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1 Introduction

A Hermitian surface H in PG(3, q2) is the set of all isotropic points of a
unitary polarity (non-degenerate), and an ovoid of H is a set of q3 + 1 points
which has exactly one common point with each of the generators (lines meeting
H in q2 + 1 points). An ovoid is a ‘translation ovoid’ with respect to one of its
points P if and only if there is a group of order q3 that fixes P , fixes each gen-
erator on P and acts transitively on the remaining points. By work of Thas [12]
and generalized by Lunardon [10], there are close connections between semifield
planes with spreads in PG(3, q) and translation ovoids of a Hermitian surface,
one giving rise to another. Recently, Cossidente, Ebert, Marino and Siciliano [4]
have determined two new classes of such translation ovoids, each producing and
equivalent to a class of semifield spreads in PG(3, q). Cossidente, Ebert, Marino
and Siciliano [4] show that one of these classes is a conical flock of semifield type
(corresponds to a flock of a quadratic cone) and naturally is of great interest.

In this article, it is shown that the semifield flock spread found by Cossidente,
Ebert, Marino and Siciliano corresponds to a class of Kantor-Knuth semifield
flock spreads and the remaining class is a subclass of the semifields of Hughes-
Kleinfeld.
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2 Background

The connections with semifield spreads and translation ovoids of the Her-
mitian surface are intertwined with ‘Shult’ sets, which are, in fact, the duals of
indicator sets. So, we provide a little background on indicator sets. Also, indi-
cator sets are connected with transversal extensions of derivable nets. In this
extension theorem, a dual translation plane is constructed from a transversal to
a derivable net. The dual of this plane is a translation plane whose ‘transpose’
is the translation plane arising directly from an indicator set. This idea is key
in understanding how to interpret the ovoids of Cossidente, Ebert, Marino and
Siciliano.

All of this background material is taken from the Handbook of Finite Trans-
lation Planes by Biliotti, Jha and Johnson, which will appear in 2006, wherein
the reader will find the details and proofs of this material.

2.1 Indicator sets

Indicator sets provide an alternative manner of determining spreads and
were developed initially by R.H. Bruck. We begin with indicator sets which
produce spreads of PG(3, q).

Consider a 4-dimensional vector space V over a field K isomorphic to GF(q).
Form the tensor product of V with respect to a quadratic field extension F
of K, F isomorphic to GF(q2), V ⊗K F . If we form the corresponding lat-
tices of subspaces to construct PG(3, F ), we will have a PG(3,K) contained
in PG(3, F ) such that, with respect to some basis for V over K, (x1, x2, y1, y2)
for x1, x2, y1, y2 ∈ K represents a point homogeneously in both PG(3,K) and
PG(3, F ). The Frobenius automorphism mapping defined by

ρq : (x1, x2, y1, y2) 7−→ (xq
1, x

q
2, y

q
1, y

q
2)

is a semi-linear collineation of PG(3, F ) with set of fixed points exactly
PG(3,K). We use the notation Zq = (x1, x2, y1, y2)

q = (xq
1, x

q
2, y

q
1, y

q
2). Finally,

choose a line PG(1,K) within any given PG(2,K) in the analogous manner so
that there is a corresponding PG(1, F ). Hence, we have

PG(1,K) ⊆ PG(3,K),

PG(1,K) ⊆ PG(1, F ) ⊆ PG(2, F ).

Now choose a PG(2, F ) such that PG(2, F )∩PG(3,K) = PG(1,K). For exam-
ple, take PG(2, F ) as the lattice arising from the 3-dimensional vector space

〈(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, e)〉 ; e ∈ F −K.
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Then we note that that given any point Z of PG(2, F ) − PG(1, F ), the space
〈Z,Zq〉 is a 2-dimensional F -vector subspace, since if Zq = λZ, for λ ∈ F , then
projectively Z = Zq and Z ∈ PG(3,K). Note if eq = eα0 + β0, for α0 6= 0
and β0 ∈ K, then (0, 0, 1, e)q = (0, 0, 1, eα0 + β0). Since eq + e ∈ K, it follows
that α0 = −1. Now we have 〈(0, 0, 1, e), (0, 0, 1, e)q = (0, 0, 1,−e+ β0)〉. Hence,
within this subspace is (0, 0, 2, β0). For example, if q is odd, we may take β0 = 0,
implying that (0, 0, 1, 0) is in the subspace. But this then implies that (0, 0, 0, e)
and hence (0, 0, 0, 1) is in the subspace. This means that 〈(0, 0, 1, e), (0, 0, 1, e)q〉∩
V/K = 〈(0, 0, 1, 0), (0, 0, 0, 1)〉 is a 2-dimensional K-subspace which has trivial
intersection with 〈(1, 0, 0, 0), (0, 1, 0, 0)〉.

More generally, 〈Z,Zq〉 ∩ V/K is a 2-dimensional K-vector subspace for all
Z ∈ PG(2, F ) − PG(1, F ).

1 Definition. A space PG(2, F ) with the above properties (i.e., contains
PG(1,K) ⊆ PG(1, F ), PG(2, F ) ∩ PG(3,K) = PG(1,K) so 〈Z,Zq〉 ∩ PG(3,K)
is a line skew to PG(1, F ), for Z ∈ PG(2, F )−PG(1, F )) is called an ‘indicator
space’.

2 Definition. Let PG(2, F ) be an indicator space within PG(3, F ). An
‘indicator set’ I of PG(2, F ) is a set of q2 points in PG(2, F ) − PG(1, F ) such
that the line AB, for all A 6= B ∈ S, intersects PG(1, F )−PG(1,K). Note that
〈A,Aq〉 now becomes a line of PG(2, F ), which intersects PG(3,K) in a line
skew to PG(1, F ).

If PG(2, F ) is an indicator space then PG(2, F )q is an indicator space such
that PG(2, F )q ∩PG(2, F ) = PG(1, F ). Hence, if I is an indicator set, then, for
A 6= B of I, 〈A,B〉 ∩ 〈A,B〉q is a point of PG(1, F ) − PG(1,K).

We then arise at the following fundamental theorem.

3 Theorem. If I is an indicator set then

{ 〈A,Aq〉 ∩ PG(3,K);A ∈ I } ∪ PG(1,K)

is a spread of PG(2,K).

2.2 Transversals to derivable nets

Now we consider the affine version of the above result with a different visual
image. Consider a finite derivable net. By the work of Johnson and De Clerck [5]
and of Johnson [8], every finite derivable net is a regulus net. Hence, there is
an ambient 4-dimensional vector space V over a field K isomorphic to GF(q)
such that the derivable net, when affinely presented, corresponds to PG(1, q)
on a Desarguesian line PG(1, q2) and may be given the following partial spread
representation:

N : x = 0, y = xα; α ∈ K ≃ GF(q).
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We may thus consider the Desarguesian affine plane of order q2, coordinatized
by a quadratic field extension F ⊇ K and isomorphic to GF(q2). Now take an
indicator set I of q2 ‘affine’ points. Without loss of generality, take I to contain
the zero vector of the associated vector space. Take any line of the derivable net
(regulus net) N, either y = xα + b, for α ∈ K and b ∈ F , or x = c, for c ∈ F .
Consider the points Ai, i = 1, 2, . . . , q2 of I, fix a point A1, and consider the
Desarguesian lines A1Ai, i = 2, 3, . . . , Aq2 . We know that these Desarguesian
lines do not lie on a parallel class of N and each line must intersect each line of
a parallel class of N in a unique point. Let λ be a parallel class of N and let ℓ
be a line of λ. There are q2 lines of λ each of which can contain at most one line
of I, since I is an indicator set. However, on a given Desarguesian line A1Ai,
there are at least two lines of λ, say ℓ1 and ℓi, each of which shares exactly one
point of I. Now consider A1Aj , for i 6= j, and let ℓj share Aj . If ℓi = ℓj , we have
the obvious contradiction. Hence, there are q2 − 1 + 1 different lines of λ that
intersect I in exactly one point. Recall the following definition:

4 Definition. A ‘transversal’ T to a net N is a set of net points with the
property that each line of the net intersects T in a unique point and each point
of T lies on a line of each parallel class of N .

Clearly, an indicator set provides a transversal to a derivable net and hence
produces a dual translation plane π whose dual translation plane has a spread in
PG(3,K). We now consider the converse. Assume that T is a transversal to a fi-
nite derivable net. Think of the scenario depicted previously, so we may consider
T to be a set of q2 points of a Desarguesian affine plane coordinatized by a field
F ⊇ K, where K is a field isomorphic to GF(q), which coordinatizes the deriv-
able net as a regulus net. We have an natural associated 4-dimensional K-vector
space V in which the derivable net N lives and a natural 3-dimensional pro-
jective space PG(3,K). Form V ⊗K F and construct the natural 3-dimensional
projective space PG(3, F ) containing PG(3,K), think of the Desarguesian affine
plane projectively as a PG(2,K), and embed this within PG(2, F ) contained in
PG(3, F ) so that PG(2, F )−PG(1, F ) (the original line at infinity) contains no
points of PG(3,K). Consider two distinct points A and B of T . Suppose that
the Desarguesian line AB is in a parallel class of the derivable net N . Then
there is a line of the net N which contains two points of the transversal, a con-
tradiction. Hence, AB intersects ‘outside’ and hence in PG(1, F ) − PG(1,K).
That is, a transversal to a derivable net produces an indicator set. Hence, we
have proven the following theorem.

5 Theorem (also see Bruen [3]). Finite indicator sets of PG(2, q2) are
equivalent to transversals to derivable nets.

From the main section in transversal extension theory, we know that there is
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a spread arising geometrically from the embedding of the derivable net combina-
torially in PG(3,K). We know that the corresponding translation plane is dual
to the one which we obtain considering the extension theory using a transversal.
However, if we use the transversal as an indicator set, there is another spread of
PG(3,K). The question is: Is this spread dual to the associated dual translation
plane? Normally the answer to this question is no! What actually occurs is that
the ‘transversal spread’, the spread arising from the transversal extension the-
ory, is ‘dual’ to the spread arising from the indicator spread, say the ‘indicator
spread’.

6 Theorem (Bruen [3]). The indicator spread and transversal spreads are
dual to each other.

Now again consider a derivable net D and a transversal T to D. It has been
pointed out in Johnson [8], that the way that the derived net D∗ is related to the
derivable net D using the geometric embedding in a 3-dimensional projective
space PG(3, q) is that the structure is determined by a polarity of the original
PG(3, q); to abuse the language, ‘derivation is a polarity’. If we derive the net D
to D∗, then T becomes a transversal to D∗, as can be seen by re-considering D∗

in the standard form and embedding in a different PG(2,K∗). That is, T remains
a set of q2 points such that the new Desarguesian line AB, for A,B ∈ T , is not
in the set of parallel classes defining the new derivable net N∗. To see this, we
note that a line of D∗ is a Baer subplane of D and in the original Desarguesian
plane AG(2, F ), a Desarguesian line AB which is not in the parallel classes of D
must intersect a Baer subplane in a unique point. Now the counting argument
establishing that we have the appropriate intersection for an indicator set to be
a transversal works here as well and shows that T is a transversal to D∗. Now
consider the geometric spread (obtained by considering T as a set of lines of
the new PG(3,K∗)) so that T ∪N∗ (the adjoined line) becomes a spread of the
dual space to PG(3,K).

Hence, we have the following connections:

7 Theorem. Let D be a finite derivable net and let T be a transversal to
D.

(1) Form the transversal spread πT
D (i.e., form the dual translation plane,

dualize and find the spread within PG(3,K), for K isomorphic to GF(q)).

(2) Realize T as an indicator set and form the indicator spread πI
D.

(3) Derive D to D∗ and, realizing that T is a transversal to D∗, form the
transversal spread πI

D∗.

(4) Realize T as an indicator set relative to D∗ and form the indicator spread
πI

D∗ .
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(5) Form from D and the transversal T the geometric extension spread πGT
D

obtained by realizing D combinatorially within PG(3,K).

(6) Form from D∗ and the transversal T the geometric extension spread πGT
D∗

obtained by realizing D∗ combinatorially within PG(3,K) using a polarity
of PG(3,K).

Then the transversal spreads are isomorphic to the geometric spreads, re-
spectively, and are dual to each other.

The indicator spreads are dual to the transversal spreads, respectively.

Hence, a given indicator spread is isomorphic to the ‘derived’ version of the
original transversal spread (by ‘derived’ we mean derive the net and use the
original transversal).

8 Corollary. The dual translation plane obtained from an indicator set I of
PG(2, q2), using I as a transversal function to the natural derivable net (regulus
net) defined using PG(1, q), is the dual plane to the translation plane constructed
from the spread in PG(3, q) using I as in Theorem 3.

2.3 Hermitian ovoids

In this subsection, we connect spreads in PG(3, q) with certain ovoids (‘lo-
cally Hermitian’) of the Hermitian surface H(3, q2). The connection with ovoids
of H(3, q2) is work due to Shult [11] and Lunardon [10]. We review only the part
of Hermitian varieties required for our constructions. The text of Hirschfeld and
Thas [6] provides all of the details.

9 Definition. Let V2k be a 2k-dimensional vector space over a field L iso-
morphic to GF(q2). A ‘Hermitian form’ is a mapping s with the following prop-
erties:

s : V2k ⊕ V2k 7−→ L,

s(x+ w, y + z) = s(x, y) + s(w, y) + s(x, z) + s(w, z),

s(cx, dy) = cdqs(x, y) and s(x, y) = s(y, x)q,

s(x0, V2k) = 0 implies x0 = 0 (i.e., a ‘non-Degenerate Hermitian form’).

Now assume that k = 2.

Given a Hermitian form (non-degenerate), and given a vector subspace S,
form Sδ as follows:

Sδ = { v ∈ V ; s(v, S) = 0 } .
Then the mapping

S 7−→ Sσ
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is a polarity of the associated projective 3-space PG(3, q2), which is said to be
a ‘Hermitian polarity’ or ‘unitary polarity’.

The subgroup of ΓL(4, q2) which preserves the Hermitian form is called the
‘unitary group’. This group is denoted by ΓU(4, q2). The associated group

ΓU
(
4, q2

)
/Z
(
ΓU

(
4, q2

))

is called the ‘projective unitary group’.

10 Definition. A subspace S is said to be ‘totally isotropic’ if and only if

S ∩ Sδ = S.

In PG(3, q2), the set of totally isotropic points and totally isotropic lines form
the point-line geometry H(3, q2), the ‘Hermitian surface’.

Projectively there is a canonical form for H(3, q2):

{ (x1, x2, x3, x4) ; x1x
q
4 + x2x

q
3 + x3x

q
2 + x4x

q
1 = 0 } .

An ‘ovoid’ in this setting is a set of q3 + 1 points of H(3, q2) which forms a
cover of the set of totally isotropic lines.

For any two points A and B of H(3, q2), the line AB contains q+1 or q2 +1
points of H(3, q2). A ‘tangent line’ to a point C of H(3, q2) is a line containing
exactly one point of H(3, q2).

11 Definition. A ‘tangent plane’ to H(3, q2) at a point P of H(3, q2) is the
image plane of a point under the associated polarity. This plane will intersect
H(3, q2) in exactly q + 1 lines of H(3, q2) incident with P .

12 Remark. Given a plane Π of PG(3, q2), the plane Π intersects H(3, q2)
either at a point, a line, or a unital, or is a tangent plane. Hence, if a plane
intersects in a line at points not on that line, then the plane is a tangent plane.

By Johnson [7], we consider the combinatorial structure of ‘P -points’ as
lines of N and ‘P -lines’ as points of D considered as the set of intersecting lines.
Furthermore, we call the parallel classes of N the ‘P -hyperplanes’. We embed
this structurally in a projective 3-space PG(3, q) by adjoining a line N to all
P -hyperplanes. In this way, a derivable net of parallel classes, lines, and points
becomes the set of hyperplanes of PG(3, q) incident with a particular line N ,
points of PG(3, q)−N , and lines of PG(3, q) which are skew to N . In this model,
T becomes a set of lines of PG(3, q) whose union with N is a spread. We know
that this spread is isomorphic to the transferal spread and is the dual spread of
the associated indicator spread.

If we consider the corresponding PG(2, F ) and consider T as an indicator
set, form the dual plane again isomorphic to PG(2, F ) so that T is now a set of
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q2 lines with the property that the join of any two distinct ‘lines’ A and B does
not intersect the dual of PG(1,K). Note that we may consider the PG(1,K) as
a ‘Hermitian line’. This means that if we dualize Π = PG(2, F ), we find that
Π ∩ H(3, q2) = ∆ is a set of q + 1 lines and the dual of T , TD, is a set of q2

lines that do not contain the point Q, which is the PG(1, F ), with the property
that no two intersect on a line of ∆. Such a set of lines is said to be a ‘Shult
set’ [11]. Shult sets are equivalent to certain ovoids of H(3, q2).

13 Definition. An ovoid Φ of H(3, q2) is a set of q3+1 points that cover the
set of totally isotropic lines of PG(3, q2) (each totally isotropic line is incident
with exactly one point of Φ). Note that there will be exactly q+1 totally isotropic
lines incident with each point. Choose any two distinct points Q and Z of Φ;
then there are q + 1 points of H(3, q2) on the line QZ. If for a fixed point Q
and for all Z ∈ Φ, the points on QZ are in Φ, we call Φ a ‘locally Hermitian’
ovoid with respect to Q.

If a locally Hermitian ovoid with fixed point Q admits a group that leaves
H(3, q2) invariant, fixes all lines ofH(3, q2) incident withQ, and acts transitively
on the remaining points of the ovoid, we say that the ovoid is a ‘translation ovoid’
(i.e., a ‘locally Hermitian translation ovoid).

For the Shult set TD arising from the indicator set T , take the set of polar
lines TDδ, with respect to the Hermitian polarity δ. Shult [11] shows that TDδ

is a set of q2 lines incident with Q, such that there are q + 1 points of H(3, q2)
on each such line and the union of this set of points of H(3, q2) forms a locally
Hermitian ovoid. Conversely, any locally Hermitian ovoid of H(3, q2) forms a
Shult set, which dualizes to an indicator set, which constructs an indicator
spread. Furthermore, if the original indicator set is a vector space transversal,
then the constructed locally Hermitian ovoid admits a collineation group which
fixes all lines of Q and acts transitively on the remaining point of the ovoid:
that is, the locally Hermitian ovoid becomes a translation ovoid.

Hence, the work of Shult [11] and Lunardon [10], together with our inter-
pretation, produces the following connections.

14 Theorem. (1) Locally Hermitian ovoids of H(3, q2) are equivalent to
transversals of finite derivable nets; one constructs the other.

(2) The associated indicator spread is a semifield spread if and only if the
locally Hermitian ovoid is a translation ovoid.
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3 The translation ovoids of Cossidente, Ebert,
Marino and Siciliano

In the previous section, we have noted that translation ovoids of the Hermi-
tian surface are equivalent to semifield spreads in PG(3, q), which are equivalent
to what are called ‘vector space transversals’ to derivable nets, in the sense that
such vector space transversals produce dual translation planes which are ac-
tually translation planes. If we dualize the coordinate structure of such dual
translation planes and then transpose the corresponding matrix spread set, we
arrive at the semifield planes arising from the indicator set and which then
correspond directly to the translation ovoids of the Hermitian surface.

3.1 The flock semifield of Cossidente, Ebert, Marino
and Siciliano

Let PG(3, q2) have homogeneous coordinates (a, b, c), letting K be the cor-
responding field isomorphic to GF

(
q2
)

and F the subfield isomorphic to GF(q).
Assume that q = p2e, for p odd, and Tr(x) is the trace function over the subfield
P isomorphic to GF(pe):

Tr(x) = x+ xp2
+ xq + xqpe

, x ∈ K.

The way that Cossidente et al. consider this function is to find a Baer subline
H of PG(3, q2) which is disjoint from the set FT , where

FT = { (1, a,Tr(a)); a ∈ K } .

They find one as follows:

H = { (0, 0, 1) } ∪ { (0, 1, z); z ∈ K and z + zq = 4 } .

Now from the point of view considered previously, what they have found
is a transversal to a derivable net. In order to apply our ideas, we need to
recoordinatize the derivable net into what we call ‘standard form’ and then
apply transversal extension theory. This will provide a dual translation plane.
However, since the corresponding function is additive, we will actually construct
a semifield plane. The semifield plane obtained by transposing the matrix spread
set of this dual translation plane will be the spread constructed by Cossidente et
al. We might point out that in Biliotti, Jha and Johnson [2], it is noted that any
transposed flock spread is isomorphic to the original flock spread. Since what
Cossidente et al. have found is a semifield flock spread, we need not transpose
to find the corresponding spread.
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We consider this from the affine point of view, which means we consider
PG(3, q2) as the ambient set of points of a 4-dimensional vector space over
F with an ideal line adjoined. In other words, our points are the points of
AG(3, q2), whose points we take as (x, y) = (1, x, y) in the notation of Cossidente
et al.

Hence, we have:

15 Lemma. Consider the derivable net D

D = {x = 0, y = xm; mq +m = 4; m ∈ K } .

Then the set
y = Tr(x)

is a transversal to D.

In order to apply our methods, we transform D to the standard representa-
tion in two steps. First we note that m = 2 satisfies the condition. Let

σ : (x, y) → (x,−2x+ y)

be a coordinate change to bring y = 2x to y = 0 while preserving x = 0. This
transforms y = Tr(x) into y = Tr(x) − 2x, while mapping D into

Dσ = {x = 0, y = 0, y = x(m− 2); mq +m = 4 } .

Note that
mq +m = 4 ⇐⇒ (m− 2)q + (m− 2) = 0.

Hence, we have proven the following:

16 Lemma. We may represent the previous transversal function and deriv-
able net, respectively, as

y = Tr(x) − 2x,

Dσ = {x = 0, y = 0, y = xn; nq + n = 0 } .

We now choose a basis { e, 1 } for K such that e2 = eγ, where γ is a non-
square in F . Note that it follows easily that eq + e = 0. Hence, we have y = xe
in our derivable net in the current representation. Choose

τ : (x, y) →
(
x, ye−1

)

and note that e−1 = e/γ = eρ, for ρ = 1/γ. Noting that once a derivable net
(considered as a regulus net in the ambient Desarguesian affine plane) contains
x = 0, y = 0, y = x, it does have the standard representation.

Hence, we have:
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17 Lemma. Under the basis change τ , we may represent the transversal
function and derivable net, respectively, as

y = (Tr(x) − 2x)eρ,

Dστ = {x = 0, y = xα; α ∈ F } .

If we have a transversal function y = f(x) to a derivable net represented
in the standard form then the following set of lines defines a dual translation
plane:

{x = 0, y = xα+ f(x)β + b; α, β ∈ F, b ∈ K } .
Hence, we obtain the following dual translation plane:

{x = 0, y = xα+ (Tr(x) − 2x)eρβ + b; α, β ∈ F, b ∈ K } .
Now we note that this dual translation plane actually is a translation plane
since the function (Tr(x) − 2x)eρ is additive. However, this translation plane
does not yet correspond to the semifield plane found by Cossidente et al., for
we need to dualize and then transpose.

We do the dualization algebraically in the associated dual translation plane
by taking a multiplication “◦” as follows:

x ◦ (e(−2ρβ) + α) = x(e(−2ρβ) + α) + Tr(x)eρβ

for all x ∈ K, β, α ∈ F . To obtain the desired semifield plane, we form the
opposite multiplication “∗” by

x ◦ (e(−2ρβ) + α) = (e(−2ρβ) + α) ∗ x.

Now we perform a notation change: Let

ex1 + x2 = e(−2ρβ) + α,

x = et+ u,

where x1, x2 , t, u ∈ F . Hence, we have

(ex1 + x2) ∗ (et+ u) = (et+ u)(ex1 + x2) + Tr(et+ u)e(−x1/2)

(the ρ term drops out).
We now work out the trace function:

18 Lemma. Tr(et+ u) = 2(u+ up2
).

Proof. Tr(et+u) = (et+ u)+
(
ep

e
tp

e
+ upe)

+(−et+ u)+
(
−epe

tp
e
+ upe)

=
2
(
u+ upe)

. QED
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Hence, we obtain the following theorem.

19 Theorem. The flock semifield of Cossidente, Ebert, Marino and Sicil-
iano has the following spread set:

{
x = 0, y = x

[
−upe

γt
t u

]
; u, t ∈ F

}
.

Proof.

(ex1 + x2) ∗ (et+ u) = (et+ u) (ex1 + x2) + Tr(et+ u)e (−x1/2)

= e
(
tx2 − upe

x1

)
+ γtx1 + ux2

using e2 = eγ = e/ρ. QED

Now we change bases again by

ω : (x, y) →
(
x, y

[
0 1
ρ 0

])

and take uρ = v, to transform the spread into
{
x = 0, y = x

[
t −γvpe

v t

]
; u, t ∈ F

}
.

If we note that −1 is a square in GF(q) as q is a square, then −γ = γ0 is a
non-square. Hence, we finally transform the spread into

{
x = 0, y = x

[
t γ0vp

e

v t

]
; u, t ∈ F

}
,

which is the standard representation of the Kantor-Knuth semifield flock spreads
(see, e.g., Johnson and Payne [9]). Therefore, we have shown:

20 Theorem. The flock semifield of Cossidente, Ebert, Marino and Sicil-
iano is a Kantor-Knuth semifield flock spread.

3.2 The second semifield of Cossidente, Ebert, Marino
and Siciliano

In this case, the setup is exactly as in the previous subsection. Let FB be
defined as follows:

FB =
{(

1, a, apf
)

; a ∈ K
}
,

for q = p2e, q odd, and f a divisor of e. The associated Baer subline of PG(3, q2)
is UB:

UB = { (0, 0, 1)} ∪ {(0, 1, z); z ∈ K; z + zq = 0 } .
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Now we employ the ideas affinely and realize a derivable net as follows:

D = {x = 0, y = 0, y = xm; mq +m = 0; m ∈ K − { 0 } } .

This time, we start with two components of the required standard representa-
tion. We again choose a basis { e, 1 } so that e2 = eγ, for γ a non-square in F .
Since in this case eq + e = 0, we choose a new basis by the mapping

δ : (x, y) → (x, yeρ),

where ρ = 1/γ. We then have the proof to the following lemma.

21 Lemma. The following is a transversal to a derivable net in standard
representation:

y = xpf

eρ.

We again form the associated dual translation plane:

x = 0, y = xα+ xpf

eρβ + b; α, β ∈ F, b ∈ K.

We choose a multiplication “◦” for the dual translation plane and “∗” for the
dual of this plane (we are after the transposed version of this plane).

x ◦ (eρβ + α) = xα+ xpf

eρβ = (eρβ + α) ∗ x.

Now let

ex1 + x2 = eρβ + α,

x = et+ u.

Then, we obtain:

(ex1 + x2) ∗ (et+ u) = (et+ u)x2 +
(
ep

f

tp
r

+ upf
)
ex1.

Let
ep

f

= eg + h,

to obtain:

(ex1 + x2) ∗ (et+ u) = (et+ u)x2 +
(
(eg + h) tp

r

+ upf
)
ex1

e
(
tx2 +

(
htp

f

+ upf
)
x1

)
+
(
ux2 + γgtp

f

x1

)
.

Therefore, by transposing the resulting matrix spread set, we have the following
theorem.
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22 Theorem. The second semifield plane of Cossidente, Ebert, Marino and
Siciliano has spread set:

{
x = 0, y = x

[
htp

f
+ upf

t

γgtp
f

u

]
; u, t ∈ F

}
.

23 Corollary. The second semifield plane of Cossidente, Ebert, Marino and
Siciliano is the transposed dual of a Hughes-Kleinfeld semifield plane.

To see this, from Biliotti, Jha, Johnson [1] we note the following:
In this setting, F is an arbitrary field isomorphic to GF(q) and θ is an

automorphism of F , while {λ, 1 } is a basis for K over F .

24 Theorem (Hughes-Kleinfeld Semifelds). Suppose a = x1+θ + xb has no
solution for x in F . Then

(x+ λy) ◦ (z + λt) =
(
xz + atyθ

)
+ λ

(
yz +

(
xθ + yθb

)
t
)

is a semifield and F is its right and middle nucleus. Conversely, if D is a
semifield that is a finite two-dimensional vector space over a field F such that the
middle and right nucleus of D coincide, then D is a Hughes-Kleinfeld semifield.

Dualize the Hughes-Kleinfeld semifield in the manner above:

(z + λt) ∗ (x+ λy) =
(
xz + atyθ

)
+ λ

(
yz +

(
xθ + yθb

)
t
)
.

Now let
y = s, x = u,

to transform the equation into

(z + λt) ∗ (u+ λs) =
(
uz + atsθ

)
+ λ

(
sz +

(
uθ + sθb

)
t
)

and obtain the following matrix spread set:
{
x = 0, y = x

[
(uθ + sθb) asθ

s u

]
; u, s ∈ F

}
.

Now transpose this matrix spread set to obtain
{
x = 0, y = x

[
(uθ + sθb) s

asθ u

]
; u, s ∈ F

}
,

and, comparing the semifield spread of Cossidente et al., we see that the spreads
for θ = pf are isomorphic. Then

{
x = 0, y = x

[
htp

f
+ upf

t

γgtp
f

u

]
; u, t ∈ F

}
.

This completes the proof of the corollary.
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25 Remark. Some of the results of this article have been proved indepen-
dently by Cossidente, Lunardon, Marino, and Polverino, Hermitian indicator
sets (to appear), by similar yet distinct methods. In particular, we have used
the theory of transversals to derivable nets to prove our results, whereas Cossi-
dente et al. use primarily analysis using indicator sets, which is a more general
study. Their results identify the flock semifield planes as Kantor-Knuth using
the connection that such flocks are precisely those whose planes (containing the
conics) intersect in a point, whereas our study is algebraic. These works also
generally overlap in that Cossidente et al. connect locally Hermitian ovoids with
indicator sets, while here we phrase this using transversals to derivable nets.
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