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Università degli Studi di Genova, Dipartimento di Ingegneria Meccanica, Energetica,
Gestionale e dei Trasporti (DIME), Via Opera Pia 15, 16129 Genova, Italy
edoardo.mainini@unige.it

Danilo Percivale
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1 Introduction

In linear elastostatics, the classical Signorini problem [23] requires to find
the equilibrium of an elastic body subject to external forces and resting on a
rigid support E⊂∂Ω in its reference configuration Ω. Precisely, if Ω is subject
to suitable volume and surface forces f : Ω→ R3 and g : ∂Ω\E → R3 such that

L(u) :=

∫
Ω

f · u dx +

∫
∂Ω\E

g · u dH2 (1.1)

is the load potential and u : Ω→ R3 is the displacement field, then, by assuming
that H2(E)>0, the variational formulation of the Signorini problem consists in
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finding a minimizer of the functional

E(u) :=

∫
Ω
Q
(
x,E(u)

)
dx− L(u) (1.2)

among all u in the Sobolev space H1(Ω;R3) such that u · n ≥ 0 H2- a.e. on E
where n is the inward unit vector normal to ∂Ω and H2 is the two-dimensional
Hausdorff measure. As usually happens, here E denotes the linear strain tensor,
C represents the classical linear elasticity tensor and

Q(x,E) :=
1

2
ETC(x)E

is the corresponding strain energy density (see [8]). A classical result (see [6])
states that a minimizer exists if L(v)≤0 for every infinitesimal rigid displace-
ment v such that v · n≥0 H2- a.e. on E and L(v) = 0 if and only if v · n ≡ 0
H2- a.e. on E. More recently a proper generalization of the latter formulation
has been given by assuming that the set E has positive Sobolev capacity and
accordingly modifying the obstacle condition by requiring v · n ≥ 0 on E up to
a set of null capacity (shortly, q.e. on E): the existence of minimizers for this
general setting was proved in [2, Theorem 4.5]. Although the original formula-
tion given in [23] may look different from the generalized notion exploited in
[2], it can be shown (see Remark 2.1) that if the set E ⊂ ∂Ω is regular in an
appropriate sense then the two frameworks coincide.

In the recent paper [16] it has been shown that, under sharp conditions on
L, there exists a sequence of (suitably rescaled) functionals Gh of finite elasticity
such that inf Gh converges to the minimum of E and that in addition there are
examples in which this convergence fails. The aim of this paper is to show that
at least in the planar obstacle case, namely when E ⊂ ∂Ω ∩ {x · e3 = 0} 6≡ ∅
(being (ei), i = 1, 2, 3, the canonical basis of R3) a similar result holds also
for incompressible energy densities. More in detail, denoting by y : Ω → R3

the deformation field and by h > 0 an adimensional parameter, we introduce a
strain energy density W : Ω × R3×3 → [0,+∞], which is frame indifferent and
minimized at the identity, and the family of energy functionals

FIh(y) := h−2

∫
Ω
WI
(
x,∇y(x)

)
dx− h−1L(y − x)

where L is defined as in (1.1) andWI is the incompressible strain energy density
(coinciding with W if det∇y ≡ 1 and set equal to +∞ otherwise). We define

GIh(y) =

{
FIh(y) if y ∈ A
+∞ otherwise in H1(Ω;R3),
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where E, the portion of the elastic body that is sensitive to the obstacle, is
such that capE > 0, and where A = A(E) denotes the class of admissible
deformations (i.e., those y ∈ H1(Ω;R3) such that y ·e3 ≥ 0 quasi-everywhere on
E, i.e., up to sets of null capacity). Moreover we have to assume that L(y−x) ≤ 0
for every rigid deformation y ∈ A. Indeed, if there exists a rigid deformation
y ∈ A such that L(y − x) > 0, then

GIh(y) = −h−1L(y − x)→ −∞ as h→ 0+.

Therefore, since a rigid deformation y(x) = Rx + c with R ∈ SO(3), c =
(c1, c2, c3) ∈ R3, belongs to A whenever c3 ≥ − (Rx)3 on E, we have to assume

L((R− I)x + c) ≤ 0 for every R ∈ SO(3) and every c ∈ R3

s.t. c3 ≥ − (Rx)3 on E. (1.3)

In the main result of this paper (Theorem 2.8 below) we show that if L satisfies
the necessary condition (1.3) together with L(e3) < 0 and

L ( (Rx− x)1 e1 + (Rx− x)2 e2 ) ≤ 0 ∀R ∈ SO(3), (1.4)

and ifW satisfies some standard assumptions to be detailed in the next section,
then

lim
h→0

inf
H1(Ω;R3)

GIh = min
H1(Ω;R3)

GI ,

where, with the notation D2 for Hessian of W(x, ·), the limit functional is char-
acterized as

GI(u) :=

∫
Ω
QI(x,E(u)) dx− max

R∈SL,E
L(Ru)

if u · e3 ≥ 0 quasi-everywhere on E, and

GI(u) := +∞ otherwise in H1(Ω;R3),

where

QI(x,F) :=


1

2
FT D2W(x, I) F if Tr F = 0

+∞ otherwise,

SL,E =

{
R ∈ SO(3) : L ((R− I) x) − inf

x∈E

(
(Rx)3

)
L(e3) = 0

}
.

In general, GI differs from the expected limit functional EI , defined by replac-
ing Q with QI in (1.2). However, under the hypotheses on E and L that were
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previously detailed, it has been proven in [16] (see Lemma 2.6 below) that ei-
ther SL,E ≡ {I} or SL,E = {R ∈ SO(3) : Re3 = e3} . If SL,E≡{I} then clearly
GI≡EI , hence in this case we recover the minimum of the Signorini problem in
linearized elasticity as the limit of the nonlinear energies inf GIh. In particular, if
Ω is contained in the upper half-space, E = ∂Ω∩ {x3 = 0}, if f = fe3, g = ge3

and L satisfies conditions (1.3)-(1.4) and L(e3) < 0, then since L(v) = L(Rv)
for every R ∈ SL,E we get minGI =min EI hence inf GIh → min EI in this case.

Plan of the paper. In section 2 we rigorously provide assumptions on the
obstacle, on the external forces and the global energy functionals. Then, we
state the main variational convergence result. In Section 3 we give the proof
of the main result after having proved suitable technical lemmas. With respect
to the analysis from [16] about the compressible case, some care is needed in
constructing the suitable upper and lower bounds while simultaneously taking
care of the obstacle condition and the incompressibility constraint.

2 Notation and main results

In the following, Ω will denote the reference configuration of an elastic body.
Ω is always assumed to be a nonempty, bounded, connected, Lipschitz open set
in R3.

2.1 The obstacle

Notations x = (x1, x2, x3) and y = (y1, y2, y3) will be used to represent
generic points in R3, with components referred to the canonical basis (ei), i =
1, 2, 3. In the Signorini problem, the elastic body rests on a frictionless rigid
support E ⊂ ∂Ω. The set E will be assumed to be planar, i.e., contained in
{x3 = 0}, and of positive capacity, according to the next definition.

For every compact set K ⊂ RN we define the Sobolev capacity of K by
setting, see [1, Section 2.2],

capK=inf
{
‖w‖2H1(RN ) : w∈C∞0 (RN ), w ≥ 1 onK

}
.

If G ⊂ RN is open we define

capG := sup{capK : K compact, K ⊂ G},

and for a generic set F ⊂ R3

capF := inf{capG : G open, F ⊂ G}.
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A property is said to hold quasi-everywhere (q.e. for short) if it holds true
outside a set of zero capacity. We introduce (see [2]) a canonical representative
of a set F , called the essential part of F and denoted by Fess, which coincides
with F whenever F is a smooth closed manifold or the closure of an open subset
of RN : for every set F ⊂ R3 we define

Fess :=
⋂
{C : C is closed and cap(F \C) = 0 }.

As shown in [2], we have

Fess is a closed subset of F , cap(F \Fess) = 0,

capF = 0 if and only if Fess = ∅.

Moreover, if capF > 0 and x ∈ Fess, then cap(F ∩Br(x)) > 0 for every r > 0.

Throughout the paper we will assume that the set E giving the obstacle
condition satisfies

E ⊂ ∂Ω ∩ {x3 = 0} 6≡ ∅ and capE > 0. (2.5)

We recall that every function in H1(Ω;R3) has a precise representative
defined quasi-everywhere on the whole Ω. Indeed, if u ∈ H1(Ω;R3) and v ∈
H1(R3;R3) is a Sobolev extension of u, it is well known (see [1, Proposition
6.1.3]) that the limit

v∗(x) := lim
r↓0

1

|Br(x)|

∫
Br(x)

v(ξ) dξ

exists for q.e. x ∈R3. The function v∗ is called the precise representative of v
and is a quasicontinuous function in R3, meaning that for every ε > 0 there
exists an open set V ⊂ R3 such that capV < ε and v∗ is continuous in R3\V . It
has been proven in [16] that if v1, v2 are two distinct Sobolev extensions of u
then v∗1(x) = v∗2(x) for q.e. x ∈ Ω. Therefore if u ∈ H1(Ω;R3) we may define
its precise representative for quasi-every x ∈ Ω by

u∗(x) = lim
r↓0

1

|Br(x)|

∫
Br(x)

v(ξ) dξ, q.e. x ∈ Ω, (2.6)

where v is any Sobolev extension of u. The function u∗ is pointwise quasi-
everywhere defined by (2.6) and is quasicontinuous on Ω i.e., for every ε > 0
there exists a relatively open set V ⊂ Ω such that capV < ε and u∗ is continuous
in Ω \ V .
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Remark 2.1. If w ∈ H1(Ω) then its negative part w− is in H1(Ω) too. More-
over, both (w−)∗ and (w∗)− are quasicontinuous in Ω and (w−)∗ = (w∗)− = w−

a.e. in Ω. Then, by [11], (w−)∗ = (w∗)− q.e. in Ω. Therefore the condition
(w−)∗ = 0 q.e. in Eess is equivalent to w∗ ≥ 0 q.e. in Eess. In particular, as
it was pointed out in in [16], Theorem 2.1 of [5] entails that if Eess ⊂ ∂Ω is
Ahlfors 2-regular and H2(Eess) > 0, then the condition w ≥ 0 q.e. on Eess is
equivalent to w ≥ 0 H2 a.e. on Eess so the classical framework of [2, 23, 12] is
equivalent to ours in this case.

2.2 The elastic energy density

Let R3×3 denote the set of 3× 3 real matrices, endowed with the Euclidean
norm |F| =

√
Tr(FTF). We let symF := 1

2(FT + F). SO(3) will denote the
special orthogonal group. Let L3 and B3 denote respectively the σ-algebras of
Lebesgue measurable and Borel measurable subsets of R3 and let W : Ω ×
R3×3 → [0,+∞] be L3×B9- measurable satisfying the following standard as-
sumptions, see also [19, 20]:

W(x,RF) =W(x,F) ∀R∈SO(3) ∀ F∈R3×3, for a.e. x∈Ω, (2.7)

min
F
W(x,F) =W(x, I) = 0 for a.e. x ∈ Ω (2.8)

and as far as it concerns the regularity of W, we assume that there exist an
open neighborhood U of SO(3) in R3×3, an increasing function ω : R+ → R
satisfying limt→0+ ω(t) = 0 and a constant K > 0 such that for a.e. x ∈ Ω

W(x, ·) ∈ C2(U), |D2W(x, I)| ≤ K and

|D2W(x,F)−D2W(x,G)| ≤ ω(|F−G|), ∀ F,G ∈ U .
(2.9)

Moreover we assume that there exists C > 0 such that for a.e. x ∈ Ω

W(x,F) ≥ C(d(F, SO(3)))2 ∀F ∈ R3×3, (2.10)

where d( · , SO(3)) denotes the Euclidean distance function from the set of ro-
tations. In order to consider incompressible elasticity models, starting from a
function W as above we introduce the incompressible strain energy density by
letting, for a.e. x ∈ Ω,

WI(x,F) :=

{
W(x,F) if det F = 1
+∞ otherwise.

(2.11)
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We recall some basic properties that follow from the above assumptions, see
[19, 20]. For a.e. x ∈ Ω there holds

lim
h→0

h−2W(x, I + hF) =
1

2
FTD2W(x, I) F =

=
1

2
symFD2W(x, I) symF ∀ F∈R3×3,

hinting to the linear elastic energy density as limit of the nonlinear energies,
with C(x) = D2W(x, I), and

1

2
FTD2W(x, I) F ≥ C|symF|2 ∀ F∈R3×3,

where C is the constant in (2.10). Taking (2.9) into account we have, for a.e.
x ∈ Ω,∣∣∣∣W(x, I + hF)− h2

2
symFD2W(x, I) symF

∣∣∣∣ ≤ h2ω(h|F|)|F|2 (2.12)

for every F ∈ R3×3 and every h > 0 such that I + hF ∈ U .

We mention a class of energy densities W (the so called Yeoh materials
[22, 19]) fulfilling the assumptions above (2.7)–(2.10) and for which the main
result of the present paper (see Theorem 2.8 below) applies (for simplicity, we
consider the homogeneous case):

W(F) :=
3∑

k=1

ck(|F|2 − 3)k

with ck > 0. It is easy to check that with this choice the energy density satisfies
all assumptions from (2.7) to (2.9) while inequality (2.10) has been proven in
[17]. It is worth noticing that when material constants are suitably chosen then
also the classical Ogden-type energies may fulfill the assumptions from (2.7) to
(2.10) and we refer to [17] for all details.

2.3 External forces

We introduce a body force field f ∈ L6/5(Ω,R3) and a surface force field g ∈
L4/3(∂Ω,R3). From now on, f and g will always be understood to satisfy these
summability assumptions. The load functional is the following linear functional

L(v) :=

∫
Ω

f · v dx +

∫
∂Ω

g · v dH2(x), v ∈ H1(Ω,R3).
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We note that since Ω is a bounded Lipschitz domain, the Sobolev embed-
ding H1(Ω,R3) ↪→ L6(Ω,R3) and the Sobolev trace embedding H1(Ω,R3) ↪→
L4(∂Ω,R3) imply that L is a bounded functional over H1(Ω,R3) and throughout
the paper we denote its norm with ‖L‖∗.

For every R∈SO(3) we set

CR := {c : c3 ≥ − min
x∈Eess

(Rx)3}

and we assume the following geometrical compatibility between load and obsta-
cle

L((R− I)x + c) ≤ 0 ∀R ∈ SO(3), ∀c ∈ CR (2.13)

together with
L ((Rx− x)α eα) ≤ 0 ∀R ∈ SO(3), (2.14)

the summation convention over the repeated index α = 1, 2 being understood
all along this paper. It can be shown that condition (2.13) is equivalent to (see
[16, Remark 3.4])

L(e3) ≤ 0 = L(e1) = L(e2), Φ(R, E,L) ≤ 0 ∀R∈SO(3), (2.15)

where we have set

Φ(R, E,L) := L((R− I)x) − L(e3) min
x∈Eess

(Rx)3

and from now on we will use (2.15) in place of (2.13). It has been shown in [16]
that conditions (2.14) and (2.15) are compatible and that they do not imply
each other, see also Remark 3.3 below. We next state three auxiliary lemmas,
in order to better clarify the role of conditions (2.14) and (2.15). Proofs may be
found in [16]. In the following, ∧ denotes the cross product.

Lemma 2.2. Assume that (2.14) holds. Then,

L((a ∧ x)α eα) = 0 and L((a ∧ (a ∧ x))α eα) ≤ 0 ∀a ∈ R3. (2.16)

Remark 2.3. It is worth noticing that, by inserting a = e1 or a = e2, the
condition (2.16) entails L(x3e2) = 0 and L(x3e1) = 0 respectively.

Lemma 2.4. Assume (2.5) and (2.13). Then

(1) L(e1) = L(e2) = 0 and L(e3) ≤ 0;

(2) L(e3 ∧ x) = 0;

(3) L
(
e3 ∧ (e3 ∧ x)

)
≤ 0;



Limit of nonlinear Signorini problems for incompressible materials 25

(4) there exists xL in the relative interior of the convex envelope of Eess such
that
L
(
a ∧ (x− xL)

)
= 0 ∀a ∈ R3.

Remark 2.5. We emphasize that conditions (1) and (4) in Lemma 2.4 together
with (2.5) and L(e3) < 0 coincide with conditions (4.9)–(4.11) of [2, Theorem
4.5], which provides the solution to Signorini problem in linear elasticity. We
also emphasize that the whole set of conditions (1)–(4) appearing in the claim
of Lemma 2.4 together with condition (2.5) on the set E is not equivalent to
admissibility of the loads as expressed by (2.15). This phenomenon is made
explicit in [16, Example 3.6].

Finally, by setting

SL,E = {R ∈ SO(3) : Φ(R, E,L) = 0 } , (2.17)

we have

Lemma 2.6. Assume that (2.5), (2.15) hold and that L(e3) < 0. Then

either SL,E = { I } or SL,E = {R ∈ SO(3) : Re3 = e3 }.

2.4 Energy functionals

If E fulfils (2.5) the incompressible Signorini problem in linear elasticity can
be described as the minimization of the functional EI : H1(Ω,R3)→ R∪{+∞}
defined by

EI(u) :=


∫

Ω
QI(x,E(u)) dx− L(u) if u ∈ A

+∞ otherwise in H1(Ω,R3),

where E(u) :=sym∇u, Q(x,F) := 1
2 FTC(x) F, C(x) := D2W(x, I),

QI(x,F) :=


Q(x,F) if Tr F = 0

+∞ otherwise

and where A is defined by

A :=
{

u ∈ H1(Ω;R3) : u∗3(x) ≥ 0 q.e. x∈E
}
.

The meaning of such constraint is that the deformed configuration of E, namely
{y(x) := x + u(x), x∈E}, is constrained to remain in {y3 ≥ 0}.
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For every y ∈ H1(Ω,R3) we introduce the set

M(y) := argmin

{∫
Ω
|∇y −R|2 dx : R ∈ SO(3)

}
. (2.18)

Thus, due to the rigidity inequality of [7], there exists a constant C = C(Ω) > 0
such that for every y ∈ H1(Ω,R3) and every R ∈M(y)∫

Ω

(
d
(
∇y, SO(3)

))2
dx ≥ C

∫
Ω
|∇y −R|2 dx, (2.19)

where d
(
F, SO(3)

)
:= min{|F − R| : R ∈ SO(3)}. The rigidity inequality is

a crucial tool for obtaining linear elasticity as limit of finite elasticity via Γ-
convergence, as seen in [4] and subsequent works [9, 10, 15, 14, 16, 17, 18, 19,
20, 21, 22].

Let us introduce nonlinear elastic energies. If (hj)j∈N ⊂ (0, 1) is a vanishing
sequence, the rescaled finite elasticity functionals Gj : H1(Ω,R3) → R ∪ {+∞}
are defined by

Gj(y) =


h−2
j

∫
Ω
W(x,∇y) dx− h−1

j L(y − x) if y ∈ A

+∞ otherwise.

The related rescaled incompressible finite elasticity functionals GIj : H1(Ω,R3)→
R ∪ {+∞} are defined by

GIj (y) =


h−2
j

∫
Ω
WI(x,∇y) dx− h−1

j L(y − x) if y ∈ A,

+∞ otherwise.

It will be shown (see Lemma 3.1 below) that infH1(Ω;R3) GIj > −∞ for every

j ∈ N. Moreover, (yj)j∈N ⊂ H1(Ω,R3) is said a minimizing sequence of the
sequence of functionals GIj if

lim
j→+∞

(
GIj (yj) − inf

H1(Ω,R3)
GIj
)

= 0. (2.20)

The main focus of the paper is to investigate if GIj (yj) converges to a minimum

of (2.20) whenever (yj)j∈N is a minimizing sequence of GIj . To this end we

introduce the functionals II , G̃I , GI : H1(Ω,R3)→ R ∪ {+∞} defined by

II(u) := min
b∈R2

∫
Ω
QI(x,E(u) + 1

2bα(eα ⊗ e3 + e3 ⊗ eα)) dx,
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G̃I(u) :=

 I
I(u)− max

R∈SL,E
L(Ru) if u ∈ A

+∞ otherwise in H1(Ω,R3),

and

GI(u) :=


∫

Ω
QI(x,E(u)) dx− max

R∈SL,E
L(Ru) if u ∈ A

+∞ otherwise in H1(Ω,R3),

where SL,E is defined by (2.17).

Remark 2.7. It is worth noticing that G̃I ≤ GI ≤ EI , since I ∈ SL,E , and it is

straightforward to check that II , G̃I , GI are all continuous with respect to the
strong convergence in H1(Ω;R3).

2.5 The variational convergence result

The main result is stated in the next theorem, referring to (2.20) for the
notion of minimizing sequence. The technical assumption that ∂Ω has a finite
number of connected components will be needed for applying an extension the-
orem about divergence-free vector fields from [10].

Theorem 2.8. Assume that ∂Ω has a finite number of connected components,
that (2.5), (2.7), (2.8), (2.9), (2.10), (2.11), (2.14), (2.15) hold true and that
L(e3) < 0. Let (hj)j∈N ⊂ (0, 1) be a vanishing sequence. Let (yj)j∈N⊂H1(Ω,R3)

be a minimizing sequence of GIj . If Rj ∈M(yj) for every j ∈ N, then there are

cj ∈ R3, j ∈ N, such that the sequence

uj(x) := hj
−1RT

j

{(
yj − cj −Rjx

)
α

eα + (yj,3 − x3)e3

}
is weakly compact in H1(Ω,R3). Therefore up to subsequences, uj ⇀ u in
H1(Ω,R3) and also

GIj (yj)→ G̃I(u) = min
H1(Ω,R3)

G̃I = min
H1(Ω,R3)

GI , as j → +∞.

Remark 2.9. Since G̃I ≤ GI then equality min G̃I = minGI is equivalent to
argminGI ⊂ argmin G̃I with possible strict inclusion.
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3 Proof of the variational convergence result

This section contains the proof of our main result. We start by showing that
sequences of deformations with equibounded energy correspond (up to suitably
tuned rotations and translations of the horizontal components) to displacements
that are equibounded in H1.

Lemma 3.1. (compactness) Assume that E, L andW fulfil (2.5), (2.7), (2.8),
(2.9), (2.10), (2.11), (2.15) and L(e3) < 0. Let (hj)j∈N ⊂ (0, 1) be a vanishing
sequence. Let (yj)j∈N ⊂ H1(Ω;R3) satisfy supj∈N GIj (yj) < +∞. If Rj ∈M(yj)
for every j ∈ N, then every limit point of the sequence (Rj)j∈N belongs to SL,E ,
and by setting

cj,α = |Ω|−1

∫
Ω

(yj(x)−Rjx)α dx, α = 1, 2, (3.21)

cj,3 = − min
x∈Eess

(Rjx)3, (3.22)

the sequence

hj
−1
(
yj − Rjx − cj

)
α
eα + hj

−1(yj,3 − x3)e3

is bounded in H1(Ω;R3). Moreover, inf
j∈N

inf
H1(Ω;R3)

GIj > −∞.

Proof. Since GIj ≥ Gj the proof follows from the analogous [16, Lemma
4.1] and we report here that proof for the sake of completeness and also making
some steps more precise.

Step 1. We start by providing some estimates using the finiteness of M :=
supj∈N GIj (yj). Referring to (2.18), let Rj ∈ M(yj) for every j ∈ N. Up to
subsequences, Rj → R for some R ∈ SO(3). Then we define cj = (cj,1, cj,2, cj,3)
by (3.21) and (3.22). By the rigidity inequality (2.19) there exists a constant
C = C(Ω) > 0 such that

M ≥ GIj (yj) ≥ C h−2
j

∫
Ω
|∇yj −Rj |2 dx− h−1

j L(yj − x)

= C h−2
j

∫
Ω
|∇yj −Rj |2 dx− h−1

j L(yj −Rjx− cj)− h−1
j L(Rjx− x + cj).

(3.23)
Thus, by (2.15) and the definition of cj,3 we get

M ≥ C h−2
j

∫
Ω
|∇yj −Rj |2 dx− h−1

j L(yj −Rjx− cj) (3.24)
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and Poincaré inequality (with constant denoted by CP ) along with Young in-
equality entail, for every ε>0,

h−1
j L
(

(yj −Rjx− cj)α eα
)
≤ h−1

j CP ‖L‖∗
( 2∑
α=1

∫
Ω
| (∇yj −Rj)α |2 dx

)1/2

≤ CP ‖L‖2∗
2ε

+
ε h−2

j CP

2

2∑
α=1

∫
Ω
|(∇yj −Rj)α|2 dx.

(3.25)
Estimates (3.24) and (3.25) together with Young inequality provide

M ≥ h−2
j

(
C − εCP

2

)∫
Ω
|∇yj−Rj |2dx−

CP ‖L‖2∗
2 ε

− h−1
j L
(
(yj −Rjx− cj)3 e3

)
≥ h−2

j

(
C − εCP

2

)∫
Ω
|∇yj−Rj |2 dx−

CP ‖L‖2∗
2 ε

−h−1
j ‖L‖∗

(
‖(yj −Rjx− cj)3‖L2(Ω) + ‖∇(yj −Rjx)3‖L2(Ω)

)
≥ h−2

j

(
C − εCP

2
− ε

2

)∫
Ω
|∇yj−Rj |2 dx−

(
CP
2 ε

+
1

2 ε

)
‖L‖2∗

−h−1
j ‖L‖∗

(
‖(yj −Rhx− cj)3‖L2(Ω).

By choosing ε = C/(CP + 1), we get

h−2
j

C

2

∫
Ω
|∇yj−Rj |2 dx

≤ M +
(CP + 1)2

2C
‖L‖2∗ + h−1

j ‖L‖∗ ‖(yj −Rjx− cj)3‖L2(Ω;R3).

(3.26)

Thus, if we show that h−1
j ‖(yj −Rjx− cj)3‖L2(Ω) is uniformly bounded, then,

due to estimate (3.26), ‖h−1
j (∇yj − Rj)‖L2(Ω) is uniformly bounded too and

Poincarè inequality entails uniform boundedness of h−1
j ‖yj−Rjx−cj‖H1(Ω;R3).

Let us define for every j

tj := h−1
j ‖ (yj−Rjx−cj)3 ‖L2(Ω) and wj := t−1

j h−1
j (yj−Rjx−cj)3.

(3.27)
Then

‖wj‖L2(Ω) = 1, |∇yj−Rj |2 =
2∑

α=1

| ∇(yj−Rjx)α |2 + h 2
j t

2
j |∇wj |2, (3.28)
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so that (3.23), (3.25) and (2.15) imply that for every ε > 0

Ct 2
j

∫
Ω
|∇wj |2 dx − tj L(wj e3)− h−1

j L(Rjx− x + cj,3e3)

≤M − C h−2
j

2∑
α=1

∫
Ω
| ∇(yj−Rjx)α |2 dx + h−1

j L
(

(yj−Rjx− cj)α eα
)

≤M − C h−2
j

2∑
α=1

∫
Ω
| ∇(yh−Rjx)α |2 dx +

CP ‖L‖2∗
2 ε

+
h−2
j εCP

2

2∑
α=1

∫
Ω
|∇(yj−Rjx)α |2 dx,

(3.29)
and by choosing ε = 2C/CP in (3.29) we get

C t 2
j

∫
Ω
|∇wj |2 dx − tj L(wj e3)− h−1

j L(Rjx− x + cj,3e3) ≤
C2
P ‖L‖2∗
4C

+M

(3.30)
while, by choosing ε = C/CP , (3.29) yields

1

2
C h−2

j

2∑
α=1

∫
Ω
∇(yj−Rjx)α |2 dx + C t 2

j

∫
Ω
|∇wj |2 − tj L(wj e3) ≤

≤
C2
P

2C
‖L‖2∗ +M + h−1

j L(Rjx− x + cj,3e3).

Thus, by taking account of the fact that (2.15) entails L(Rjx−x + cj,3e3) ≤ 0,
we get

1

2
C
h−2
j

t 2
j

2∑
α=1

∫
Ω
| ∇(yj−Rjx)α |2 dx ≤

1

tj
L(wj e3) +

1

tj 2

C2
P

2C
‖L‖2∗ +

M

t2j
.

(3.31)
Moreover, (3.30) and (2.15) yield

−hj
C2
P ‖L‖2∗
4C

−Mhj − hjtj L(wj e3) ≤ Φ(Rj , E,L) = L(Rjx−x + cj,3e3) ≤ 0.

(3.32)

Step 2. Here we prove that tj from (3.27) is uniformly bounded, thus yield-
ing as shown through the previous step the uniform boundedness of h−1

j ‖yj −
Rjx − cj‖H1(Ω;R3). In order to check that the sequence (tj)j∈N is uniformly
bounded we assume by contradiction that, up to subsequences, limj→+∞ tj =



Limit of nonlinear Signorini problems for incompressible materials 31

+∞. Normalization ‖wj‖L2(Ω) = 1 entails, for every ε > 0,

L
(
wj e3

)
≤ ‖L‖∗

(
‖wj‖L2 + ‖∇wj‖L2

)
= ‖L‖∗

(
1 + ‖∇wj‖L2

)
≤ ‖L‖∗ +

‖L‖2∗
2 ε

+
ε

2
‖∇wj‖2L2 ,

and choosing ε = C t2j we get, by (3.30),

C

2
t2j

∫
Ω
|∇wj |2 dx ≤ tj ‖L‖∗ +

‖L‖2∗
2C tj

+M, (3.33)

thus
∫

Ω |∇wj |
2 dx→ 0, so by (3.28) wj → w in H1(Ω;R3) with ∇w = 0 a.e. in

Ω, that is, w is a constant function since Ω is a connected open set. Combining
estimates (3.31) and (3.33) we get

1

2
C
h−2
j

t 2
j

2∑
α=1

∫
Ω
| ∇(yj−Rjx)α |2 dx

≤ 1

tj

(
‖L‖2∗ +

‖L‖2∗
2

+
1

2
‖∇wj‖2Lp

)
+

1

tj 2

C2
P

2CR C
‖L‖2∗ +

M

t2j
,

hence

1

hj tj
∇
(
yj −Rjx

)
α
→ 0 in L2(Ω;R3×3) if α = 1, 2,

and by definition of wj we have

h−1
j t−1

j (yj −Rjx− cj)3 → w q.e. x ∈ E .

Moreover, by (3.30) and (2.15) we get

L(wj e3) ≥ −
C 2
P

4C tj
‖L‖2∗ −

M

tj
.

Hence, due to L(wj e3) → L(w e3) = wL(e3), we have wL(e3) ≥ 0, thus, by
taking account of L(e3) < 0, we get w ≤ 0 and eventually, by ‖wj‖L2 = 1, we
obtain w < 0.

We notice now that if we set L := lim infj→+∞ hjtj , then either L ∈ (0,+∞]
or L = 0. Assume first that L ∈ (0,+∞). Since on a subsequence Rj → R ∈
SO(3), we have for q.e. x∈Eess

y∗j,3
hj tj

=
y∗j,3 − (Rjx)3 − cj,3

hj tj
+

(Rjx)3 + cj,3
hj tj

→

w + L−1{(Rx)3 −min
Eess

(Rx)3} (3.34)
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as j → +∞ (along a suitable subsequence). Since

min
Eess

{
(Rx)3 −min

Eess
((Rx)3)

}
= 0

then there exists E′ ⊂ Eess with capE′ > 0 such that

(Rx)3 −min
Eess

(Rxx)3 < −
wL

2

on E′, so that by (3.34)

y∗j,3
hj tj

→ w + L−1{(Rx)3 −min
Eess

(Rx)3} <
w

2
< 0

for q.e. x ∈ E′, a contradiction since the assumption supj∈N GIj (yj) < +∞
implies yj ∈ A, i.e., y∗j,3 ≥ 0 q.e. in E. If L = +∞ then by arguing as in

estimate (3.34) we easily get h−1
j t−1

j y∗j,3 → w < 0 for q.e. x ∈ E′ which is
again a contradiction. Therefore we are left to assume that, up to subsequences,
hjtj → 0.

In order to complete this step we notice that either Rje3 6= e3 for j large
enough or Rje3 = e3 for infinitely many j, and we separately treat these two
cases. In the first case, by taking account that L(e3) < 0, [16, Lemma 3.10]
entails

lim sup
j→+∞

Φ(Rj , E,L)

|Rje3 − e3|
< 0. (3.35)

By (3.32) we get therefore

γ := lim inf
j→+∞

hjtj
|Rje3 − e3|

> 0 (3.36)

and for large enough j (3.36) yields

|Rje3 − e3| ≤
2hjtj
γ

.

Hence, if xj ∈ argminEess{(Rjx)3} for every j, so we may assume that, up to
subsequences, xj → x ∈ Eess, then for every x ∈ Eess

θj(x) : = (Rjx)3 − min
x∈Eess

((Rjx)3) = (Rj(x− xj))3 = (Rj(x− xj))3 − (x− xj)3

= (x− xj) · (RT
j − I)e3 ≤ |x− xj ||RT

j e3 − e3| ≤
2hjtj
γ
|x− xj |
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and then we get, for j large enough,

θj(x) ≤ 2hjtj
γ
|x− x| ≤ hjtj

4
|w| for every x ∈ E′′ := B γ|w|

16

(x) ∩ Eess.

(3.37)
Moreover, by taking account of wj → w in H1(Ω;R3) we get

y∗j,3 = hjtjwj + θj = hjtjw + θj + δj where δj := hjtj(wj − w),

with h−1
j t−1

j δj → 0 in H1(Ω;R3) and thus, up to subsequences, cap quasi uni-
formly in Ω. Since capE′′ > 0 we may assume that there exists E′′′ ⊂ E′′ with
capE′′′ > 0 such that h−1

j t−1
j δj → 0 uniformly in E′′′ hence for j large enough

w + h−1
j t−1

j δj(x) <
w

2
q.e. x ∈ E′′′.

From the latter estimate and (3.37) we get for j large enough

h−1
j y∗j,3(x) ≤ tj

4
w <

w

4
< 0 q.e. x ∈ E′′′,

a contradiction since y∗j,3(x) ≥ 0 for q.e. x ∈ E. In the second case we may
assume that Rje3 = e3 for every j so cj,3 = 0 and x3 = 0 ⇒ (Rjx)3 = 0 for
every j. In particular wj → w < 0 in H1(Ω;R3) implies

t−1
j h−1

j yj,3(x) = t−1
j h−1

j (yj,3(x)−(Rjx)3−cj,3) = wj(x)→ w < 0 q.e. x ∈ E.

again contradicting y∗j,3(x) ≥ 0 for q.e. x ∈ E. This proves that (tj)j∈N is a
bounded sequence.

Step 3. We have shown that h−1
j ‖yj − Rjx − cj‖H1(Ω;R3) is uniformly

bounded, yielding in particular that (tjwj)j∈N is a bounded sequence inH1(Ω;R3).
But then (3.32) yields

−M ′hj ≤ Φ(Rj , E,L) = L(Rjx− x + cj,3e3) ≤ 0

for some suitable constant M ′ > 0 independent of j. If, up to subsequences,
Rj → R, we get Φ(Rj , E,L)→ Φ(R, E,L) = 0 thus proving that R ∈ SL,E .

Therefore, in order to end the proof, we have to show that the sequence
(h−1
j (yj,3 − x3))j∈N is equibounded in H1(Ω;R3). We claim that the sequence

(h−1
j |Rje3− e3|)j∈N is bounded. Indeed, if we assume that Rje3 6= e3 for every

j large enough, (3.35) entails

γ′ := lim inf
j→+∞

hj
|Rje3 − e3|

> 0,
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so that |Rje3 − e3| ≤ 2hj/γ
′ for j large enough, thus proving the claim. As a

consequence, since∣∣∣h−1
j (yj,3 − x3)

∣∣∣ ≤ ∣∣∣h−1
j (yj,3 − (Rjx)3 − cj,3)

∣∣∣+ h−1
j |(Rjx)3 − x3|

≤
∣∣∣h−1
j (yj,3 − (Rjx)3 − cj,3)

∣∣∣+ h−1
j |Rje3 − e3| |x|

and ∣∣∣h−1
j ∇(yj,3 − x3)

∣∣∣ ≤ h−1
j |∇(yj,3 − (Rjx)3)|+ h−1

j |∇((Rjx)3 − x3)|

≤ h−1
j |∇(yj,3 − (Rjx)3)|+ h−1

j |Rje3 − e3|,

we obtain that the sequence (h−1
j (yj,3 − x3))j∈N is equibounded in H1(Ω;R3).

Step 4. Eventually, we prove the last statement by contradiction, assuming
that there exists a sequence (yj)j∈N ⊂ A such that GIj (yj)→ −∞. In such case,

GIj (yj) ≤ 0 for j large enough so, as we have just proved, there exist sequences

(Rj)j∈N ⊂ SO(3) and (c̄j)j∈N ⊂ R3 and there exists v ∈ H1(Ω;R3) such that,
up to subsequences,

vj := h−1
j (yj −Rjx− c̄j) ⇀ v

weakly in H1(Ω;R3). Therefore by (2.15)

lim inf
j→+∞

GIj (yj) ≥ − lim sup
j→+∞

L(vj) = −L(v) > −∞,

a contradiction. QED

Lemma 3.2. (Lower bound) Assume that E, L,W fulfill the conditions (2.5),
(2.7), (2.8), (2.9), (2.10), (2.11), (2.14), (2.15) and L(e3) < 0. Let (hj)j∈N ⊂
(0, 1) be a vanishing sequence. Let (yj)j∈N ⊂ H1(Ω;R3) satisfy supj∈N GIj (yj) <
+∞. Let Rj ∈M(yj) for every j ∈ N. If

uj(x) := hj
−1RT

j

{(
yj − cj −Rjx

)
α

eα + (yj,3 − x3)e3

}
, j ∈ N, (3.38)

where cj are defined by (3.21)-(3.22), then, up to passing to a not relabeled
subsequence, we have uj ⇀ u weakly in H1(Ω;R3), u ∈ A and

lim inf
j→+∞

GIj (yj) ≥ G̃I(u).
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Proof. Finiteness of GIj (yj) imply yj ∈ A for every j ∈ N. Due to Lemma

3.1, the sequence defined in (3.38) is equibounded in H1(Ω;R3) hence there
exists u ∈ H1(Ω;R3) such that up to subsequences uj ⇀ u in H1(Ω;R3).
Moreover since

1 = det∇yj = det(Rj(I + hj∇uj)) = det(I + hj∇uj) =

= 1 + hj div uj −
1

2
h2
j (Tr(∇uj)

2 − (Tr∇uj)
2) + h3

j det∇uj

a.e. in Ω we get

div uj =
1

2
hj(Tr(∇uj)

2 − (Tr∇uj)
2)− h2

j det∇uj .

By taking into account that∇uj are uniformly bounded in L2 we get hαj |∇uj | →
0 a.e. in Ω for every α > 0 hence div uj = 1

2hj(Tr(∇uj)
2 − (Tr∇uj)

2) −
h2
j det∇uj → 0 a.e. in Ω. Since the weak convergence of ∇uj implies div uj ⇀

div u weakly in L2(Ω) we get div u = 0 a.e. in Ω. By recalling [2, Lemma A1] we
get, again up to subsequences, u∗j (x) → u∗(x) for q.e. x ∈ E hence by taking
account of

u∗j,3(x) = hj
−1y∗j,3(x) ≥ 0

for q.e. x ∈ E we get u∗3(x) ≥ 0 for q.e. x ∈ E that is u ∈ A. By taking account
of GIj ≥ Gj , of div u = 0, and of Rj → R ∈ SL,E up to subsequences as shown
in Lemma 3.1, we may invoke [16, Lemma 4.3], which entails that

lim inf
j→+∞

GIj (yj) ≥ lim inf
j→+∞

Gj(yj)

≥ min
b∈R2

∫
Ω
Q(x,E(u) + 1

2bα(eα ⊗ e3 + e3 ⊗ eα)) dx− L(Ru)

≥ G̃I(u)

thus proving the claim. QED

Remark 3.3. If condition (2.14) is not satisfied then the claim of Lemma 3.2
may fail. Indeed, the example [16, Remark 4.5] applies also to the incompressible
case.

In the next auxiliary lemma we provide some estimates for the Lagrangian
flow 

∂z

∂t
(t,x) = v(z(t,x)) t > 0

z(0,x) = x

(3.39)

associated to a vector field v ∈ C1
c (R3,R3).
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Lemma 3.4. Let v ∈ C1
c (R3,R3) be satisfying div v = 0 in an open neighbor-

hood Ω∗ of Ω. Let z ∈ C1([0,+∞) × R3;R3) be the unique global solution to
(3.39). Then there exists T > 0 such that

z(t,x) ∈ Ω∗ and det∇z(t,x) = 1 ∀ t ∈ [0, T ] ∀x ∈ Ω. (3.40)

Moreover

sup
x∈Ω

|z(t,x)− x| ≤ t‖v‖∞ exp(t‖∇v‖∞) ∀ t ≥ 0, (3.41)

sup
x∈Ω

|t−1(z(t,x)− x)− v(x)| ≤ ‖v‖L∞(exp(t‖∇v‖L∞)− 1) ∀ t > 0, (3.42)

sup
x∈Ω

|∇z(t,x)| ≤ 3 exp(t‖∇v‖∞) ∀ t ≥ 0, (3.43)

sup
x∈Ω

|(∇z(t,x)− I)| ≤ 3(exp(t‖∇v‖L∞)− 1) ∀ t ≥ 0, (3.44)

where ∇z denotes the gradient of z with respect to the x variable.

Proof. Since v ∈ C1
c (R3,R3), (3.39) has a unique global solution z ∈

C1([0,+∞)× R3;R3). By integrating (3.39) we have

(z(t,x)− x)− tv(x) =

∫ t

0
(v(z(s,x))− v(x)) ds (3.45)

for any x ∈ Ω and for every t ≥ 0, whence

|z(t,x)− x| ≤ t|v(x)|+ ‖∇v‖∞
∫ t

0
|z(s,x)− x| ds

and Gronwall lemma entails

|z(t,x)− x| ≤ t|v(x)| exp(t‖∇v‖∞) ≤ t‖v‖∞ exp(t‖∇v‖∞). (3.46)

Therefore there exists T > 0 such that z(t,x) ∈ Ω∗ for every (t,x) ∈ [0, T ]×Ω.
Moreover, (3.40) follows by a standard argument, since v is divergence free in
Ω∗, see also [18, Lemma 4.1]. By exploiting (3.45) and (3.46) we get

∣∣t−1(z(t,x)− x)− v(x)
∣∣ ≤ ‖v‖∞ ∫ t

0
s−1 |z(s,x)− x| ds

≤ ‖v‖∞
∫ t

0
exp(s‖∇v‖∞) ds ≤ ‖v‖∞(exp(t‖∇v‖∞)− 1)
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for any x ∈ Ω and any t ∈ (0, T ] thus proving (3.42). Letting ∇ denote the
derivative in the x variable we see that Z(t,x) := ∇z(t,x) satisfies

∂Z

∂t
(t,x) = ∇v(z(t,x))Z(t,x) t > 0

Z(0,x) = I,

whence

Z(t,x)− I =

∫ t

0
∇v(z(s,x)) Z(s,x) ds (3.47)

for every x ∈ Ω and every t ≥ 0, therefore

|Z(t,x)| ≤ 3 + ‖∇v‖∞
∫ t

0
|Z(s,x)| ds

and by Gronwall Lemma

|Z(t,x)| ≤ 3 exp(t‖∇v‖∞).

Therefore for every t ∈ (0, T ] and every x ∈ Ω we get

|Z(t,x)− I| ≤
∫ t

0
|∇v(z(s,x))| |Z(s,x)| ds ≤ ‖∇v‖∞

∫ t

0
|Z(s,x)| ds

≤ 3‖∇v‖∞
∫ t

0
exp(s‖∇v‖∞) ds ≤ 3(exp(t‖∇v‖∞)− 1)

thus proving (3.44). QED

Lemma 3.5. (Upper bound) Assume that ∂Ω has a finite number of con-
nected components, that (2.5), (2.7), (2.8), (2.9), (2.10), (2.11), (2.14), (2.15)
hold true and that L(e3) < 0. Let p > 3. Let u ∈ W 1,p(Ω,R3) such that
div u = 0 a.e. in Ω. Then there exists a sequence (yj)j∈N ⊂ C1(Ω,R3) such that

lim sup
j→+∞

GIj (yj) ≤ G̃I(u).

Proof. Step 1. We assume without loss of generality that u ∈ A and we
let

b∗ ∈ argmin

{∫
Ω
Q(x,E(u) +

1

2
bα(eα ⊗ e3 + e3 ⊗ eα)) dx : b ∈ R2

}
,

ũ(x) := u(x) + x3(b∗1e1 + b∗2e2). (3.48)
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It is readily seen that ũ ∈ A, that div ũ = 0 a.e. in Ω and that E(ũ) = E(u) +
1
2b
∗
α(eα ⊗ e3 + e3 ⊗ eα), hence

I(u) =

∫
Ω
Q(x,E(ũ)) dx. (3.49)

Moreover, by Lemma 2.2 and Remark 2.3 we obtain

L(Rũ) = L(Ru) + L(x3(b∗1Re1 + b∗2Re2)) = L(Ru) ∀R ∈ SL,E . (3.50)

Therefore by choosing

R̃ ∈ argmin {−L(Rũ) : R ∈ SL,E}

we get

G̃I(u) =

∫
Ω
QI(x,E(ũ)) dx− L(R̃ũ). (3.51)

Since ∂Ω has a finite number of connected components and div ũ = 0 a.e. in
Ω then by [10, Proposition 3.1, Corollary 3.2] there exists a Sobolev extension of
ũ, still denoted with ũ ∈W 1,p(R3;R3), such that spt ũ is compact and div ũ = 0
in an open neighborhood Ω′ of Ω. Since ũ ∈W 1,p(R3;R3) with p > 3 and spt ũ
is compact then ũ ∈ C0,γ(R3;R3)∩L∞(R3;R3) with γ = 1−3/p and we denote
with

‖ũ‖0,γ := sup
R3

|ũ|+ sup
x∈R3,y∈R3

x 6=y

|ũ(x)− ũ(y)|
|x− y|γ

its Hölder norm. Let now, for every j ∈ N, ũj := ũ ∗ ρj , where ρj(x) :=
ε−3
j ρ(ε−1

j |x|) and ρ is the unit symmetric mollifier, so that spt ρ ⊂ B1(0), and

εj := h
γ/2
j .

It is well known that ũj ∈ C1
c (R3;R3), that ũj → ũ in W 1,p(R3;R3), that

‖ũj‖L∞ ≤ ‖ũ‖L∞ and that

‖∇ũj‖L∞ ≤ ‖ũ‖L∞
∫
Bεj (0)

|∇ρj(y)| dy = Kε−1
j ‖ũ‖L∞ , (3.52)

where we have set

K := 4π

∫ 1

0
|ρ′(r)|r2 dr.
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Moreover it is readily seen that div ũj = 0 in an open neighbourhood Ω∗ of Ω
such that Ω∗ ⊂ Ω′ and that for every x,q ∈ R3 we have

|ũj(x)− ũ(x)| ≤
∫
Bεj (0)

|ũ(x− y)− ũ(x)|ρj(y) dy

≤ ‖ũ‖0,γ
∫
Bεj (0)

|y|γ |ρj(y) dy ≤ εγj ‖ũ‖0,γ ,
(3.53)

|∇ũj(x)−∇ũj(q)| ≤
∫
Bεj (0)

|ũ(x− y)− ũ(q− y)||∇ρj(y)| dy

≤ ‖ũ‖0,γ |x− q|γ
∫
Bεj (0)

|∇ρj(y)| dy = Kε−1
j ‖ũ‖0,γ |x− q|γ .

(3.54)
Step 2. Let now zj be the Lagrangian flow associated to the vector field ũj

as in Lemma 3.4. Let

wj(x) := zj(hj ,x), yj(x) := R̃wj(x) + βje3, (3.55)

where

βj = βj(‖ũ‖0,γ) := hj‖ũ‖0,γ
(
εγj + exp

(
Khjε

−1
j ‖ũ‖0,γ

)
− 1
)
.

By (3.41) and by (3.52) we obtain

sup
x∈Ω

|zj(hj ,x)− x| ≤ hj‖ũ‖∞ exp{K‖ũ‖∞hjε−1
j } for every j,

where the right hand side goes to zero as j → +∞ since hjε
−1
j → 0, so that for

every large enough j we obtain

zj(hj ,x) ∈ Ω∗ for every x ∈ Ω

and, as in the proof of Lemma 3.4,

det∇wj(x) = det∇yj(x) = 1 for every x ∈ Ω.

Moreover, still referring to the proof of Lemma 3.4, and in particular to (3.47),
we obtain∣∣h−1

j (∇zj(hj ,x)− I)−∇ũj(x)
∣∣ ≤ h−1

j

∫ hj

0
|∇ũj(x)∇zj(s,x)−∇ũj(x)| ds

+ h−1
j

∫ hj

0
|∇ũj(zj(s,x))∇zj(s,x)−∇ũj(x)∇zj(s,x))| ds

=: Mj(x) +Nj(x)

(3.56)
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for every x ∈ Ω and we next estimate both terms: from (3.44) and (3.52) we get

cMj(x) ≤ h−1
j ‖∇ũj‖∞

∫ hj

0
|∇zj(s,x)− I| ds

≤ h−1
j ‖∇ũj‖∞

∫ hj

0
3 (exp(s‖∇ũj‖∞)− 1) ds

≤ 3Kε−1
j ‖ũ‖∞

(
exp(Khjε

−1
j ‖ũ‖∞)− 1

)
(3.57)

while (3.54), (3.41) and (3.43) entail

Nj(x) ≤ h−1
j

∫ hj

0
|∇zj(s,x)||∇ũj(zj(s,x))−∇ũj(x)| ds

≤ 3Kε−1
j ‖ũ‖0,γh

−1
j

∫ hj

0
exp(s‖∇ũj‖∞) |zj(s,x)− x|γ ds

≤ 3Kε−1
j ‖ũ‖0,γ‖ũ‖

γ
∞h
−1
j

∫ hj

0
sγ exp(s(1 + γ)‖∇ũj‖∞) ds

≤ 3K‖ũ‖1+γ
0,γ h

γ
j ε
−1
j exp

(
K(1 + γ)hjε

−1
j ‖ũ‖∞

)
.

Since εj = h
γ/2
j and γ ∈ (0, 1), we se that both supx∈ΩMj(x) and supx∈ΩNj(x)

vanish as j → +∞, so that by setting ṽj(x) := h−1
j (zj(hj ,x)− x), from (3.56)

we get ∇ṽj − ∇ũj → 0 in L∞(Ω;R3×3), thus ∇ṽj → ∇ũ in Lp(Ω;R3×3), and
by taking (3.42) into account we have ṽj → ũ in L∞(Ω;R3) so that

ṽj → ũ in W 1,p(Ω;R3).

We also have hj‖∇ṽj‖∞ → 0, due to (3.52), since hjε
−1
j → 0.

Step 3. We check that yj ∈ A. By taking account that R̃ ∈ SL,E ⊂ {R ∈
SO(3) : Re3 = e3}, along with (3.42) and (3.52)-(3.53), we have from (3.55)

yj,3 − x3 = wj,3 − x3 + βj ≥ hj ũj,3 − hj‖ũ‖∞(exp(hj‖∇ũj‖∞)− 1) + βj

= hj(ũj,3 − ũ3)− hj‖ũ‖∞(exp(hj‖∇ũj‖∞)− 1) + hj ũ3 + βj

≥ −hjεγj ‖ũ‖0,γ − hj‖ũ‖0,γ(exp(Khjε
−1
j ‖ũ‖0,γ)− 1) + hj ũ3 + βj = hj ũ3

for every j, where the last equality follows from the definition of βj . Hence, by
recalling that ũ∗3(x) ≥ 0 for q.e. x ∈ E ⊂ {x3 = 0}, we deduce y∗j,3 ≥ 0 for q.e.
x ∈ E, that is yj ∈ A for every j.

Step 4. We conclude by noticing that Lemma 2.6 entails L(R̃x − x) = 0,
whence

h−1
j L(yj − x) = h−1

j L(R̃wj − x) + h−1
j βjL(e3)

= h−1
j L(R̃zj(hj ,x)− x) + o(1) = L(R̃ṽj) + o(1) as j → +∞,
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where we have used the fact that h−1
j βj = o(1) as j → +∞, which follows

from the definitions of εj and βj . So by exploiting that hj‖∇ṽj‖∞ → 0 along
with (2.12), by taking account that for large enough j there holds det∇yj =
det(I + hj∇ṽj) = 1 in Ω and that div ũ = 0 a.e. in Ω, we get

lim sup
j→+∞

GIj (yj) ≤ lim sup
j→+∞

∫
Ω
hj
−2 (W(x, I + hj∇ṽj)−Q(x,E(hjṽj))) dx

+ lim sup
j→+∞

(
h−2
j

∫
Ω
Q(x,E(hjṽj)) dx− h−1

j L(yj − x)

)
≤ lim sup

j→+∞

∫
Ω
ω(hj |∇ṽj |)|∇ṽj |2 dx

+ lim sup
j→+∞

∫
Ω
Q(x,E(ṽj)) dx− L(R̃ũ)

=

∫
Ω
QI(x,E(ũ)) dx− L(R̃ũ),

which proves the result in view of (3.51). QED

We are now in a position to prove our main theorem.

Proof of Theorem 2.8. If (yj)j∈N ⊂ H1(Ω,R3) is a minimizing sequence for

GIj then we may assume that GIj (yj) ≤ GIj (x) + 1 = 1 for every j. Moreover, if
Rj belong to A(yj) and cj is defined by the right hand sides of (3.21), (3.22),
then Lemma 3.1 entails that the sequence

uj(x) := hj
−1RT

j

{(
yj − Rjx − cj

)
α
eα + (yj,3 − x3)e3

}
is bounded in H1(Ω;R3). Therefore up to subsequences uj → u weakly in
H1(Ω;R3), so, by Lemma 3.2, we have u ∈ A, div u = 0 a.e. in Ω and

lim inf
j→+∞

GIj (yj) ≥ G̃I(u). (3.58)

On the other hand, by Lemma 3.5, for every u∗ ∈W 1,p(Ω,R3) ∩ A with p > 3,
there exists a sequence yj ∈ C1(Ω,R3) such that

lim sup
j→+∞

GIj (yj) ≤ G̃I(u∗). (3.59)

Since
GIj (yj) + o(1) = inf

H1(Ω,R3)
GIj ≤ GIj (yj) as j → +∞, (3.60)

by passing to the limit as j → +∞, we get

G̃I(u) ≤ G̃I(u∗) for every u∗ ∈W 1,p(Ω,R3) ∩ A with p > 3. (3.61)
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Now fix u ∈ A such that div u = 0 a.e. in Ω and denote again by u a
Sobolev extension of u to the whole R3. By [16, Lemma A.11] there exists
vj ∈ C1(R3,R3)∩A such that vj → u in H1(Ω;R3) and by Bogowskii’s Theorem

[3], see also [9, Theorem A.2], there exists wj belonging to W 1,r
0 (Ω;R3) for every

r ≥ 1 such that

div wj = −div vj + |Ω|−1

∫
Ω

div vj dx in Ω, (3.62)

and

‖wj‖H1(Ω;R3) ≤ C∗
∥∥∥∥−div vj + |Ω|−1

∫
Ω

div vj dx

∥∥∥∥
L2(Ω)

(3.63)

for some suitable constant C∗ = C∗(Ω). Therefore by setting

uj := vj −
(
|Ω|−1

∫
Ω

div vj dx

)
x3e3 + wj

and by taking account of (3.62) we get div uj = 0 a.e. in Ω. Moreover since
E ⊂ ∂Ω ∩ {x3 = 0} and uj , vj ∈ C0(Ω;R3) we have uj(x) = vj(x) for every
x ∈ E, hence uj ∈ A. Eventually by (3.63) we get wj → 0 in H1(Ω;R3). By
recalling that vj → u in H1(Ω;R3) and that div vj → 0 in L2(Ω), we have

‖uj − u‖H1(Ω;R3) ≤
∥∥∥∥vj − u−

(
|Ω|−1

∫
Ω

div vj dx

)
x3e3

∥∥∥∥
H1(Ω;R3)

+ ‖wj‖H1(Ω;R3) → 0.

By (3.61) we have G̃I(u) ≤ G̃I(uj), whence by Remark 2.7 we have

G̃I(u) ≤ lim
j→+∞

G̃I(uj) = G̃I(u).

The arbitrariness of u ∈ A shows that u ∈ argminH1(Ω;R3) G̃I .
We claim that GIj (yj)→ G̃I(u): indeed, by the previous arguments, if p > 3

we have minH1(Ω;R3) G̃I = infW 1,p(Ω;R3) G̃I . Since (3.58), (3.59), (3.60) and (3.61)
imply

min
H1(Ω;R3)

G̃I = G̃I(u) ≤ lim inf
j→+∞

G̃Ij (yj) ≤ lim sup
j→+∞

G̃Ij (yj) ≤ G̃I(u∗)

for every u∗ ∈ A such that u∗ ∈W 1,p(Ω;R3), the claim follows.
We are only left to show that minH1(Ω;R3) G̃I = minH1(Ω;R3) GI . To this aim

we show first that for every u ∈ A there exists ũ ∈ A such that GI(ũ) = G̃I(u).
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Indeed if ũ is defined as in (3.48) then by (3.49) and (3.50) we get

G̃I(u) = II(u)− max
R∈SL,E

L(Ru) =

∫
Ω
QI(x,E(ũ)) dx− max

R∈SL,E
L(Rũ) = GI(ũ)

(3.64)
as claimed. By recalling that G̃I(u) = minH1(Ω;R3) G̃I ≤ infH1(Ω;R3) GI let us

assume that inequality is strict. Then by (3.64) there exists ũ ∈ A such that
GI(ũ) = G̃I(u) < infH1(Ω;R3) GI , a contradiction. Thus again by (3.64) GI(ũ) =

G̃I(u) = minH1(Ω;R3) GI . QED
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