
Note di Matematica 27, n. 1, 2007, 111–118.

On F-planar mappings of spaces

with affine connections

Irena Hinterleitner

Department of Mathematic, FSI, Technical University of Brno
hinterleitner.irena@seznam.cz

Josef Mikeši
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Abstract. In this paper we study F -planar mappings of n-dimensional or infinitely dimen-
sional spaces with a torsion-free affine connection. These mappings are certain generalizations
of geodesic and holomorphically projective mappings.
Here we make fundamental equations on F -planar mappings for dimensions n > 2 more precise.
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Introduction

In many papers geodesic mappings and their generalizations, like quasi-
geodesic, holomorphically-projective, F -planar, 4-planar, mappings, were con-
sidered. One of the basic tasks was and is the derivation of the fundamental
equations of these mappings. They were shown in the most various ways, see [1]-
[7].

Unless otherwise specified, all spaces, connections and mappings under con-
sideration are differentiable of a sufficiently high class. The dimension n of the
spaces being considered is higher than two, as a rule. This fact is not specially
stipulated. All spaces are assumed to be connected.

Here we show a method that simplifies and generalizes many of the results.
Our results are valid also for infinite dimensional spaces with Banach bases
(n = ∞).

iThis work is supported by grant No. 201/05/2707 of The Czech Science Foundation and
by the Council of the Czech Government MSM 6198959214.
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1 F-planar curves

We consider an n-dimensional (n > 2) or infinite dimensional (n = ∞)
space An with a torsion-free affine connection ∇, and an affinor structure F ,
i.e. a tensor field of type

(
1
1

)
.

If n = ∞ we assume that An is locally homeomorphic to a Banach space
E∞. In connection with local studies we assume the existence of a coordinate
neighbourhood U in the Euclidean space En, resp. U ⊂ E∞.

1 Definition (J. Mikeš, N.S. Sinyukov [4]). A curve ℓ, which is given by
the equations

ℓ = ℓ(t), λ(t) = dℓ(t)/dt (6= 0), t ∈ I (1)

where t is a parameter, is called F-planar, if its tangent vector λ(t0), for any
initial value t0 of the parameter t, remains, under parallel translation along the
curve ℓ, in the distribution generated by the vector functions λ and Fλ along ℓ.

In particular, if F = ̺ I we obtain the definition of a geodesic parametrized
by an arbitrary parameter, see [4]. Here ̺ is a function and I is the identity
operator.

In accordance with this definition, ℓ is F -planar if and only if the following
condition holds [4]:

∇λ(t) λ(t) = ̺1(t)λ(t) + ̺2(t)Fλ(t), (2)

where ̺1 and ̺2 are some functions of the parameter t.

2 F-planar mappings between two spaces with affine
connection

We suppose two spaces An and Ān with torsion-free affine connections ∇
and ∇̄, respectively. Affine structures F and F̄ are defined on An, resp. Ān.

2 Definition (J. Mikeš, N.S. Sinyukov [4]). A diffeomorphism f : An → Ān

between two manifolds with affine connections is called F -planar if any F -planar
curve in An is mapped onto an F̄ -planar curve in Ān.

Important convention. Due to the diffeomorphism f we always suppose
that ∇, ∇̄, and the affinors F , F̄ are defined on An. Moreover, we always identify
a given curve ℓ : I → An and its tangent vector function λ(t) with their images
ℓ̄ = f ◦ ℓ and λ̄ = f∗(λ(t)) in Ān.

Two principially different cases are possible for the investigation:

a) F̄ = aF + b I; (3)



On F -planar mappings 113

b) F̄ 6= aF + b I, (4)

a, b are some functions.
Naturally, case a) characterizes F -planar mappings which preserve F -struc-

tures. In case b) the structures of F and F̄ are essentially distinct. The following
holds.

3 Theorem. An F -planar mapping f from An onto Ān preserve F -struc-
tures and is characterized by the following condition

P (X,Y ) = ψ(X)Y + ψ(Y )X + ϕ(X)FY + ϕ(Y )FX (5)

for any vector fields X,Y , where P
def
= ∇̄−∇ is the deformation tensor field of f ,

ψ,ϕ are some linear forms.

Let us recall that on each tangent space TxAn, P (X,Y ) is a symmetric
bilinear mapping TxAn × TxAn → TxAn and a tensor field of type

(
1
2

)
.

Theorem 3 was proved by J. Mikeš and N. S. Sinyukov [4] for finite dimension
n > 3. Here we can show a more rational proof of this Theorem for n > 3 and
also a proof for n = 3. We show a counter example for n = 2.

3 F-planar mappings which preserve F-structures

First we prove the following proposition

4 Theorem. An F -planar mapping f from An onto Ān which preserves
F -structures is characterized by condition (5).

In the sequel we shall need the following lemma:

5 Lemma. Let V be an n-dimensional vector space, Q : V × V → V be
a symmetric bilinear mapping and F : V → V a linear mapping. If, for each
vector λ ∈ V

Q(λ, λ) = ̺1(λ)λ+ ̺2(λ)F (λ) (6)

holds, where ̺1(λ), ̺2(λ) are functions on V , then there are linear forms ψ and
ϕ such that the condition

Q(X,Y ) = ψ(X)Y + ψ(Y )X + ϕ(X)F (Y ) + ϕ(Y )F (X) (7)

holds for any X,Y ∈ V .

Proof. Formula (6) has the following coordinate expression

Qh
αβλ

αλβ = ̺1(λ)λh + ̺2(λ)F h
αλ

α, (8)

where λi, F h
i , Q

h
ij are the components of λ, F,Q.



114 I. Hinterleitner, J. Mikeš

By multiplying (8) with λi F j
αλα and antisymmetrizing the indices h, i and

j we obtain {
Q

[h
αβδ

i
γF

j]
δ

}
λαλβλγλδ = 0, (9)

where square brackets denote the alternation of indices. The term in curly brack-
ets does not depend on λ and (9) holds for any vector λ ∈ V , therefore

Q
[h
(αβδ

i
γF

j]
δ) = 0 (10)

holds, where the round brackets denote symmetrization of indices.
It is natural to assume that F h

i 6= a δh
i with a = const. By virtue of this

there exist some vectors ξh such that ξαF h
α 6= b ξh, b = const. Introducing

P h
i

def
= P h

iαξ
α, P h def

= P h
α ξ

α and F h def
= F h

α ξ
α, we contract (10) with ξαξβξγξδ. Since

F h 6= b ξh, we obtain P h = 2a ξh + 2b F h, where a, b are certain constants.
Contracting (10) with ξβξγξδ, and taking into account the precending, we have
P h

i = a δh
i + b F h

i + ai ξ
h + bi F

h, where ai, bi are some components of linear
forms. Analogously, contracting (10) with ξγξδ, we have

Qh
ij = ψiδ

h
j + ψjδ

h
i + ϕiF

h
j + ϕjF

h
i + ξhaij + F hbij , (11)

where ψi, ϕi are components of a 1-form ψ,ϕ defined on V , and aij , bij are
components of a symmetric 2-form defined on V .

In case that aij = bij = 0, evidently from (11) we obtain formula (7).
Now we will suppose that either aij 6= 0, or bij 6= 0. Since ξh and F h are

noncollinear, it is evident that

ξhaij + F hbij 6= 0. (12)

Formula (10) by virtue of (11) has the form

Ω
[hi
(αβγF

j]
δ) = 0, (13)

where Ωhi
αβγ

def
= (ξhaαβ +F hbαβ)δi

γ−(ξiaαβ +F ibαβ)δh
γ . It is possible to show that

there exists some vector εh for which Ωhi
αβγε

αεβεγ 6= 0, otherwise (12) would be
violated.

Contracting (13) with εαεβεγεδ, we have F h
αε

α = a ξh + b F h + c εh, with
a, b, c being constants. Analogously, contracting (13) with εβεγεδ, we obtain that
F h

i is represented in the following manner:

F h
i = a δh

i + ai ξ
h + bi F

h + ci ε
h, (14)

where ai, bi, ci are components of 1-forms.
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Formula (13) by virtue of (14) has the form

ω
[hi
(αβγδ

j]
δ) = 0, (15)

where

ωhi
αβγ

def
= ξ[hF i](a(αβbγ) − b(αβaγ)) + ξ[hεi]a(αβcγ) + F [hεi]b(αβcγ).

a) If n > 3 then ωhi
αβγ = 0 follows from (13), and because ξh, F h and εh

are linear independent, we obtain a(αβcγ) = 0 and b(αβcγ) = 0. Therefore ci = 0
and

F h
i = a δh

i + ai ξ
h + bi F

h. (16)

b) If n = 3 the matrix F h
i has always the previous form (16) while ξh, F h

and εh are not linear dependent.

Then formula (13) becomes (15), whereas ωhi
αβγ

def
= ξ[hF i](a(αβbγ) − b(αβaγ)).

For n > 2 it follows ωhi
αβγ = 0 and consequently

a(αβbγ) = b(αβaγ). (17)

If aα and bα are linear indepedent, then from (17) we obtain

aij = a(iωj) and bij = b(iωj),

where ωi are components of a 1-form. Afterwards it is possible to show that on
the basis of (16) formula (11) assumes the following form

Qh
ij = (ψi − aωi)δ

h
j + (ψj − aωj)δ

h
i + (ϕi + aωi)F

h
j + (ϕj + aωj)F

h
i ,

i.e. formula (7) also holds.
Now there remains the case that aα and bα are linear depedent. For example,

bα = αaα, α 6= 0. Then from (17) follows bαβ = αaαβ . We denote Λh =
ξh +αF h, ωi = ψi +αϕi, ωij = aij + a(iϕj), from (11) and (16) we obtain that

Qh
ij and F h

i are represented by

Qh
ij = ψiδ

h
j + ψjδ

h
i + Λhωij and F h

i = aδh
i + Λhai. (18)

Then formula (8) appears in the following way

Λh (ωαβλ
αλβ − ̺2(λ) aαλ

α) = λh (̺1(λ) + a ̺2(λ) − 2ψαλ
α).

From this it follows that

ωαβλ
αλβ = ̺2(λ) aαλ

α, ∀λh 6= αΛh.

By simple analysis we obtain that ωij = a(iσj), where σi are components of a
1-form.

Then due to (18) we have Qh
ij = (ψi −aσi)δ

h
j +(ψj −aσj)δ

h
i +σiF

h
j +σjF

h
i .

Evidently Lemma 5 is proved. QED
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Proof of Theorem 4. It is obvious that geodesics are a special case of
F -planar curves. Let a geodesic in An, which satisfies the equations (1) and
∇λλ = 0, be mapped onto an F -planar curve in Ān, which satisfies equations
(1) and

∇̄λλ = ¯̺1(t)λ+ ¯̺2(t)Fλ.

Here ¯̺1, ¯̺2 are functions of the parameter t.
Because the deformation tensor satisfies P (λ, λ) = ∇̄λλ−∇λλ, we have

P (λ(t), λ(t)) = ¯̺1(t)λ+ ¯̺2(t)Fλ.

It follows from the previous formula that in each point x ∈ An

P (λ, λ) = ̺1(λ)λ+ ̺2(λ)Fλ.

for each tangent vector λ ∈ Tx; ̺1(λ), ̺2(λ) are functions dependent on λ.
Based on Lemma 5 it follows that there exist linear forms ψ and ϕ, for which

formula (5) holds. QED

4 F-planar mappings
which do not preserve F-structures

We now assume that the structures F and F̄ are essentially distinct, i.e.

F̄ h
i 6= aδh

i + b F h
i .

a) It is obvious, that geodesics are a special case of F -planar curves. Let a
geodesic in An, which satisfies the equations (1) and ∇λλ = 0, be mapped onto
an F̄ -planar curve in Ān, which satisfies the equations (1) and

∇̄λλ = ¯̺1(t)λ+ ¯̺2(t)F̄ λ.

Here ¯̺1, ¯̺2 are functions of the parameter t.
For the deformation tensor we have P (λ(t), λ(t)) = ¯̺1(t)λ + ¯̺2(t)F̄ λ. It

follows from the previous formula that in each point x ∈ An

P (λ, λ) = ̺1(λ)λ+ ̺2(λ)F̄ λ.

for each tangent vector λ ∈ Tx; ̺1(λ), ̺2(λ) are functions dependent on λ.
Based on Lemma 5 it follows, that there exist linear forms ψ and ϕ, for

which formula

P (X,Y ) = ψ(X)Y + ψ(Y )X + ϕ(X) F̄ Y + ϕ(Y ) F̄X (19)
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holds.
b) Let a special F -planar curve in An, which satisfies the equations (1)

and ∇λλ = Fλ, be mapped onto an F̄ -planar curve in Ān, which satisfies the
equations (1) and

∇̄λλ = ¯̺1(t)λ+ ¯̺2(t)F̄ λ.

Here ¯̺1, ¯̺2 are functions of the parameter t.
For the deformation tensor we have P (λ(t), λ(t)) = Fλ+ ¯̺1(t)λ+ ¯̺2(t)F̄ λ.

It follows from the previous formula that in each point x ∈ An

P (λ, λ) = Fλ+ ̺1(λ)λ+ ̺2(λ)F̄ λ.

for each tangent vector λ ∈ Tx; ̺1(λ), ̺2(λ) are functions dependent on λ.
Applying (19) we obtain

Fλ = ˜̺1(λ)λ+ ˜̺2(λ)F̄ λ.

Analyzing this expression like in Lemma 5 we convince ourselves that for-
mula (3) holds. In this way we prove

6 Theorem. Any F -planar mapping of a space with affine connection An

onto Ān preserves F -structures.

5 F-planar mappings for dimension n = 2

It is easy to see that for n = 2 Theorems 3 and 4 do not hold. If they would
hold, the functions ̺1 and ̺2, appearing in (6), would be linear in λ.

In the case

F h
i =

(
0 1
−1 0

)
,

for example, these functions have the forms

̺1(λ) =
λ1P 1

αβλ
αλβ + λ2P 2

αβλ
αλβ

(λ1)2 + (λ2)2
and ̺2(λ) =

λ1P 2
αβλ

αλβ − λ2P 1
αβλ

αλβ

(λ1)2 + (λ2)2
,

which are not linear in general.
On the other hand an arbitrary diffeomorphism from A2 onto Ā2 is an F -

planar mapping with (6) being valid for the above functions ̺1 and ̺2.
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