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Abstract. In this paper we exploit a theorem of Biliotti, Jha, and Johnson exhibiting a
procedure to count the number of non-isotopic generalized twisted fields of orders pn where
p ≥ 3 which is denoted by g(pn). We show that g(pn) is a polynomial in p that is sharply
bounded below by

`

n−2
2

´

(p − 2) and bounded above by a polynomial of degree ⌊n
2
⌋.
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Introduction

A particularly interesting class of semifields are Albert’s generalized twisted
fields defined in [1]. They exist for all prime power orders pn > max(p2, 8)
except for 2q where q is prime. We determine the number of non-isotopic gen-
eralized twisted fields of order pn where p is odd. Our result enables us, among
other things, to obtain a sharp lower bound for the number of non-isomorphic
generalized twisted field planes of odd characteristic:

1 Theorem. The number of non-isotopic generalized twisted fields of order
pn is at least

(
n−2

2

)
(p − 2), and the bound is sharp if and only if n is prime or

n = 4.

Our argument is based on a theorem of Biliotti, Jha, and Johnson [2] where
a necessary and sufficient condition is given for two generalized twisted fields
to be isotopic. Thus, our goal is to count the number of equivalence classes
associated with the isotopism classes among the generalized twisted fields. First
we list some number theory that will be used throughout the paper.

2 Theorem. [7, Proposition 3.3.1] Let a, b ∈ Z, let d = (a,m), and let
m′ = m/d. The equation ax ≡ b (mod m) has solutions if and only if d|b. If the
equation is solvable, then there are exactly d solutions. Furthermore, if x0 is a
solution then the other solutions are x0 +m′, x0 + 2m′, . . . , x0 + (d− 1)m′.

3 Theorem. [3, Result 25.5.1] Let p be a prime number. Then

(pi1 − 1, pi2 − 1, . . . , pit − 1) = p(i1,i2,...,it) − 1.
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4 Corollary. The subgroup of Zpn−1 generated by pi1 −1, pi2 −1, . . . , pit −1
is the subgroup generated by p(i1,i2,...,it,n) − 1.

5 Corollary. i | j if and only if pi − 1 | pj − 1.

1 Generalized Twisted Fields

Throughout this paper F will be a field of odd characteristic with a primitive
element γ such that |F | = pn > p2. Let F = GF(pn). Let γs 7→ γspi

and
γs 7→ γspj

be distinct non-identity automorphisms of F where 0 < i, j < n. Let
γr ∈ F − {0} such that

γr 6= γa(pi−1)γb(pj−1) for all a, b ∈ Z (1)

Define a new multiplication ◦ on F by

γa ◦ γb = γa+b − γr+api+bpj

(2)

We now pass this to a semifield by defining (γa ◦ 1) ⋆ (1 ◦ γb) = γa ◦ γb [5].
The semifield (F,+, ⋆) which we denote by A(F, i, j, γr) is called a generalized
twisted field. When we say γr makes A(F, i, j, γr) into a generalized twisted field,
we mean that γr satisfies (1).

We now give a necessary and sufficient condition that γr must satisfy in
order to make A(F, i, j, γr) into a generalized twisted field.

6 Lemma. A(F, i, j, γr) is a generalized twisted field if and only if r 6= 0
(mod p(i,j,n) − 1).

Proof. The condition (1) is equivalent to r 6= a(pi−1)+b(pj−1) (mod pn−
1) for all a, b ∈ Z. Now apply corollary 4. QED

7 Corollary. A(F, i, j, γ) is always a generalized twisted field.

2 Counting the Generalized Twisted Fields

The counting results that are obtained stem from the following result which
is equivalent to one of Biliotti, Jha, and Johnson [2, Theorem 6.1 (2)]:

8 Theorem (Comparison Theorem). Let F = GF(pn). Two generalized
twisted fields A(F, i, j, γr) and A(F, i′, j′, γr′) are isotopic if and only if one of
the following conditions is met:

(i) i′ = i, j′ = j, and r′pk ≡ r + a(pi − 1) + b(pj − 1) (mod pn − 1) for some
0 ≤ a, b < pn − 1, and 0 ≤ k < n.
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(ii) i′ = n− i, j′ = n− j, and r′pk ≡ −r+ a(pi − 1) + b(pj − 1) (mod pn − 1)
for some 0 ≤ a, b < pn − 1, and 0 ≤ k < n.

9 Lemma. A(F, i, j, γr′) ≃ A(F, i, j, γr) if and only if r′pk ≡ r (mod p(i,j,n)

− 1) for some 0 ≤ k < (i, j, n).

Proof. The condition r′pk ≡ r + a(pi − 1) + b(pj − 1) (mod pn − 1) is
equivalent to r′pk − r ≡ a(pi − 1) + b(pj − 1) (mod pn − 1). By corollary 4 this
holds if and only if r′pk ≡ r (mod p(i,j,n) − 1). QED

10 Corollary. A(F, i, j, γr) is isotopic to A(F, n− i, n− j, γr′) if and only
if r′pk ≡ −r (mod p(i,j,n) − 1) for some 0 ≤ k < (i, j, n).

Proof. Same as above since (n− i, n− j, n) = (i, j, n). QED

11 Corollary. The following statements hold:

(i) If r′ ≡ r (mod p(i,j,n) − 1) then A(F, i, j, γr′) ≃ A(F, i, j, γr).

(ii) For fixed i, j the set {A(F, i, j, γ), A(F, i, j, γ2), . . . , A(F, i, j, γp(i,j,n)−2) }
contains at least one representative of the isotopy class of A(F, i, j, γr) for
any r 6= 0 (mod p(i,j,n) − 1).

Proof. (i) follows immediately from lemma 9, taking k = 0, and (ii) follows
from (i). QED

As a result of this corollary we will assume henceforth that 0 ≤ r < p(i,j,n)−1,
and all exponents of γ will be taken modulo p(i,j,n) − 1.

12 Lemma. If A(F, n − i, n − j, γr′) is a generalized twisted then so is
A(F, i, j, γ−r′). Furthermore

A
(
F, n− i, n− j, γr′

)
≃ A

(
F, i, j, γ−r′

)
(3)

Proof. This follows immediately from lemma 6 and the comparison theo-
rem. QED

13 Definition. Let g(i, j, pn) denote the number of non-isotopic generalized
twisted field of order pn of the type A(F, i, j, γr) with i, j fixed. Also, let g(pn)
denote the number of non-isotopic generalized twisted fields of order pn.

14 Lemma. g(pn) =
∑

1≤i<j<n g(i, j, p
n).

Proof. The comparison theorem and lemma 12 immediately yield this.
QED

We now wish to determine g(i, j, pn). By corollary 11 (ii), g(i, j, pn) ≤ |C| =

p(i,j,n)−2 where C = {A(F, i, j, γ), . . . , A(F, i, j, γp(i,j,n)−2) }. Also by corollary 11
(ii) we may assume that 1 ≤ r ≤ p(i,j,n) − 2. By lemma 9, A(F, i, j, γr′) ≃
A(F, i, j, γr) if and only if r′pk ≡ r (mod p(i,j,n) − 1) for some 0 ≤ k < (i, j, n).
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So we need to determine if C contains exactly one representative from every
isotopy class.

To determine which generalized twisted fields are isotopic to A(F, i, j, γr)
we need to compute {rpk (mod p(i,j,n) − 1) : 0 ≤ k < (i, j, n)}. Clearly { s :
A(F, i, j, γr) ≃ A(F, i, j, γs) } = { s : rpk ≡ s (mod p(i,j,n) − 1) for some k } =

{ rpk : 0 ≤ k < (i, j, n) }. From this we gather A(F, i, j, γrpk (mod p(i,j,n)−1)) ≃
A(F, i, j, γr).

In doing this computation, if for a particular k, rpk ≡ r (mod p(i,j,n) − 1),
then nothing new happens, since this isotopy is already captured by corol-
lary 11. However, if rpk 6= r (mod p(i,j,n) − 1) for some k then we get that

A(F, i, j, γrpk (mod p(i,j,n)−1)) ≃ A(F, i, j, γr), so one of these elements needs to
be removed from C. Thus the problem now is determining the solutions in r to
rpk ≡ r (mod p(i,j,n) − 1).

15 Lemma. The solutions for r of rpk ≡ r (mod p(i,j,n) − 1) are exactly
those of rp(i,j,k,n) ≡ r (mod p(i,j,n) − 1).

Proof. By theorem 2, both r(pk−1) ≡ 0 (mod p(i,j,n)−1) and r(p(i,j,k,n)−
1) ≡ 0 (mod p(i,j,n)−1) have p(i,j,k,n)−1 solutions. Since 0 is a solution to both
of these congruences, they must be the same. QED

If we let k run between 1 and (i, j, n) we have that (i, j, k, n) runs precisely
through all the divisors of (i, j, n). Thus by lemma 15 it suffices to consider
congruences of the form rpk ≡ r (mod p(i,j,n)−1) where k is a divisor of (i, j, n).

16 Lemma. Let d1 and d2 be divisors of (i, j, n). Then d1|d2 if and only if
every solution of rpd1 ≡ r (mod p(i,j,n)−1) is a solution of rpd2 ≡ r (mod p(i,j,n)

− 1).

Proof. If d1|d2 then the result is trivial so suppose the converse. Thus, ev-
ery solution of rpd1 ≡ r (mod p(i,j,n)−1) is a solution to rpd2 ≡ r (mod p(i,j,n)−
1). These congruences have pd1 − 1 and pd2 − 1 solutions respectively. Then the
solutions to rpd1 ≡ r (mod p(i,j,n) − 1) form a subgroup of the solutions to
rpd2 ≡ r (mod p(i,j,n) − 1). By Lagrange’s theorem we have pd1 − 1|pd2 − 1. By
corollary 5, d1|d2 as desired. QED

17 Definition. Let r be given. We define k0(r) to be the minimal k such
that rpk ≡ r (mod p(i,j,n) − 1).

18 Lemma. The isotopy class of A(F, i, j, γr) is

A(F, i, j, γr) =
{
A (F, i, j, γr) , A (F, i, j, γrp) , . . . , A

(
F, i, j, γrpk0(r)−1

)}
,

where the exponents of γ are taken modulo p(i,j,n) − 1. Furthermore, every ele-
ment A(F, i, j, γrpk

) ∈ A(F, i, j, γr) satisfies k0(rp
k) = k0(r).
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Proof. Let Ω denote the isotopy class of A(F, i, j, γr). Certainly

A (F, i, j, γr) ⊆ Ω

by lemma 9.
Let A(F, i, j, γs) ∈ Ω. By lemma 9 it follows that rpk ≡ s (mod p(i,j,n) − 1)

but A(F, i, j, γs) ≃ A(F, i, j, γs (mod p(i,j,n)−1)) ∈ A(F, i, j, γr). This shows that
Ω ⊆ A(F, i, j, γr).

We show that k0(rp
k) = k0(r) for all A(F, i, j, γrpk

) ∈ A(F, i, j, γr). Since
rpk0(r) ≡ r (mod p(i,j,n) − 1) we have that (rpk)pk0(r) ≡ rpk (mod p(i,j,n) − 1).
This shows that k0(rp

k) ≤ k0(r). If k0(rp
k) < k0(r) for some rpk then we

would have (rpk)pk0(rpk) ≡ rpk (mod p(i,j,n)−1). This implies that rpk0(rpk) ≡ r
(mod p(i,j,n) − 1) which contradicts the definition of k0(r). QED

19 Corollary. The size of the isotopy class of A(F, i, j, γr) is k0(r).

To find g(i, j, pn) we need to divide the r’s into different classes; we find
how many r’s minimally satisfy a given congruence rpk ≡ r (mod p(i,j,n) − 1)
for k a divisor of (i, j, n). We mean minimally in the sense that k0(r) = k.
There are exactly pk − 1 solutions to rpk ≡ r (mod p(i,j,n) − 1) for a fixed k,
but only some of these r’s will satisfy k0(r) = k. So to find the number of r’s
that satisfy k0(r) = k we must first find the r’s such that k0(r) < k. We specify
recursively a function Ψij : N → N which corresponds to the number of r’s such
that k0(r) = d.

Ψij(d) = pd − 1 −
∑

k|d,k 6=d

Ψij(k) (4)

We note that Ψij(1) = p− 1 so Ψij is clearly defined for all natural numbers.

20 Theorem. g(i, j, pn) =
(∑

d|(i,j,n)
Ψij(d)

d

)
− 1.

Proof. For a given divisor d of (i, j, n), there will be Ψij(d) r’s such that
k0(r) = d. Each of these will have an isotopy class of size d by corollary 19.

Thus we get precisely
Ψij(d)

d isotopy classes from the divisor d. Since r 6= 0 by
lemma 6 we get the formula

g(i, j, pn) =



∑

d|(i,j,n)

Ψij(d)

d


− 1 (5)

as desired. QED

21 Corollary. g(pn) =
∑

1≤i<j<n

((∑
d|(i,j,n)

Ψij(d)
d

)
− 1
)
.

Proof. Just use the above theorem along with lemma 14. QED



58 W. Purpura

We now give some solutions for g(i, j, pn) where (i, j, n) is relatively simple:

22 Theorem. Let (i, j, n) = pt
1, a prime power. Then

g(i, j, pn) = p− 2 +
t∑

s=1

(
pps

1 − 1
)
−
(
pps−1

1 − 1
)

ps
1

(6)

23 Corollary. Let (i, j, n) = p1 prime. Then

g(i, j, pn) = (p− 2) +
pp1 − 1 − (p− 1)

p1
(7)

24 Theorem. If (i, j, n) = 1 then g(i, j, pn) = p− 2. Thus if p = 3 then the
unique generalized twisted field is A(F, i, j, γ).

25 Corollary. Let n be prime or n = 4. Then g(pn) =
(
n−2

2

)
(p− 2).

Proof. Since n is prime or n = 4, then (i, j, n) = 1 for all i, j pairs. Now
apply the theorem along with lemma 14. QED

26 Corollary. g(pn) is bounded below by
(
n−2

2

)
(p − 2). Furthermore, this

bound is sharp and is attained if and only if n is prime or n = 4.

Proof. By corollary 21, we have g(pn) is completely determined by the
prime factorizations of the (i, j, n)’s where 1 ≤ i < j < n. By theorem 20,
g(i, j, pn) ≥ p− 2 with equality occurring if and only if (i, j, n) = 1. Therefore,
g(pn) ≥

(
n−2

2

)
(p − 2) and equality occurs if and only if (i, j, n) is 1 for all i, j

such that 1 ≤ i < j < n. We show this happens precisely when n is prime or
n = 4.

Clearly, if n is prime or 4 then (i, j, n) = 1 for all 1 ≤ i < j < n. Conversely,
suppose n is not prime and n 6= 4. Then it follows that n > 4. Let f be the
smallest prime divisor of n. We have that n > 2f so that (f, 2f, n) = f 6= 1.
Now the result follows. QED

27 Theorem. g(pn) is a polynomial in p of degree µ(n) where µ(n) is de-
fined as the largest divisor of n which is strictly less than n/2.

Proof. Observe that g(i, j, pn) is a polynomial of degree (i, j, n). We thus
have g(pn) is a polynomial of degree d where d = max1≤i<j<n(i, j, n). It is clear
that µ(n) = d. QED

28 Corollary. If µ(n1) > µ(n2) then g(pn1) > g(pn2) for p >> 0.

Proof. This follows by the above theorem and elementary calculus. QED

This Corollary is counter-intuitive. It shows that g(pn) is not as dependent
on the magnitude of n as on the prime factorization of n. For example, we gather
that g(p6) > g(pq) for p >> 0 for any prime q.

29 Corollary. g(pn) is bounded above by a polynomial of degree ⌊n
2 ⌋.
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Proof. Since g(pn) is a polynomial of degree µ(n) and clearly ⌊n
2 ⌋ > µ(n)

we get the required polynomial is g(pn)p⌊
n
2
⌋−µ(n). QED
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