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1 Introduction and preliminaries

In 1986, Monsef et al. [2] defined and studied β-closure of a set in topo-
logical spaces. In this paper, using β-closure, we introduce weakly β-R0 spaces
for non trivial topology, β-US spaces and obtained preservation theorems for
weakly β-R0 spaces and β-US spaces. Several characterizations and fundamen-
tal properties are obtained. Throughout the present paper, X and Y always
mean topological spaces on which no separation axiom is assumed unless ex-
plicitly stated.

Let A be a subset of a space X. The closure of A and interior of A are
denoted by Cl(A) and Int(A) respectively.

Here we recall the following definitions, which will be used often throughout
the paper.

1 Definition. A subset A of a topological space X is said to be β-open [1]
(resp. semi-open [7], α-open [11]) if A ⊆ Cl(Int(Cl(A))) (resp. A ⊆ Cl(Int(A)),
A ⊆ Int(Cl((Int(A))))). The complement of a β-open (resp. semi-open) set
is said to be β-closed [1](resp. semi-closed [5]) and β-closure [2] (resp. semi-
closure [5]) of a set A, denoted by β Cl(A) (resp. SCl(A)), is the intersection of
all β-closed (resp. semi-closed) sets containing A. A is said to be β-clopen [13]
if it is β-open as well as β-closed.
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2 Weakly β-R0 spaces

2 Definition. A topological space X is said to be semi-R0 [8] if and only
if for each x ∈ X, SCl({x}) ⊆ G, where G is an open subset of X.

3 Definition. A topological space X is said to be weakly semi-R0 [4] if and
only if ∩SCl({x}) : x ∈ X = ∅.

4 Definition. A topological space X is said to be weakly β-R0 if and only
if ∩β Cl({x}) : x ∈ X = ∅.

5 Theorem. Every weakly semi-R0 space is weakly β-R0.

Proof. The proof is obvious in view of the fact that

∩{β Cl ({x}) : x ∈ X} ⊂ ∩{SCl ({x}) : x ∈ X} .

QED

The converse of the above theorem is not true as can be seen from the
following example:

6 Example. Let X = {a, b, c}, T = {∅, X, {a, b}}. It is evident that

∩{β Cl ({x}) : x ∈ X} = ∅ but ∩ {SCl ({x}) : x ∈ X} = {c} 6= ∅.

7 Theorem. If a space X is weakly β-R0 then for every space Y , the product
space X × Y is weakly β-R0.

Proof. Using [2, Theorem 2.10], we have

∩ {β Cl ({x, y}) : (x, y) ∈ X × Y }
⊆ ∩{β Cl ({x}) × β Cl ({y}) : (x, y) ∈ X × Y }

= ∩{β Cl ({x}) : x ∈ X} × ∩{β Cl ({y}) : y ∈ Y } ⊆ ∅ × Y = ∅.

QED

8 Definition. A function f : X → Y is said to be pre-β-closed [9] if the
image of each β-closed subset of X is β-closed in Y .

9 Theorem. Let f : X → Y be a pre-β-closed injective function. If X is
weakly β-R0, then so is Y .

Proof. Using [9, Theorem 3.3 (ii)], we have

∩ {β Cl ({y}) : y ∈ Y } ⊆ ∩{β Cl ({f(x)}) : x ∈ X}
⊆ f (∩{β Cl ({x}) : x ∈ X}) = f(∅) = ∅.

QED
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10 Definition. Let (X,T ) be a topological space and let x ∈ X. The β-
Kernel of x is denoted and defined by

β- ker(x) = ∩{U : U is β-open in X and x ∈ U} .

11 Theorem. A topological space X is weakly β-R0 if and only if
β-ker(x) 6= X for each x ∈ X.

Proof. Let x0 be a point of X such that β-ker(x0) = X. This means that
x0 does not belong to any proper β-open subset of X. Therefore x0 belongs to
every proper β-closed subset of X. Hence x0 belongs to the β-closure of every
singleton. Therefore x0 ∈ ∩{β Cl({x}) : x ∈ X} = ∅, as by assumption X is
weakly β-R0. This is a contradiction.
Conversely, assume that β-ker(x) 6= X for each x ∈ X. If there is a point x0 in
X such that x0 ∈ β Cl ({x}) then, every β-open set containing x0 must contain
every point of X. Therefore, the unique β-open set containing x0 is X. Hence
β-ker(x0) = X, which is a contradiction. Thus X is weakly β-R0. QED

3 β-US-spaces

The concept of US-space was introduced by Slepian [15] and was further
studied by Cullen [6], Murudeshwar, Naimpally [10] and Wilansky [16]. A space
X is said to be a US-space if every sequence in X converges to a unique point. In
this section, we introduce a weaker concept namely the concept of β-US spaces
by making use of β-open sets.

12 Definition. A sequence 〈xn〉 is said to s-converge [3] to a point of x if
〈xn〉 is eventually in every semi-open set containing x.

13 Definition. A sequence 〈xn〉 is said to β-converge to a point x if 〈xn〉
is eventually in every β-open set containing x.

14 Definition. A space X is said to be semi-US [3] if every sequence in X
s-converges to a unique point. Every US-space is semi-US but not conversely [3,
Example 1.5].

15 Definition. A space X is said to be β-US if every sequence in X β-
converges to a unique point.

Clearly, every semi-US space is β-US but not conversely as can be seen from
the following example:

16 Example. Let X = {a,b,c,d} and let T = {∅,X, {a,b,c} , {b,c,d} , {b, c}}
then (X,T ) is β-US space but not semi-US space, not even T1.

17 Definition. A space X is said to be β-T1 (respectively, β-T2) [9] if for
any two distinct points x and y of X, there exist β-open sets U and V such that
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x ∈ U and y /∈ U , y ∈ V and x /∈ V (resp. x ∈ U ,y ∈ V and U ∩ V = ∅).
18 Theorem. Every β-US space is β-T1.

Proof. Let X be β-US. Let x and y be two distinct points of X. Consider
the sequence 〈xn〉 where xn = x for every n. Clearly 〈xn〉 β-converges to x. Also,
since x 6= y and X is β-US, 〈xn〉 cannot β-converge to y. That is, there exists
a β-open set V containing y but not x. Similarly if we consider the sequence
〈yn〉 where yn = y for all n and proceeding as before, we get a β-open set U
containing x but not y. Thus X is β-T1. QED

The converse of the above theorem need not be true as can be seen from the
following example:

19 Example. Let X be a countably infinite set and T be the cofinite topol-
ogy on X. Then (X,T ) is T1, hence β-T1 but not β-US since the every sequence
of distinct points of X converges to more than one point.

20 Theorem. Every β-T2 space is β-US.

Proof. Let X be β-T2 and let 〈xn〉 be a sequence in X. If possible, suppose
that 〈xn〉 β-converges to two points x and y. That is, 〈xn〉 is eventually in every
β-open set containing x and also in every β-open set containing y. This is not
possible since X is β-T2. Thus x = y. QED

Converse of the above theorem need not be true as can be seen from the
following example:

21 Example. Let X be an uncountable set and let T be the cocountable
topology on X. Then (X,T ) is β-US but not β-T2. The above example also
shows that a US-space need not be β-T2.

22 Definition. A set B is said to be sequentially β-closed if every sequence
in B β-converges to a point in B.

23 Theorem. A space X is β-US if and only if the diagonal ∆ is a sequen-
tially β-closed subset of X ×X.

Proof. Let X be β-US. Let 〈xn,xn〉 be a sequence in ∆. Suppose that
〈xn,xn〉 β-converges to 〈x, y〉. That is, 〈xn〉 β-converges to x and y. Therefore
x = y. Hence ∆ is sequentially β-closed. Conversely, let ∆ be sequentially β-
closed. Let a sequence 〈xn〉 β-converges to x and y. Hence, 〈xn,xn〉 β-converges
to 〈x, y〉. Since ∆ is sequentially β-closed, 〈x, y〉 ∈ ∆, which means that x =
y. QED

24 Definition. A subset Y of a space X is said to be sequentially β-compact
if every sequence in Y has a subsequence which β-converges to a point in Y .

25 Theorem. In a β-US space, every sequentially β-compact set is sequen-
tially β-closed.
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Proof. Let X be β-US. Let Y be a sequentially β-compact subset of X. Let
〈xn〉 be a sequence in Y. Suppose that 〈xn〉 β-converges to a point in X ∽ Y .
Let 〈xnp〉 be a subsequence of 〈xn〉. Since Y is sequentially β-compact, there
exists a subsequence 〈xnp〉 of 〈xn〉 such that 〈xnp〉 β-converges to a point y in
Y . Also, a subsequence of 〈xn〉,〈xnp〉 β-converges to x ∈ X ∽ Y . Since 〈xnp〉 is
a sequence in β-US space X,x = y. Thus, Y is sequentially β-closed. QED

26 Theorem. Product of arbitrary family of β-US spaces is β-US.

Proof. Let X = ΠXλ
λ∈∆

where each Xλ is β-US. Let a sequence 〈xn〉 in X

β-converges to x = (xλ) and y = (yλ). Then the sequence 〈xnλ〉 β-converges to
xλ and yλ for each λ ∈ ∆. For, suppose that there exists a µ ∈ ∆ such that 〈xnµ〉
does not β-converge to xµ. Then there exists a τµ-β-open set Uµ containing xµ

such that 〈xnµ〉 is not eventually in Uµ. Consider the set U = ΠXλ
λ 6=µ

× Uµ. Then

U is a β-open subset of X [2, Lemma 2.1] and 〈xn〉 is not eventually in U which
contradicts the fact that 〈xn〉 β-converges to x. Thus we get 〈xnλ〉 β-converges
to xλ and yλ for each λ ∈ ∆. Since Xλ is β-US, xλ = yλ for each λ ∈ ∆. Thus
x = y. Hence, X is β-US. QED

27 Corollary. Product of arbitrary family of β-T2 space is β-T2.

28 Theorem. Every α-open-subset of β-US space is β-US.

Proof. Let Y ⊆ X be an α-open set. Let 〈xn〉 be a sequence in Y. Suppose
that 〈xn〉 β-converges to x and y in Y . We shall prove that 〈xn〉 β-converges
to x and y in X. Let U be any β-open subset of X containing x and V be any
β-open subset of X containing y. Then U ∩ Y and V ∩ Y are β-open subsets of
Y [1, Lemma 2.5]. Therefore 〈xn〉 is eventually in U ∩ Y and V ∩ Y and hence
in U and V . Since X is β-US, x = y. Hence Y is β-US. QED

29 Corollary. Every α-open-subset of β-T2 space is β-T2.

30 Remark. The subset {a, c} considered in Example 6 is not β-T2. This
shows that an arbitrary subset of β-T2 space need not be β-T2.

4 Some functions

31 Theorem. The image of a β-US space under a bijective pre-β-closed
function is β-US.

Proof. Let f : X → Y be a bijective and pre-β-closed function and letX be
β-US. Let 〈yn〉 be a sequence in Y . Suppose that 〈yn〉 β-converges to two points
y1 and y2. In that case we shall prove that the sequence 〈f−1(yn)〉 β-converges
to f−1(y1) and f−1(y2). Let U be a β-open set containing f−1(y1). Then f(U)
is a β-open set containing y1 and hence 〈yn〉 is eventually in f(U). Therefore
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〈f−1(yn)〉 is eventually in U . Hence 〈f−1(yn)〉 β-converges to f−1(y1). Similarly
we can prove that 〈f−1(yn)〉 β-converges to f−1(y2). This is not possible since
X is β-US. Hence Y is β-US. QED

32 Corollary. The image of a β-T2 space under a bijective pre-β-closed
function is β-T2.

33 Definition. A function f : X → Y is said to be totally β-continuous if
the inverse image of every open subset of Y is a β-clopen subset of X.

34 Theorem. A space X is β-T2 if for any two distinct points x and y of X,
there exist β-open sets U and V such x ∈ U ,y ∈ V and β Cl(U) ∩ β Cl(V ) = ∅.

Proof. It is Lemma 2.3 of [14]. QED

35 Lemma. Let f : X → Y be a totally β-continuous injection. If Y is T0,
then X is β-T2.

Proof. Let a and b be any pair of distinct points of X. Then f(a) 6= f(b).
Since Y is T0, there exists an open set U containing f(a) but not f(b). Then
a ∈ f−1(U) and b /∈ f−1(U). As f is totally β-continuous, f−1(U) is a β-clopen
subset of X. Also a ∈ f−1(U) and b ∈ X ∽ f−1(U). By Theorem 34, X is
β-T2. QED

36 Theorem. Let f : X → Y be a totally β-continuous injection. If Y is
T0, then X is β-US.

Proof. Immediate in view of Theorem 20 and Lemma 35. QED

37 Definition. A function f : X → Y is said to be

(i) Sequentially β-continuous at x ∈ X if f(xn) β-converges to f(x) whenever
xn is a sequence β-converges to x. If f is sequentially β-continuous for all
x in X, then f is sequentially β-continuous.

(ii) Sequentially nearly β-continuous if for each x in X and each sequence xn

in X β-converging to x, there exists a subsequence xnk of xn such that
f(xnk)

β → f(x)

(iii) Sequentially sub β-continuous if for each x in X and each sequence xn in
X β-converging to x, there exists a subsequence xnk of xn and a point y
in Y such that f(xnk)

β → y.

(iv) Sequentially β-compact preserving if the image f(C) of every sequentially
β-compact set C of X is sequentially β-compact set in Y .

38 Theorem. Let f : X → Y and g : X → Y be two sequentially β-
continuous functions. If Y is β-US, then the set E = {x | f(x) = g(x)} is se-
quentially β-closed.
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Proof. Suppose that Y is β-US and 〈xn〉 is a sequence in E β-converging
to x in X. By hypothesis f and g are sequentially β-continuous functions, so
f(xn)β → f(x) and g(xn)β → g(x). Since xn ∈ E for each n and Y is β-
US, f(x) = g(x) and hence x ∈ E. This shows that the set E is sequentially
β-closed. QED

39 Lemma. Every function f : X → Y is sequentially sub β-continuous if
Y is sequentially β-compact.

Proof. Assume that 〈xn〉 is a sequence in X β-converging to x in X. It
follows that {f(xn)} is a sequence in Y . Since Y is sequentially β-compact,
there exists a subsequence {f(xnk)} of {f(xn)} β-converging to a point y in Y .
Therefore f : X → Y is sequentially sub β-continuous. QED

40 Theorem. Every sequentially nearly β-continuous function is sequen-
tially β-compact preserving.

Proof. Let f : X → Y be a sequentially nearly β-continuous function and
C be any sequentially β-compact subset of X. We show that f(C) is a sequen-
tially β-compact set of Y . Assume that 〈yn〉 be any sequence in f(C). Then
for each positive integer n, there exist a point xn in C such that f(xn) = yn.
Now 〈xn〉 is a sequence in a sequentially β-compact set C. Thus there exists a
subsequence 〈xnk〉 of 〈xn〉 β-converging to a point x in C. Since f is sequen-
tially nearly β-continuous, there exists a subsequence 〈xj〉 of 〈xnk〉 such that
f(xj)

β → f(x). So there exists a subsequence 〈yi〉 of 〈yn〉 β-converging to f(x)
in f(C). This implies that f(C) is a sequentially β-compact set of Y . QED

41 Theorem. Every sequentially β-compact preserving function is sequen-
tially sub β-continuous.

Proof. Suppose that f : X → Y is a sequentially β-compact preserving
function. Let x be any point of X and xn be any sequence in X β-converging to
x. We denote the set {xn | n = 1, 2, . . . } by A and put K = A ∪ {x}. Since xn

β-converges to x, K is sequentially β-compact, by hypothesis, f is sequentially
β-compact preserving and hence f(K) is a sequentially β-compact set of Y .
Since {f(xn)} is a sequence in f(K), there exists a subsequence {f(xnk)} of
{f(xn)} β-converging to a point y ∈ f(K). This implies that f is sequentially
sub β-continuous. QED

42 Theorem. A function f : X → Y is a sequentially β-compact preserving
function if and only if f | K : K → f(K) is sequentially sub β-continuous for
each sequentially β-compact subset K of X.

Proof. Necessity. Suppose that f : X → Y is a sequentially β-compact
preserving function. Then f(K) is sequentially β-compact in Y for each sequen-
tially β-compact set K of X. Therefore by Lemma 39, f | K : K → f(K) is
sequentially sub β-continuous.
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Sufficiency. Let K be any sequentially β-compact set of X, we show that
f(K) is sequentially β-compact in Y . Let yn be any sequence in f(K). Then for
each positive integer n, there exists a point xn ∈ K such that f(xn) = yn. Since
〈xn〉 is a sequence in a sequentially β-compact set K, there exists a subsequence
〈xnk〉 of 〈xn〉 β-converging to a point x ∈ K. By hypothesis, f | K : K → f(K)
is sequentially sub β-continuous and hence there exists a subsequence of the
sequence 〈ynk〉 β-converging to y ∈ f(K). This implies that f(K) is sequentially
β-compact in Y . Thus, f : X → Y is sequentially β-compact preserving. QED
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