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Abstract. In this paper we study F-planar mappings of n-dimensional or infinitely dimen-
sional spaces with a torsion-free affine connection. These mappings are certain generalizations
of geodesic and holomorphically projective mappings.

Here we make fundamental equations on F-planar mappings for dimensions n > 2 more precise.
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Introduction

In many papers geodesic mappings and their generalizations, like quasi-
geodesic, holomorphically-projective, F-planar, 4-planar, mappings, were con-
sidered. One of the basic tasks was and is the derivation of the fundamental
equations of these mappings. They were shown in the most various ways, see [1]-
[7].

Unless otherwise specified, all spaces, connections and mappings under con-
sideration are differentiable of a sufficiently high class. The dimension n of the
spaces being considered is higher than two, as a rule. This fact is not specially
stipulated. All spaces are assumed to be connected.

Here we show a method that simplifies and generalizes many of the results.
Our results are valid also for infinite dimensional spaces with Banach bases
(n = 00).

IThis work is supported by grant No. 201/05/2707 of The Czech Science Foundation and
by the Council of the Czech Government MSM 6198959214.
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1 F-planar curves

We consider an n-dimensional (n > 2) or infinite dimensional (n = o0)
space A, with a torsion-free affine connection V, and an affinor structure F,
i.e. a tensor field of type (})

If n = oo we assume that A,, is locally homeomorphic to a Banach space
E. In connection with local studies we assume the existence of a coordinate
neighbourhood U in the Euclidean space E,, resp. U C E4

1 Definition (J. Mikes, N.S. Sinyukov [4]). A curve ¢, which is given by
the equations

C=0(t), At)=de(t)/dt (£0), tel (1)

where t is a parameter, is called F-planar, if its tangent vector A(tp), for any
initial value ty of the parameter ¢, remains, under parallel translation along the
curve £, in the distribution generated by the vector functions A and F'\ along /.

In particular, if F' = oI we obtain the definition of a geodesic parametrized
by an arbitrary parameter, see [4]. Here ¢ is a function and I is the identity
operator.

In accordance with this definition, ¢ is F-planar if and only if the following
condition holds [4]:

Vi Alt) = 01(t) A(t) + e2(t) FA(2), (2)

where 01 and o are some functions of the parameter ¢.

2 F-planar mappings between two spaces with affine
connection

We suppose two spaces A, and A, with torsion-free affine connections V
and V, respectively. Affine structures F' and F are defined on A,,, resp. A,,.

2 Definition (J. Mikes, N.S. Sinyukov [4]). A diffeomorphism f: A, — A,
between two manifolds with affine connections is called F'-planar if any F-planar
curve in A,, is mapped onto an F-planar curve in A,,.

Important convention. Due to the diffeomorphism f we always suppose
that V, V, and the affinors F', F' are defined on A,,. Moreover, we always identify
a given curve £: [ — A, and its tangent vector function A(¢) with their images

(= foland A = f.(A(t)) in A,.

Two principially different cases are possible for the investigation:

a) F=aF+bI; (3)
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b) F#aF+bl, (4)

a, b are some functions.
Naturally, case a) characterizes F-planar mappings which preserve F-struc-

tures. In case b) the structures of I and F are essentially distinct. The following
holds.

3 Theorem. An F-planar mapping f from A, onto A, preserve F-struc-
tures and is characterized by the following condition

PX,)Y)=¢v(X) Y +¢(Y)X +p(X)FY +o(Y)FX (5)

for any vector fields X,Y , where P 4o V-V is the deformation tensor field of f,
¥, are some linear forms.

Let us recall that on each tangent space T,A,, P(X,Y) is a symmetric
bilinear mapping T, A, x T, A, — T, A, and a tensor field of type (%)

Theorem 3 was proved by J. Mikes and N. S. Sinyukov [4] for finite dimension
n > 3. Here we can show a more rational proof of this Theorem for n > 3 and
also a proof for n = 3. We show a counter example for n = 2.

3 F-planar mappings which preserve F-structures

First we prove the following proposition

4 Theorem. An F-planar mapping f from A, onto A, which preserves
F-structures is characterized by condition (5).

In the sequel we shall need the following lemma:

5 Lemma. Let V be an n-dimensional vector space, @Q:V x V. — V be
a symmetric bilinear mapping and F:V — V a linear mapping. If, for each
vector A €'V

QA A) = e1(M) A+ 22(A) F(A) (6)

holds, where 01(\), 02(\) are functions on V', then there are linear forms 1 and
@ such that the condition

QX,Y) =v(X)Y +¢(V) X + ¢(X) F(Y) + oY) F(X) (7)

holds for any X, Y € V.

PRrOOF. Formula (6) has the following coordinate expression
QRN = 01(A) A" + 05(N) FIA, (8)

where \?, Fih, ,Z are the components of A, F', ().
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By multiplying (8) with A’ FJA\* and antisymmetrizing the indices h, i and
j we obtain
h i i
{QLQCS;F;] } ACATATNG = 0, 9)

where square brackets denote the alternation of indices. The term in curly brack-
ets does not depend on A and (9) holds for any vector A € V, therefore

h i ]
Qug0iFY) =0 (10)

holds, where the round brackets denote symmetrization of indices.

It is natural to assume that FJ* # a6 with a = const. By virtue of this
there exist some vectors " such that ¢2F" #£ b¢", b = const. Introducing
phe phga phde phea anq phd phea we contract (10) with £2€9¢7€9. Since
Fl £ bl we obtain PP = 2a¢" + 2b F", where a, b are certain constants.
Contracting (10) with £%¢7¢9, and taking into account the precending, we have
Pl-h = aéf + bFih + a; " + b; F", where a;, b; are some components of linear
forms. Analogously, contracting (10) with £7¢%, we have

Q?J = wzfsy + wj(slh + SOz‘F]h + (ijih + §ha¢j + thij7 (11)

where v;, p; are components of a 1-form 1, defined on V, and a;;, b;; are
components of a symmetric 2-form defined on V.

In case that a;; = b;; = 0, evidently from (11) we obtain formula (7).

Now we will suppose that either a;; # 0, or b;; # 0. Since ¢" and FP are
noncollinear, it is evident that

tha;; + F'bj # 0. (12)

Formula (10) by virtue of (11) has the form

hi
Qs il =0, (13)
where ngﬁv e (Ehang —|—thm5»)5,i7 — (§iaag—i—Fiba5)5f;. It is possible to show that

there exists some vector " for which Q%Wsasﬁ €7 # 0, otherwise (12) would be
violated.

Contracting (13) with e%e8e7¢%, we have Fle® = a&" + bF" + ce”, with
a, b, c being constants. Analogously, contracting (13) with e’c7¢°, we obtain that
Fl is represented in the following manner:

Fih:a5?+ai§h+biFh+cish, (14)

where a;, b;, ¢; are components of 1-forms.
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Formula (13) by virtue of (14) has the form
[hi  sil _
Wiap,05) = 0, (15)
where
i def i i )
Waty = E"F(a(agby) = bagay) + " eaapey) + Felbapey).
a) If n > 3 then wﬁ’m = 0 follows from (13), and because ¢, I and &"
are linear independent, we obtain a(,gc,) = 0 and b,gc,) = 0. Therefore ¢; =0

and
Fl=adl 4+ a; "+ b; F". (16)

b) If n = 3 the matrix F* has always the previous form (16) while &, F"
and " are not linear dependent.

Then formula (13) becomes (15), whereas w%v o [hFi](a(aﬁb,y) — bapay))-

hi

For n > 2 it follows WaBy

= 0 and consequently

apby) = blapty)- (17)
If aq and b, are linear indepedent, then from (17) we obtain

al-j = a(iwj) and bij = b(in),

where w; are components of a 1-form. Afterwards it is possible to show that on
the basis of (16) formula (11) assumes the following form
?j = (¢ — awi)égl + (¢; — awj)élh + (i + aw,-)th + (¢; + awj)Fih,

i.e. formula (7) also holds.

Now there remains the case that a, and b, are linear depedent. For example,
bo = aaq, o # 0. Then from (17) follows by = aa.3. We denote A =
E+aFM wp =+ ap;, wij = aij + a(ij), from (11) and (16) we obtain that
Q?j and Fih are represented by

Q= vid] + ;0! + A'wy; and  F)' = ad]' + Aa;. (18)
Then formula (8) appears in the following way
A" (wapA® N = 02(X) aaA™) = N (01(N) + a 02(X) — 2¢a ).
From this it follows that
Wag AN = 09(N) an ), YA £ a Al

By simple analysis we obtain that w;; = a(;0;), where o; are components of a
1-form.

Then due to (18) we have QZ = (¢ — ao’i)ég-‘ + (¥j —ao;)ol +UiF]h +o;Fl.
Evidently Lemma 5 is proved. QED
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PROOF OF THEOREM 4. It is obvious that geodesics are a special case of
F-planar curves. Let a geodesic in A,,, which satisfies the equations (1) and
VA = 0, be mapped onto an F-planar curve in A,, which satisfies equations
(1) and

VoA = 01() A+ 02(1) F'A.

Here 01, 02 are functions of the parameter ¢.
Because the deformation tensor satisfies P(A,A) = VoA — VA, we have

P(A(), A(t) = 01(t) A + 02(t) FA.
It follows from the previous formula that in each point z € A,
PAA) = 01(A) A+ 02(A)FA

for each tangent vector A € Ty; 01()), 02(\) are functions dependent on A.
Based on Lemma 5 it follows that there exist linear forms 1 and ¢, for which
formula (5) holds. QED

4 F-planar mappings
which do not preserve F-structures

We now assume that the structures F' and F' are essentially distinct, i.e.
Fl' # adl + b F}.

a) It is obvious, that geodesics are a special case of F-planar curves. Let a
geodesic in A, which satisfies the equations (1) and VA = 0, be mapped onto
an F-planar curve in A, which satisfies the equations (1) and

VoA = 01(t) A+ o2(t) A

Here g1, 02 are functions of the parameter ¢. B
For the deformation tensor we have P(A(t),\(t)) = 01(t) A + 02(t)FA. Tt
follows from the previous formula that in each point = € A,

PAA) = 01(A) A+ 02(A)FA.

for each tangent vector A € T; 01()), 02(A) are functions dependent on A.
Based on Lemma 5 it follows, that there exist linear forms ¢ and ¢, for
which formula

PX,Y)=¢(X)Y + (YY) X + o(X)FY +p(Y) FX (19)



On F-planar mappings 117

holds.

b) Let a special F-planar curve in A,, which satisfies the equations (1)
and V A = F), be mapped onto an F-planar curve in A,,, which satisfies the
equations (1) and

VA = 01(t) A+ 02(t) F'A.
Here 01, 0o are functions of the parameter ¢.

For the deformation tensor we have P(A(t), \(t)) = FA+ 01(t) A + 02(t) F.

It follows from the previous formula that in each point = € A,

PAX) = FA4+ 01(A) A+ 02(A)FA

for each tangent vector A € Ty; 01()), 02() are functions dependent on .
Applying (19) we obtain

FA=1(M) A+ 2N\ FA

Analyzing this expression like in Lemma 5 we convince ourselves that for-
mula (3) holds. In this way we prove

6 Theorem. Any F-planar mapping of a space with affine connection A,
onto A,, preserves F'-structures.

5 F-planar mappings for dimension n = 2

It is easy to see that for n = 2 Theorems 3 and 4 do not hold. If they would
hold, the functions p; and g2, appearing in (6), would be linear in \.

In the case
0 1
h _

for example, these functions have the forms

N PL AN+ NP2 AN

A P2ANT — A2P) A\
01(A) = (A1)2 4 (A2)2

()\1)2 + ()\2)2 ’

and  oa()) =

which are not linear in general.
On the other hand an arbitrary diffeomorphism from A, onto As is an F-
planar mapping with (6) being valid for the above functions p; and gs.
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