Proposition 1. Let M = G/H ⊂ M be a reductive extrinsically homoge-
neous submanifold with a reductive decomposition g = h+m. Then, the canonical
G-connection D at o = [e]H is given by the condition

(DX∗B
∗)o = −[X,B]∗o, (3)

for all X ∈ m and B ∈ g.

Proof. Given X ∈ m, the curve exp(tX) is horizontal in the bundle G→ G/H
with respect to the principal connection defined by m. Therefore, the parallel
transport along the curve c(t) = exp(tX) · o in M is (Lexp(tX))∗ for both the
induced connection in the associated bundle TM (this is a classical result, see [7,
p. 192, Cor. 2.5]) and the associated bundle TM |M . Thus, we obtain:

(DX∗B
∗)o = lim

t→0

(Lexp(−tX))∗B
∗
c(t) − B∗o

t

= lim
t→0

(
Adexp(−tX)(B)

)∗
o
− B∗o

t

=

(
lim
t→0

Adexp(−tX)(B) − B

t

)∗
o

= − [X, B]∗o.

Here, we used the fact that (Lexp(−tX))∗B
∗
γ(t) =

(
Adexp(−tX)(B)

)∗
, since the

differential of the left translation Lexp(−tX) acts via the adjoint representation
on the corresponding fundamental vector fields. QED
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3 The Riemannian Case

Homogeneity in the case of Riemannian manifolds (M, g) takes for granted
that the group G acts transitively by isometries. From now on, we also assume
that G acts efficiently, otherwise we consider G/Γ instead of G, with Γ = {p ∈
G : Lp = idM}. We denote by ∇g the Levi Civita connection of (M, g).

As it is well known (for example, see [4, Prop. 1.4.8]), every homogeneous
Riemannian manifold is reductive. For convenience in the following, we sketch
the proof of this fact. Let o = [e]H ∈ M (so that h is the isotropy subgroup of
o). For every X ∈ g, we consider the Kostant operator

KX : ToM → ToM

Ao 7→ ∇gAoX
∗ = (∇gX∗A− LX∗A)o,

where A ∈ X(M) is any extension of Ao. Since LX∗g = ∇gg = 0, the Kostant
operator is skew-symmetric, that is, KX ∈ so(ToM, go) ' so(n). We define

φ(X,Y ) = −B(KX ,KY ), X, Y ∈ g, (4)

where B is the Cartan-Killing metric in so(n). We have that φ is semidefinite
positive. Furthermore, the restriction of φ to h is definite. Indeed, if X ∈ h

satisfies φ(X,X) = 0, then we have that KX = (∇gX∗)o = 0, and since X∗o = 0,
the Killing vector field vanishes, i.e., X = 0. We now choose

m = h
⊥

= {X ∈ g : φ(X,Y ) = 0, ∀Y ∈ h}.

We get a direct sum g = h+m because m∩ h = 0 (since φ|h is definite), and for

each X ∈ g, we have that X −
∑
φ(X,Ui)Ui ∈ m, where {Ui} is an orthonor-

mal basis of h. On the other hand, the adjoint invariance of B easily yields
AdHm = m, that is, we have a reductive decomposition. Obviously, not ev-
ery reductive decomposition is defined with this procedure. Moreover, although
this decomposition might seem canonical, it depends on the choice of the point
o ∈ M . If we pick other point o′, then the new isotropy and its Lie algebra h

′

transforms under conjugation and the complement m′ is then different.
Let G now be a Lie subgroup of G such that the orbit M = G · o is closed.

The manifold M is reductive extrinsically homogeneous as G acts by isometries
with respect to the metric g = g|TM . We obtain in the following a reductive
decomposition of g induced in a natural way from any given initial reductive
decomposition of g = h + m of the ambient space.

Theorem 2. Let (M, g) be a homogeneous Riemannian manifold M =
G/H. Let o = [e]H ∈ M and M = G · o a closed orbit defined by a Lie sub-
group G ⊂ G. We assume that M is equipped with a reductive decomposition
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g = h + m. Then

g = h + m, with m = h⊥ ∩ g,

is a reductive decomposition of M = G/H, H = H ∩G, where h = Lie(H) and
h⊥ = {X ∈ g : φ(X,Y ) = 0, ∀Y ∈ h}.

Proof. If X = Xm + Xh is the decomposition of an element X ∈ h⊥, we have

that Xh ∈ h⊥, that is, h⊥ = h⊥h + m, where h⊥h is the orthogonal to h in h

(recall that φ|h is definite positive). Since h is Ad(H)-invariant, also is h⊥h , and
as m is invariant, we have the Ad(H)-invariance of m.

Obviously, h⊥∩h = {0} since φ|h is definite positive. Finally, for any X ∈ g,
X = Xm + Xh, we decompose Xh = Xh + X

h
⊥
h

so that X ∈ h + m since

X
h
⊥
h

+Xm ∈ (h⊥h + m) ∩ g = h⊥ ∩ g. QED

Remark 1. We can transfer the inner product from (ToM, go) to m through
the bijection (1). As the adjoint action of H on m is transferred to the orthogonal
action in ToM , the pull-back metric ϕ∗mgo is Ad(H)-invariant. We then define
the bilinear form ψ on g as

ψ = φ|h×h + (ϕ∗mgo)|m×m, (5)

which, by construction, is positive definite and Ad(H)-invariant. Given the de-
compositions g = h + m and g = h + m in the previous theorem, we can define
the subspace n ⊂ g as the orthogonal complement of h + m with respect to (5).
Thus, we have that g = h + m + n and it is easy to verify that n is Ad(H)-
invariant. Geometrically, (ToM)⊥ = {X∗o : X ∈ n} and this invariance reflects
the fact that G preserves TM⊥. However, in general, the space (m + n) is not
Ad(H)-invariant and the decomposition g = h + (m + n) cannot be regarded as
a reductive decomposition.

We now analyze the decomposition g = h + m of Theorem 2 when the re-
ductive decomposition g = h + m is the one at the beginning of the section,

that is, the decomposition (see [4, Prop. 1.4.8]) with m = h
⊥

where the per-

pendicularity is defined by (4). To avoid confusions, we write by m = h
⊥φ .

First, for X ∈ h and Y ∈ g, we observe that the Kostant operator satisfies

KX(Y ∗o ) = (∇gX∗Y ∗ + [Y,X]∗)o = [Y,X]∗o, thus it coincides with the isotropy
representation on ToM . On the other hand, for X ∈ g we have KX |ToM =
KX + IIo(X, ·), where II is the second fundamental form of M . With respect
to an adapted orthonormal basis {u1, . . . , um; um+1, . . . , un} of ToM such that
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span{u1, . . . , um} = ToM , we have the following matrix expression

KX =

(
KX ∗

II(X∗, ) ∗

)
, X ∈ g.

Moreover, if M = G · o is a principal orbit of the action of G on M , then

KX =

(
KX 0
0 0

)
, X ∈ h = g ∩ h,

since the slice representation of H (i.e., the isotropy representation on the
normal space (ToM)⊥ = span{um+1, . . . , un}) is trivial, see for example [2,
Rmk. 1.2.7]. Now we define φ(X,Y ) = −B(KX ,KY ), B being the Cartan-
Killing metric in so(ToM) ' so(m). Using the block description of KX obtained
above, we have that

φ(X,Y ) = φ(X,Y ), ∀X ∈ h, ∀Y ∈ g. (6)

Therefore,

h⊥φ = {Y ∈ g : φ(X,Y ) = 0, ∀X ∈ h},

coincides with h⊥φ ∩ g = m. In other words, if we start from the decomposition
defined by φ, then the decomposition determined by φ is the one stated in Theo-
rem 2. Note that if M = G ·o is not a principal orbit, the isotropy representation
on ToM

⊥ is not trivial, we do not have (6), and h⊥φ need not be m.

4 Homogeneous Structures of Submanifolds

Let (M = G/H, g) be a homogeneous Riemannian manifold equipped with
a reductive decomposition and let ∇̃ be the associated canonical connection.
We then have

∇̃S = 0, ∇̃R = 0, ∇̃g = 0,

where S = ∇g−∇̃. Let M ⊂M be a closed reductive extrinsically homogeneous
submanifold. According to Theorem 1, there exists a G-connection D on E :=
TM |M such that TM ⊂ E is a D-parallel subbundle of E, and Γ = ∇̃ −D is
D-parallel.

Lemma 1. The following two conditions are equivalent:

(1) Γ = ∇̃ −D is D-parallel.

(2) S = ∇g −D is D-parallel.
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Proof. Since ∇̃ is the canonical connection, it follows that G coincides with the
transvection group of ∇̃, see [8, Thm. I.25]. Therefore, S is G-invariant, since
∇̃S = 0. In particular, it is G-invariant. According to [4, Prop. 1.4.15], we have
DS = 0. Finally, using this last fact, it follows that

DΓ = D(∇̃ −D) = D(∇̃ − ∇g +∇g −D) = D(∇̃ − ∇g) +D(∇g −D) = DS

which proves the result. QED

This result leads to the following definition which, in fact, generalizes the
definition given in [3, Rmk. 6.1.5] for homogeneous structures of submanifolds
in spaces forms.

Definition 1. Let M ⊂ M be a closed submanifold and let S ∈ Γ(T ∗M ⊗
End(TM)) be a tensor field. We say S is a homogeneous structure of M if
D = ∇g − S is a metric connection and satisfies

(a) TM ⊂ TM |M is a D-parallel subbundle of TM |M ;

(b) S = ∇−D is D-parallel.

In fact, if we combine Lemma 1 and Theorem 1, then we obtain the following
corollary.

Corollary 1. If M ⊂M is an extrinsically homogeneous Riemannian sub-
manifold then M admits a homogeneous structure.

However, the crucial question here is the converse. To conclude, we propose
the following problem:

Problem. What are the minimal conditions ensuring that a connected
submanifold M of a homogeneous Riemannian manifold M , endowed with a
homogeneous structure, is an open subset of a homogeneous submanifold.

Of course, if we ask S to be G-invariant, then, by [6, Thm. 1], the problem
is resolved. This question aims to generalize the following theorem.

Theorem 3. [3, Thm. 6.1.12] A connected submanifold M of a space form
M is an open subset of a homogeneous submanifold of M if and only if M
admits a homogeneous structure.

Notice that, in this result, the authors do not assume the G-invariance of S.
Indeed, they show that, for submanifolds of space forms, no further conditions
beyond the existence of a homogeneous structure are required.

We finally analyze the tensor Γ when the reductive decomposition of the
orbit M = G · o is the induced one by a reductive decomposition g = h + m for
M as in Theorem 2. Indeed from (2) and (3), given u ∈ ToM , we have that

Γu(B∗)o = (∇̃uB∗ −DuB
∗)o = [Xu

m −Xu
m, B]∗o,
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where Xu
m ∈ m, Xu

m ∈ m satisfy (Xu
m)∗o = (Xu

m)∗o = u. Then we have Xu
m−Xu

m ∈ h,
in fact

Xu
m −Xu

m ∈ h⊥h .

In other words, the tensor Γ = ∇̃ − D : TM → End(E) is defined by the
adjoint representation of the normal subspace h⊥h ⊂ h. Obviously, the element
Xu

m − Xu
m ∈ h⊥h depends on the choice of m and g ⊂ g, so does the way the

action of h⊥h is defined.

5 Examples

5.1 Horospheres in RH(n)

The real hyperbolic space RH(n) is a symmetric space with isometry group
G = SO(n, 1). This action carries the Cartan decomposition (at Lie algebra
level)

g = h + m, g = so(n, 1), h = so(n).

The Cartan decomposition satisfies

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] = h.

An explicit description of the elements of this decomposition is,

g =


 B v1 v2
−vt2 a 0
−vt1 0 −a

 :
B ∈ so(n− 1);
v1, v2 ∈ Rn−1;

a ∈ R

 ,

h =


 B v v
−vt 0 0
−vt 0 0

 :
B ∈ so(n− 1);
v ∈ Rn−1

 ,

m =


 0 v −v
vt a 0
−vt 0 −a

 : v ∈ Rn−1; a ∈ R

 .

We make use of the description of RH(n) as the warped product (R×fRn−1, g =
dt2 + f(t)2gRn−1), where f(t) = e−t.

We now consider G = SO(n−1)nRn−1, which acts exclusively on the second
factor of the warped product. The action of G induces a foliation of RH(n) which
is known as Horosphere foliation, the leaves of which are Lt = {t} × Rn−1, for
all t ∈ R. If we consider the decomposition

g = h + m
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where

h = so(n− 1) =


B 0 0

0 0 0
0 0 0

 : B ∈ so(n− 1)

 ,

and

m =


 0 0 −v
vt 0 0
0 0 0

 : v ∈ Rn−1

 ⊂ h,

one can check that m = h⊥φ ∩ g as in Theorem 2. If we now follow Remark 1,
then we obtain an Ad(H)-decomposition,

g = h + m + n, where n = R diag(0, 1,−1).

Furthermore, since the flow of any fundamental vector field X∗p = X with
X ∈ Rn−1 preserves any orthonormal frame of RH(n), from Proposition 1 it
follows that the connection D (given in Theorem 1) on E = TRH(n)|Rn−1

coincides with ∇R +∇Rn−1
restricted to E where ∇R and ∇Rn−1

are the Levi-
Civita connections of R and Rn−1 (with the Euclidean metric), respectively.

5.2 Concentric spheres in R2m

In this example, we broaden the realm of Riemannian actions to include
conformal geometry. More precisely, we consider the punctured Euclidean space
(Rn − {0}, gRn), which is isometric to the warped product (R+ ×f Sn−1, dr2 +
f(r)2gSn−1), where r is the radial coordinate (i.e., the distance from the origin),
f(r) = r, and gSn−1 is the round metric on the sphere. We denote this manifold
by (M, g). Although (M, g) is not a homogeneous Riemannian manifold, it is
a conformally homogeneous Riemannian manifold, meaning that there exists a
Lie group G of conformal transformations that acts transitively on (M, [g]) ([g]
is the conformal class of g). Let (R+, · ) be the Lie group of positive numbers
with the action of the multiplication group. More specifically, the Lie group G
is

Conf(M, [g]) = (R+, · )× SO(n),

the action of G on M is given by(
R+ × SO(n)

)
×
(
R+ ×f Sn−1

)
→ R+ ×f Sn−1

((r,A), (s, p)) 7−→ (r · s,A · p)

and the isotropy group H is SO(n − 1). Note that r ∂∂r is not a Killing vector
field, but a conformal Killing vector field, that is, Lr ∂

∂r
g = 2g. The Lie algebra
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g of G admits a reductive decomposition

g = h + m

where h = so(n − 1) is the Lie algebra of H and m is an Ad(H)-invariant
subspace. An explicit description of these objects is

g =


 0 v 0
−vt B 0

0 0 a

 :
B ∈ so(n− 1);
v ∈ Rn−1; a ∈ R

 ,

h =


0 0 0

0 B 0
0 0 0

 : B ∈ so(n− 1)

 ,

m =


 0 v 0
−vt 0 0

0 0 a

 : v ∈ Rn−1; a ∈ R

 .

Let G be any Lie group of isometries acting transitively on Sn−1 and let H
be its isotropy group; we may refer to [1] for the explicit expressions of these
Lie groups and its Lie algebras. Since G ⊂ G is closed, we can apply Theorem 1
provided that M = G/H admits a reductive decomposition. To verify this,
we adapt here Theorem 2. Note that although (M, g) is not a homogeneous
Riemannian manifold, Theorem 2 uses only the fact that φ is positive definite
on h and this property still holds in this example. We set m = h⊥φ ∩ g where g
and h are the Lie algebras of G and H, respectively. Consequently, analogously
to Theorem 2, we obtain

g = h + m (7)

which is a reductive decomposition of M = G/H, H = H∩G, where h⊥ = {X ∈
g : φ(X,Y ) = 0, ∀Y ∈ h}. Furthermore, by 1, we have an Ad(H)-invariant
decomposition,

g = h + m + n, where n = R diag(0, 1).

Let ∇̃ be the canonical connection corresponding to the reductive decomposi-
tion (7). Since ∂

∂r is invariant under G, it follows that the connection D described

in Proposition 1 is ∇R+
+ ∇̃ restricted to E = TR2m|S2m−1 , where ∇R+

is the
Levi-Civita connection of R+ with the Euclidean metric. As final remark, this
construction of m depends on the explicit expression of g as a Lie subalgebra of
ḡ. To obtain it, we again refer the reader to [1].
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3-0348-7960-6.

[3] J. Berndt, S. Console, C. E. Olmos: Submanifolds and Holonomy, Chapman &
Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, 2016.

[4] G. Calvaruso, M. Castrillón López: Pseudo-Riemannian Homogeneous Struc-
tures, Developments in Mathematics, Springer International Publishing, 2019. DOI:
10.1007/978-3-030-18152-9.
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