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1 Introduction

The commuting degree d(G) of a finite group G is defined as

d(G) =
|{(x, y) ∈ G×G : xy = yx}|

|G|2

and d(G) measures how close G is to being abelian. This notion is introduced
by Erdös and Turan in [5] while studying symmetric groups. It is evident that
d(G) = 1 if and only if G is abelian. A well-known result due to Gustafson [9] in
1973 states that d(G) 6 5/8 for all finite non-abelian groups G with equality if
and only if G/Z(G) ∼= C2×C2. Also, he shows that d(G) 6 (p2+p−1)/p3 for all
non-abelian finite p-groups G. Since then the commuting degree of groups has
studied extensively by many authors. Rusin [21] in 1979 classifies all finite groups
with d(G) > 11/32 up to central factors. Lescot [13] in 1995 studies commuting
degrees in more details and shows that any two isoclinic finite groups have the
same commuting degrees. Also, Guralnick and Robinson [8] in 2006 give various
general upper and lower bounds for commuting degrees of finite groups. See
[2, 4, 6, 10, 11, 14] for further details.

Erdös and Turan in [5] show that

d(G) =
k(G)

|G|
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for every finite group G, where k(G) denotes the number of conjugacy classes
of G. Hence, studying the commuting degree of finite groups is equivalent to
studying the number of their conjugacy classes. Erdös and Turan in [5] show
that k(G) > log2 log2 |G| for any finite group G giving rise to a general lower
bound for commuting degree of finite groups. Poland [19] strengthen the lower
bound to k(G) > log2 |G| for finite nilpotent groups G. Extending a result of
Pyber [20], Keller in [12] establishes the best known general lower bound for
k(G). He shows that

k(G) > ε
log2 |G|

(log2 log2 |G|)7

for all finite groups G with ε being an explicitly computable constant. Moreover,

k(G) > ε
log2 |G|

log2 log2 |G|

when G is a finite solvable group.

Miller [15, 16, 17] in 1901-1902 studied finite p-groups of order pn and expo-
nent pn−2. Later, in 1994, Ninomiya [18] gives a complete and tidy classification
of all finite p-groups of order pn and exponent pn−2. The aim of this paper is to
compute the number of conjugacy classes of these groups and use it to compute
their commuting degrees.

Our results are based on the following classification theorems of Ninomiya.

Theorem 1.1 (Ninomiya [18]). Let G be a non-abelian p-group of odd order pn

and exponent pn−2. Then G is isomorphic to one of the following groups:

(a) n > 3:

(1) G1 = 〈a, b, c : ap
n−2

= bp = cp = [a, b] = [b, c] = 1, [a, c] = b, 〉;

(b) n > 4:

(2) G2 = 〈a, b : ap
n−2

= bp
2

= 1, [a, b] = ap
n−3〉;

(3) G3 = 〈a, b, c : ap
n−2

= bp = cp = [a, c] = [b, c] = 1, [a, b] = ap
n−3〉;

(4) G4 = 〈a, b, c : ap
n−2

= bp = cp = [a, b] = [a, c] = 1, [b, c] = ap
n−3〉;

(5) G5 = 〈a, b, c : ap
n−2

= bp = cp = [a, b] = 1, [a, c] = b, [b, c] = ap
n−3〉;

(6) G6 = 〈a, b, c : ap
n−2

= bp = cp = [a, b] = 1, [a, c] = b, [b, c] = arp
n−3〉, where

r is a quadratic non-residue modulo p;

(7) G7 = 〈a, b, c : ap
n−2

= bp = cp = [b, c] = 1, [a, c] = b, [a, b] = ap
n−3〉,

(c) n > 5:

(8) G8 = 〈a, b : ap
n−2

= bp
2

= 1, [a, b] = ap
n−4〉;
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(9) G9 = 〈a, b : ap
n−2

= bp
2

= 1, [b, a] = bp〉;

(d) n > 6:

(10) G10 = 〈a, b : ap
n−2

= 1, ap
n−3

= bp
2

, [a, b] = bp〉;

(e) pn = 34:

(11) G11 = 〈a, b, c : a9 = b3 = [a, b] = 1, a3 = c3, [a, c] = b, [c, b] = a3〉.

Theorem 1.2 (Ninomiya [18]). Let G be a non-abelian 2-group of order 2n and
exponent 2n−2. Then G is isomorphic to one of the following groups:

(a) n > 4:

(1) G1 = 〈a, b : a2
n−2

= b4 = 1, [a, b] = a2
n−3〉;

(2) G2 = 〈a, b, c : a2
n−2

= c2 = [a, c] = [b, c] = 1, a2
n−3

= b2, [b, a] = a2〉;
(3) G3 = 〈a, b, c : a2

n−2
= b2 = c2 = [a, c] = [b, c] = 1, [b, a] = a2〉;

(4) G4 = 〈a, b, c : a2
n−2

= b2 = c2 = [a, c] = [a, b] = 1, [b, c] = a2
n−3〉;

(5) G5 = 〈a, b, c : a2
n−2

= b2 = c2 = [a, b] = [b, c] = 1, [a, c] = b〉;

(b) n > 5:

(6) G6 = 〈a, b : a2
n−2

= b4 = 1, [b, a] = a2〉;
(7) G7 = 〈a, b : a2

n−2
= b4 = 1, [a, b] = a2

n−3−2〉;
(8) G8 = 〈a, b : a2

n−2
= 1, a2

n−3
= b4, [b, a] = a2〉;

(9) G9 = 〈a, b : a2
n−2

= b4 = 1, [a, b] = b2〉;
(10) G10 = 〈a, b, c : a2

n−2
= b2 = c2 = [a, c] = [b, c] = 1, [a, b] = a2

n−3〉;
(11) G11 = 〈a, b, c : a2

n−2
= b2 = c2 = [a, c] = [b, c] = 1, [a, b] = a2

n−3−2〉;
(12) G12 = 〈a, b, c : a2

n−2
= b2 = c2 = [a, b] = 1, [c, a] = a2, [b, c] = a2

n−3〉;
(13) G13 = 〈a, b, c : a2

n−2
= b2 = c2 = [a, b] = [b, c] = 1, [a, c] = a−2b〉;

(14) G14 = 〈a, b, c : a2
n−2

= b2 = [a, b] = [b, c] = 1, a2
n−3

= c2, [a, c] =
a−2b〉;

(15) G15 = 〈a, b, c : a2
n−2

= b2 = c2 = [b, c] = 1, [a, b] = a2
n−3

, [a, c] =
a2

n−3−2〉;
(16) G16 = 〈a, b, c : a2

n−2
= b2 = c2 = 1, [a, b] = [b, c] = a2

n−3
, [a, c] =

a2
n−3−2〉;

(17) G17 = 〈a, b, c : a2
n−2

= b2 = c2 = [b, c] = 1, [a, b] = a2
n−3

, [a, c] = b, 〉;
(18) G18 = 〈a, b, c : a2

n−2
= b2 = 1, b = c2, [a, b] = a2

n−3
, [a, c] = a−2b〉;

(c) n > 6:
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(19) G19 = 〈a, b : a2
n−2

= b4 = 1, [a, b] = a2
n−4〉;

(20) G20 = 〈a, b : a2
n−2

= b4 = 1, [a, b] = a2
n−4−2〉;

(21) G21 = 〈a, b : a2
n−2

= 1, a2
n−3

= b4, [a, b] = b2〉;
(22) G22 = 〈a, b, c : a2

n−2
= b2 = c2 = [a, b] = 1, [a, c] = a2

n−4
b, [b, c] =

a2
n−3〉;

(23) G23 = 〈a, b, c : a2
n−2

= b2 = c2 = [a, b] = 1, [a, c] = a2
n−4−2b, [b, c] =

a2
n−3〉;

(24) G24 = 〈a, b, c : a2
n−2

= b2 = c2 = [b, c] = 1, [a, b] = a2
n−3

, [a, c] =
a2

n−4−2〉;
(25) G25 = 〈a, b, c : a2

n−2
= b2 = [b, c] = 1, a2

n−3
= c2, [a, b] = a2

n−3
,

[a, c] = a2
n−4−2〉;

(d) n = 5:

(26) G26 = 〈a, b, c : a8 = b2 = [b, c] = 1, c2 = a4, [a, b] = a4, [a, c] = b〉.

We intend to prove the following results.

Theorem A. The number of conjugacy classes of the group Gi(p) of odd order
pn is given in Table I, for i = 1, . . . , 11.

Theorem B. The number of conjugacy classes of the group Gi(2) of order 2n

is given in Table II, for i = 1, . . . , 26.

2 Preliminary results

In this section, we shall present a series of theorems and lemmas in order to
prove our results.

Theorem 2.1 (Ahmad, Magidin, and Morse [1, Theorem 1.2(ii)] ). Let G be
a 2-generator p-group of nilpotency class 2. If G has order pn and has derived
subgroup of order pγ, then G has

pn−2γ−1
(
pγ+1 + pγ − 1

)
conjugacy classes.

Remark. Every group with two at least distinct abelian maximal subgroups is
nilpotent of class at most two.

Lemma 2.2. Let G be a finite group and H be a subgroup of G such that
G = HZ(G). Then k(G) = k(H)[Z(G) : H ∩ Z(G)].
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In the sequel, we consider p-groups having an abelian maximal or second-
maximal subgroup.

Lemma 2.3 ([3, Lemma 1.1]). Suppose G is a non-abelian finite p-group with
an abelian maximal subgroup. Then |G| = p|Z(G)||G′|.

Lemma 2.4. Let G be a non-abelian p-group of order pn with an abelian max-
imal subgroup. If |Z(G)| = pm, then

k(G) = pm−1(pn−m−1 + p2 − 1).

Proof. Let M be an abelian maximal subgroup of G. Since M is a normal
subgroup of G and CG(g) = M for all g ∈M \Z(G), M contains pm + (pn−1 −
pm)/p = pn−2 + pm − pm−1 conjugacy classes of G. On the other hand, as M
is an abelian maximal subgroup of G, we must have that CG(g) = 〈Z(G), g〉 is
a subgroup of G of order pm+1 for all g ∈ G \M , which implies that G \M
contains (pn − pn−1)/pn−m−1 = pm+1 − pm conjugacy classes. Therefore,

k(G) = (pn−2 + pm − pm−1) + (pm+1 − pm) = pn−2 + pm+1 − pm−1,

as required. QED

Lemma 2.5. Let G be a non-abelian 2-generated p-group of order pn with [G :
Z(G)] = p4. Suppose G has an abelian second-maximal subgroup N but no
abelian maximal subgroups. If the centralizers of non-central elements of N are
maximal subgroups of G, then

k(G) = pn−5(p3 + p2 − 1).

Proof. First observe that N/Z(G) is non-cyclic for otherwise N = 〈Z(G), g〉 for
some g ∈ G and hence CG(g) is an abelian maximal subgroup of G contradict-
ing the hypothesis. Let N/Z(G) = 〈xZ(G), yZ(G)〉. Then CG(x) and CG(y) are
distinct maximal subgroups ofG, which implies thatN = CG(x)∩CG(y) is a nor-
mal subgroup of G. Also, the p+ 1 cyclic subgroups 〈x1Z(G)〉, . . . , 〈xp+1Z(G)〉
of N/Z(G) yield p+ 1 distinct maximal subgroups CG(x1), . . . , CG(xp+1) of G.
Since G is generated by two elements it follows that every maximal subgroup of
G is equal to CG(xi) for some 1 6 i 6 p+1. From the hypothesis, we know thatN
contains pn−4+(pn−2−pn−4)/p = pn−3+pn−4−pn−5 conjugacy classes of G. On
the other hand, if g ∈ G\N , then g belongs to a maximal subgroup of G so that
g ∈ CG(xi) for some 1 6 i 6 p+ 1. If CG(g) is a maximal subgroup of G, then
CG(g) = CG(xj) for some 1 6 j 6 p+1, from which it follows that CG(xj) is an
abelian maximal subgroup of G, a contradiction. Thus CG(g) = 〈Z(G), xi, g〉 is
a second maximal subgroup of G. Accordingly, the number of conjugacy classes
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of G in G \N is equal to (pn − pn−2)/p2 = pn−2 − pn−4. Therefore, the number
of conjugacy classes of G is equal to

k(G) = (pn−3 + pn−4 − pn−5) + (pn−2 − pn−4) = pn−2 + pn−3 − pn−5,

as required. QED

3 Proof of our theorems

We are now in the position to prove our main theorems.

Proof of Theorem A. Let p be an odd prime and G := Gi(p). The center and
derived subgroup of Gi(p) is computed in Table I.

It is not difficult to see that G has an abelian maximal subgroup 〈a, b〉,
〈a, bp〉, 〈a, c〉, 〈a, b〉, 〈a, b〉, 〈a, b〉, 〈ap, b, c〉, 〈a, bp〉, 〈a, b〉 for i = 1, 2, 3, 4, 5, 6,
7, 9, 11, respectively. Hence, by Lemma 2.4, we obtain k(G).

If i = 8 and n > 6, then G is a 2-generated p-group of nilpotency class 2 so
that, by Theorem 2.1, we get k(G) = pn−5(p3 + p2 − 1).

Now, assume that either i = 8 with n = 5, or i = 10. By Lemma 2.3, G has
no abelian maximal subgroups. A simple verification shows that 〈Z(G), ap, bp〉 is
an abelian subgroup of G such that the centralizer of its non-central elements are
maximal subgroups of G. Indeed, CG(apibpj) = 〈Z(G), aibj , ap, bp〉 is a maximal
subgroup of G for any 0 6 i, j < p with (i, j) 6= (0, 0) as G is nilpotent of class
6 3, z′ := [b, a]p ∈ Z(G), and

(aibj)p = apibpj [b, a]ij(
p
2)z = apibpjz′ij(p−1)/2z

for some z ∈ Z(G). Therefore, by Lemma 2.5, k(G) = pn−5(p3 + p2 − 1). The
proof is complete. 2
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Table I. Groups of odd orders
G Z(G) G′ k(G) Cond.
G1 〈ap, b〉 ∼= Cpn−3 × Cp 〈[a, c]〉 ∼= Cp pn−3(p2 + p− 1)

G2 〈ap, bp〉 ∼= Cpn−3 × Cp 〈apn−3〉 ∼= Cp pn−3(p2 + p− 1)

G3 〈ap, c〉 ∼= Cpn−3 × Cp 〈apn−3〉 ∼= Cp pn−3(p2 + p− 1)

G4 〈a〉 ∼= Cpn−2 〈apn−3〉 ∼= Cp pn−3(p2 + p− 1)

G5 〈ap〉 ∼= Cpn−3 〈apn−3

, [a, c]〉 ∼= Cp × Cp pn−4(2p2 − 1)

G6 〈ap〉 ∼= Cpn−3 〈apn−3

, [a, c]〉 ∼= Cp × Cp pn−4(2p2 − 1)

G7 〈ap〉 ∼= Cpn−3 〈apn−3

, [a, c]〉 ∼= Cp × Cp pn−4(2p2 − 1)

G8
〈ap2〉 ∼= Cp

〈ap2〉 ∼= Cpn−4

〈ap〉 ∼= Cp2

〈apn−4〉 ∼= Cp2

p3 + p2 − 1
pn−3(p3 + p2 − 1)

n = 5
n > 5

G9 〈ap, bp〉 ∼= Cpn−3 × Cp 〈bp〉 ∼= Cp pn−3(p2 + p− 1)

G10 〈ap2〉 ∼= Cpn−4 〈bp〉 ∼= Cp2 pn−5(p3 + p2 − 1)
G11 〈a3〉 ∼= C3 〈a3, [a, c]〉 ∼= C3 × C3 17

Proof of Theorem B. Let G := Gi(2). The center and derived subgroup
of Gi(2) is computed in Table II.

It is not difficult to see that G has an abelian maximal subgroup 〈a, b2〉,
〈a, c〉, 〈a, c〉, 〈a, b〉, 〈a, b〉, 〈a, b2〉, 〈a, b2〉, 〈a, b2〉, 〈a, b2〉, 〈a, c〉, 〈a, c〉, 〈a, b〉, 〈a, b〉,
〈a, b〉, 〈a2, b〉, 〈a, b〉, 〈a, b〉 for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21,
22, 23, respectively. Hence, Lemma 2.4 can be applied to compute k(G).

If i = 17, then by Lemma 2.3, Lemma 2.5, and the fact that the centralizers
of non-central elements of 〈a2, b〉 are maximal subgroups of G, we obtain k(G) =
11 · 2n−5.

If i = 19, then G is a 2-generated 2-group of nilpotency class 2. Hence, by
Theorem 2.1, we get k(G) = 11 · 2n−5.

Now, assume that i ∈ {15, 16, 18, 20, 24, 25}. First observe that we can
rewrite G16 and G20 as

G16 = 〈a, b, c : a2
n−2

= b2 = [b, c] = 1, c2 = [a, b] = a2
n−3

, [a, c] = a2
n−3−2〉

by replacing c by ac and

G20 = 〈a, b, c : a2
n−2

= c4 = 1, b = c2, [a, c] = a2
n−4−2〉

by replacing (b2, b) by (b, c). From Table II and Lemma 2.3, one can verify that
G has no abelian maximal subgroups. However, G has a maximal subgroup
M := 〈a, b〉 whose all maximal subgroups are abelian. Notice that ab = a2

n−3+1

so that 〈a, b〉 = 〈a〉 o 〈b〉 ∼= C2n−2 o C2 with N1 := 〈a〉, N2 := 〈a2, b〉, and
N3 := 〈a2, ab〉 being the three abelian maximal subgroups of 〈a, b〉. Let M∗ =
N1 ∩ N2 ∩ N3 = 〈a2〉. Then [M : M∗] = 4 for N1 ∩ N2 ∩ N3 = N1 ∩ N2. In
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particular, M∗ = Z(M). If n = 5, then we apply GAP [7] to compute the
number of conjugacy classes of G. Hence assume that n > 6.

Let g ∈ M \ Z(G). A simple verification shows that CG(g) is a maximal
subgroup of G if and only if g ∈ (〈a2〉 \ 〈a2n−3〉) ∪ 〈a2n−4〉b. To show this, first
assume that g = ai for some 0 6 i < 2n−2. Since CG(a) = 〈a〉, the number
i is even. Then 〈a, b〉 = CG(a2) ⊆ CG(g) so that CG(g) = 〈a, b〉 is a maximal
subgroup of G provided that g /∈ Z(G). Next assume that g = aib for some
0 6 i < 2n−2. Since 〈a2, aib〉 ⊆ CG(g) and 〈a2, aib〉 has four cosets 〈a2, aib〉,
a〈a2, aib〉, c〈a2, aib〉, and ac〈a2, aib〉 in G, we observe that CG(g) is a maximal
subgroup of G if and only if either c ∈ CG(g) or ac ∈ CG(g). If c ∈ CG(g) (resp.
ac ∈ CG(g)), then [c, aib] = 1 (resp. [ac, aib] = 1) and this holds if and only if
2n−3 | i (resp. 2n−4 | i but 2n−3 - i). Hence CG(g) is a maximal subgroup of G
if and only if 2n−4 | i. Thus M contains

|Z(G)|+ 1

2
|(〈a2〉 \ Z(G)) ∪ 〈a2n−4〉b|+ 1

4
|M \ (〈a2〉 ∪ 〈a2n−4〉b)|

= 2 +
(2n−3 − 2) + 4

2
+

2n−1 − (2n−3 + 4)

4
= 2n−3 + 2n−4 − 2n−5 + 2

conjugacy classes. Note that the above arguments show that M1 := CG(a2) =
〈a, b〉, M2 := CG(b) = 〈a2, b, c〉, and M3 := CG(a2

n−4
b) = 〈a2, b, ac〉 are maximal

subgroups of G containing the subgroup 〈a2, b〉 of G of index 4, which implies
that G = CG(a2) ∪ CG(b) ∪ CG(a2

n−4
b). Thus |CG(g)| > 8 for all g ∈ G.

Now, let g ∈ G \M . Since CM (g) is a proper subgroup of M , we must have
CM (g) ⊆ Ni for some 1 6 i 6 3 so that CG(g) = CNi(g)〈g〉 with g2 ∈ Ni. If
|CG(g)| > 8, then M∗ ∩ CG(g) ⊃ Z(G) as

|M∗CG(g)| = |M∗CNi(g)〈g〉| 6 |Ni〈g〉| = 2|Ni| < |G|

and consequently

|M∗ ∩ CG(g)| > |M
∗||CG(g)|
|G|

=
|CG(g)|

8
> 2 = |Z(G)|

by Table II. Let x ∈M∗ ∩ CG(g) \ Z(G). Then

CG(x) ⊇ 〈N1, N2, N3, CG(g)〉 = 〈M,CG(g)〉 = G

as N1, N2, N3, CG(g) are abelian, a contradiction. Therefore, |CG(g)| = 8 and
consequently G \M has (2n− 2n−1)/2n−3 = 4 conjugacy classes. It follows that

k(G) = 2n−3 + 2n−4 − 2n−5 + 6.

Finally, if i = 26, then |G| = 32 and consequently k(G) = 11 by GAP. The
proof is complete. 2
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Table II. Groups of even orders
G Z(G) G′ k(G) Cond.

G1 〈a2, b2〉 ∼= C2n−3 × C2 〈a2n−3〉 ∼= C2 5 · 2n−3

G2 〈a2n−3

, c〉 ∼= C2 × C2 〈a2〉 ∼= C2n−3 2n−2 + 6

G3 〈a2n−3

, c〉 ∼= C2 × C2 〈a2〉 ∼= C2n−3 2n−2 + 6

G4 〈a〉 ∼= C2n−2 〈a2n−3〉 ∼= C2 5 · 2n−3
G5 〈a2, c〉 ∼= C2n−3 × C2 〈[a, c]〉 ∼= C2 5 · 2n−3

G6 〈a2n−3

, b2〉 ∼= C2 × C2 〈a2〉 ∼= C2n−3 2n−2 + 6

G7 〈a2n−3

, b2〉 ∼= C2 × C2 〈a2〉 ∼= C2n−3 2n−2 + 6
G8 〈b2〉 ∼= C4 〈a2〉 ∼= C2n−3 2n−2 + 6
G9 〈a2, b2〉 ∼= C2n−3 × C2 〈b2〉 ∼= C2 5 · 2n−3

G10 〈a2, c〉 ∼= C2n−3 × C2 〈a2n−3〉 ∼= C2 5 · 2n−3

G11 〈a2n−3

, c〉 ∼= C2 × C2 〈a2〉 ∼= C2n−3 2n−2 + 6

G12 〈a2n−4

b〉 ∼= C4 〈a2〉 ∼= C2n−3 2n−2 + 6

G13 〈a2n−3

, a2[a, c]〉 ∼= C2 × C2 〈[a, c]〉 ∼= C2n−3 2n−2 + 6

G14 〈a2n−3

, a2[a, c]〉 ∼= C2 × C2 〈[a, c]〉 ∼= C2n−3 2n−2 + 6

G15 〈a2n−3〉 ∼= C2 〈a2〉 ∼= C2n−3 5 · 2n−5 + 6

G16 〈a2n−3〉 ∼= C2 〈a2〉 ∼= C2n−3 5 · 2n−5 + 6

G17 〈a4〉 ∼= C2n−4 〈a2n−3

, [a, c]〉 ∼= C2 × C2 11 · 2n−5

G18 〈a2n−3〉 ∼= C2 〈[a, c]〉 ∼= C2n−3
14

5 · 2n−5 + 6
n = 5
n > 5

G19 〈a4〉 ∼= C2n−4 〈a2n−4〉 ∼= C4 11 · 2n−5

G20 〈a2n−3〉 ∼= C2 〈a2〉 ∼= C2n−3 5 · 2n−5 + 6
G21 〈a2〉 ∼= C2n−3 〈b2〉 ∼= C4 7 · 2n−4
G22 〈a2b〉 ∼= C2n−3 〈[a, c]〉 ∼= C4 7 · 2n−4
G23 〈(ac)2〉 ∼= C4 〈[a, c]〉 ∼= C2n−3 2n−2 + 6

G24 〈a2n−3〉 ∼= C2 〈[a, c]〉 ∼= C2n−3 5 · 2n−5 + 6

G25 〈a2n−3〉 ∼= C2 〈[a, c]〉 ∼= C2n−3 5 · 2n−5 + 6
G26 〈a4〉 ∼= C2 〈b, [a, b]〉 ∼= C2 × C2 11

Following Theorems A and B and the fact that d(G) = k(G)/|G| for any
finite group G, we have indeed computed the commuting degrees of groups under
considerations.
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[2] F. Barry, D. MacHale, and Á. NíShé, Some supersolvability conditions for finite groups,
Math. Proc. R. Ir. Acad. 106A(2) (2006), 163–177.

[3] Y. Berkovich, Groups of Prime Power Order, Vol. 1, With a foreword by Zvonimir Janko,
De Gruyter Expositions in Mathematics, 46. Walter de Gruyter GmbH & Co. KG, Berlin,
2008.

[4] S. Eberhard, Commuting probabilities of finite groups, Bull. Lond. Math. Soc. 47(5) (2015),
796–808.

[5] P. Erdös and P. Turan, On some problems of a statistical group-theory, IV, Acta Math.
Acad. Sci. Hungary 19 (1968), 413–435.

[6] I. V. Erovenko and B. Sury, Commutativity degrees of wreath products of finite abelian
groups, Bull. Aust. Math. Soc. 77(1) (2008), 31–36.

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.9.3, 2018.
(https://www.gap-system.org)

[8] R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, J.
Algebra 300 (2006), 509–528.

[9] W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math.
Monthly 80 (1973), 1031–1034.
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