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1 Introduction

The concept of (m, ρ)-quasi-Einstein metric was firstly introduced by Huang
and Wei[24]. Later on many geometers considered (m, ρ)-quasi-Einstein metrics
in different contexts ([8],[21],[28],[30],[32]). The concept of (gradient) (m, ρ)-
quasi-Einstein metric can be regarded as an extension of the one of (gradient)
Einstein metric.

Though, recently, (m, ρ)-quasi-Einstein metrics on almost coKähler mani-
folds have been studied by Wang [32], then by De et al.([15]), still there are
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some points left out for further investigations. In this article we go on with a
careful study of (κ, µ)-almost coKähler manifolds equipped with (m, ρ)-quasi-
Einstein metrics.

In 1982, as an initiative to solve the famous Poincaré conjecture, Hamilton
[23] introduced the concept of Ricci flow given by

∂

∂t
g = −2S,

where g and S denote a Riemannian metric and its Ricci tensor, respectively.
Self similar solutions, up to diffeomorphisms and scalings, of a Ricci flow are
known as Ricci solitons and are given by

£Xg + 2S = 2λg,

where £X indicates the Lie-derivative operator along the potential vector field
X on a manifold N and λ is a real number, called the soliton constant. If instead
of a constant, λ is considered as a smooth function, then the Ricci solitons are
named almost Ricci solitons[1].

The notion of Ricci soliton was generalized by Nurowski et al.[25] using the
equation

(£Xg) + 2a1S + 2b1X
b ⊗Xb = 2λg, (1.1)

where a1, b1 are real constants and Xb is the 1-form g-associated with X, namely
Xb(G1) = g(X,G1), for any vector field G1 on N . Particular types of gener-
alized Ricci solitons have been studied by several authors([19],[29]) in different
perspectives. If X = Df, for a smooth function f on N , D being the gradient
operator, then generalized Ricci solitons are called gradient generalized Ricci
solitons.

We recall the definition of (m, ρ)-quasi-Einstein metric, also named (m, ρ)-
quasi-Einstein soliton [15].

Definition 1.1. The metric g of a Riemannian manifold N is called an (m, ρ)-
quasi-Einstein metric if there exist three real numbers m, ρ, λ, m > 0, and a
vector field X on N such that

(£Xg) + 2S =
2

m
Xb ⊗Xb + 2(ρr + λ)g, (1.2)

where r denotes the scalar curvature. If Xb is closed, then the g is called a closed
(m, ρ)-quasi-Einstein metric.

In this article, a triplet (g, X, λ) satisfying (1.2) is named an (m, ρ)-quasi-
Einstein structure.
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The metric g is called a ρ-Einstein soliton if there exist two real numbers ρ,
λ and a vector field X such that

(£Xg) + 2S = 2(ρr + λ)g. (1.3)

Roughly speaking, ρ-Einstein solitons are considered as (m, ρ)-quasi-Einstein
metrics such that m =∞.

Definition 1.2. The metric g of a Riemannian manifold N is called a gradient
(m, ρ)-quasi-Einstein metric if there exist a smooth function f on N and three
real numbers m, ρ, λ, m > 0, such that

Hessf + S =
1

m
df⊗ df + βg, (1.4)

where β = ρr + λ. A triplet (g, f, λ) satisfying (1.4) is named a gradient (m, ρ)-
quasi-Einstein structure.
A gradient ρ-Einstein soliton (g, f, λ) is a solution of the equation

Hessf + S = βg, (1.5)

where β = ρr+λ ([14],[31]). If ρ =
1

2
, a gradient ρ-Einstein soliton is called

gradient Einstein soliton [7].

Cosymplectic manifolds, introduced by Blair, were studied by Goldberg and
Yano and many others (see [3], [20], [22] and the references therein).
A cosymplectic manifold is also named a coKähler manifold. Almost cosymplec-
tic manifolds, also named almost coKähler manifolds, were introduced in [22].
Then several authors developed the study of these manifolds, providing explicit
examples and curvature properties ([11, 12, 16, 18, 26, 27]). We also refer to [5]
for an exhaustive overview on the theory of (almost) coKähler manifolds.
The aim of this article is the study of (m, ρ)-quasi-Einstein metrics and of ρ-
Einstein solitons on almost coKähler manifolds, assuming that the curvature
satisfies the (κ, µ)-condition.

The paper is organized as follows. In Section 2 we synthesize well-known
properties of almost coKähler manifolds. Particular attention to the (κ, µ)-
condition is paid and recent results on (m, ρ)-quasi-Einstein metrics are recalled.
These results help in proving that the metric tensor of a (κ, µ)-almost coKähler
manifold N 2n+1 cannot support neither a closed (m, ρ)-quasi-Einstein nor a ρ-
Einstein structure, provided that κ < 0. Finally we give an alternative proof of
similar results dealing with gradient structures on three-dimensional manifolds.

Throughout this paper all the manifolds are assumed to be connected and
of class C∞, as well as tensor fields, in particular functions, are C∞ smooth.
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2 (κ, µ)-almost coKähler manifolds

A (2n+ 1)-dimensional smooth manifold N 2n+1 is called an almost contact
metric manifold if there exist a Riemannian metric g, a 1-form η, a (1, 1)-tensor
field φ and a vector field ξ such that[2]

φ2 = −I + η ⊗ ξ, η(ξ) = 1, g(φG1, φH1) + η(G1)η(H1) = g(G1, H1),

where η is defined by g(G1, ξ) = η(G1), for any vector field G1 on N 2n+1 and I
is the identity endomorphism. Then (φ, ξ, η, g) is named almost contact metric
structure and ξ is the Reeb vector field. For this structure we have

φξ = 0, η ◦ φ = 0 and g(φG1, H1) = −g(G1, φH1),

for any vector fields G1 and H1 on N 2n+1. On an almost contact metric manifold
N 2n+1, we can define the 2-form Φ by

Φ(G1, H1) = g(G1, φH1),

for any vector fields G1 and H1 on N 2n+1. If dη = 0 and dΦ = 0, then N 2n+1

is called an almost coKähler manifold [10, 11, 13]. These manifolds set up the
Chinea-Gonzalez class C2⊕C9 [9]. Almost coKähler manifolds whose Reeb vec-
tor field ξ is ∇-parallel are also named K-cosymplectic manifolds and set up
the class C2.

Given an almost contact metric manifoldN 2n+1, one defines the (1, 1)-tensor

fields h, h′ putting h =
1

2
£ξφ, h′ = h ◦ φ.

If N 2n+1 is almost coKähler, both the operators h, h′ are symmetric and
satisfy the properties

hξ = 0, tr(h) = 0, tr(h′) = 0, hφ = −φh, ∇ξ = h′, (2.1)

φlφ = l + 2h2, trh2 = −S(ξ, ξ), (2.2)

where l = R(., ξ)ξ denotes the Jacobi operator and S indicates the Ricci
tensor ([16], [26]).
In [4] Blair et al. introduced the notion of (κ, µ)-nullity distribution associated
with an almost contact metric manifold, κ, µ being real numbers. In particular,
a (κ, µ)-almost coKähler manifold is an almost coKähler manifold such that the
Reeb vector field belongs to the (κ, µ)-nullity distribution, that is the curvature
R satisfies

R(G1, H1)ξ = κ
(
η(H1)G1 − η(G1)H1

)
+ µ

(
η(H1)hG1 − η(G1)hH1

)
, (2.3)
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for any vector fields G1, H1 on N 2n+1. If µ = 0, then ξ belongs to the κ-nullity
distribution and N 2n+1 is called an N(κ)-almost coKähler manifold. More gen-
erally, one can consider (κ, µ)-spaces, namely almost contact metric manifolds
whose Reeb vector field belongs to the (κ, µ) distribution, κ, µ denoting smooth
functions varying exclusively in the direction of ξ.

We refer to ([6], [12]) for a detailed study of these spaces. This paper deals
with manifolds satisfying (2.3), with κ, µ constants.
So, let N 2n+1 be a (κ, µ)-almost coKähler manifold. Then, one has

h2 = κφ2. (2.4)

It follows that κ ≤ 0 and κ = 0 if and only if ξ is ∇-parallel. Moreover, the
Ricci operator Q satisfies

Qξ = 2nκξ (2.5)

and if κ < 0, Q acts as

Q(G1) = 2nκη(G1)ξ + µhG1. (2.6)

In particular, if κ < 0, N 2n+1 has constant scalar curvature r = 2nκ and the
covariant derivative ∇h, ∇ denoting the Levi-Civita connection, satisfies

(∇G1h)H1 − (∇H1)G1 = κ
(
η(H1)φG1 − η(G1)φH1

+2g(φG1, H1)ξ
)

+ µ
(
η(G1)h′H1 − η(H1)h′G1

)
,

(2.7)

for every vector fields G1, H1 ([6], [18], [33]).
We also recall the following results, that will be utilized in section 3, 4.

Theorem 2.1. ([11]) An N(κ)-almost coKähler manifold with κ < 0 is locally
isomorphic to a solvable non-nilpotent Lie-group gσ, σ =

√
−k, endowed with

an almost coKähler structure.

Theorem 2.2. ([15]) Let the metric g of a (κ, µ)-almost coKähler manifold
N 2n+1 be a gradient (m, ρ)-quasi-Einstein metric. Then, if κ < 0, N 2n+1 reduces
to an N(κ)-almost coKähler manifold.

Theorem 2.3. ([15]) There does not exist a gradient (m, ρ)-quasi-Einstein
structure (g, f, λ) with Df = (ξf)ξ, for some non-constant smooth function f,
on a compact (κ, µ)-almost coKähler manifold N 2n+1 with n > 1, κ < 0.
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3 (m, ρ)-quasi-Einstein metrics on (2n+1)-dimensional
(κ, µ)-almost coKähler manifolds

In this section, we prove the non-existence of closed (m, ρ)-quasi-Einstein
metrics and of closed ρ-Einstein solitons on a (κ, µ)-almost coKähler manifold.
In this connection, it should be mentioned that in [16] and [18], Endo proved
the non-existence of (κ, µ)-almost coKähler Einstein manifolds.

Theorem 3.1. Let (N 2n+1, φ, ξ, η, g) be a (κ, µ)-almost coKähler manifold, κ <
0. Then g cannot be a closed (m, ρ)-quasi-Einstein metric.

Proof. Assume that (g, X, λ) is a closed (m, ρ)-quasi-Einstein structure. By (1.2)
and (2.6) for every G1 ∈ χ(N ) one has

∇G1X =− 2nκη(G1)ξ − µhG1 +
1

m
g(X,G1)X

+ (ρr + λ)G1.
(3.1)

Applying (3.1) and (2.7) one gets

R(G1, H1)X = (2nk − µ2)(η(G1)h′(H1)− η(H1)h′(G1))

+µκ(η(G1)φH1 − η(H1)φG1 + 2g(φHi, G1)ξ)

+
1

m
(g(X,H1)∇G1X − g(X,G1)∇H1X).

(3.2)

In particular, by (3.2) and (3.1), we obtain

g(R(G1, H1)X, ξ) =2κµg(φH1, G1)

+
1

m
(ρr + λ− 2nκ)(g(X,H1)η(G1)

− g(X,G1)η(H1)).

Moreover, by (2.3) one has

g(R(G1, H1)ξ,X) =κ(η(H1)g(G1, X)− η(G1)g(H1, X))

+µ(η(H1)g(hG1, X)− η(G1)g(hH1, X)).

Being g(R(G1, H1)ξ,X) = −g(R(G1, H1)X, ξ), we obtain

2κµg(φH1, G1) + (
1

m
(ρr + λ− 2nκ)− κ)(g(X,H1)η(G1)

− g(X,G1)η(H1)) + µ(η(H1)g(hG1, X)− η(G1)g(hH1, X))) = 0.
(3.3)
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Given a point x ∈ N , we consider H1 ∈ Tx(N ), H1 6= 0 such that η(H1) = 0.
Then by (3.3), we have

2κµg(H1, H1) = 0.

It follows that µ = 0. Hence N is an N(κ)-contact manifold and (3.1), (3.2)
reduce to

∇G1X = −2nκη(G1)ξ +
1

m
g(X,G1)X + (ρr + λ)G1. (3.4)

R(G1, H1)X = 2nκ(η(G1)h′(H1)− η(H1)h′(G1))

+
1

m
(g(X,H1)∇G1X − g(X,G1)∇H1X).

(3.5)

By (3.4) and (3.5) one has

S(G1, X) = −2nκ

m
(g(X,G1)− η(X)η(G1))

+
2n

m
(ρr + λ)g(X,G1).

Being N an N(κ)-manifold, we have S = 2nκη ⊗ η. It follows, for every G1 ∈
χ(N )

(ρr + λ− κ)g(X,G1) + (1−m)κη(X)η(G1) = 0. (3.6)

Therefore, one has

(ρr + λ− κ)(X − η(X)ξ) = 0. (3.7)

Assume that ρr + λ = κ. By (3.3), being µ = 0, we get, for G1, H1 ∈ χ(N )

(m+ 2n− 1)κ(g(X,H1)η(G1)− g(X,G1)η(H1)) = 0,

and being m+ 2n− 1 > 0, one has

X − η(X)ξ = 0.

Therefore, taking account of (3.7), we obtain X = fξ, with f = η(X). Thus
(3.4) entails

fh′(G1) +G1(f)ξ = (−2nκ+
1

m
f2)η(G1)ξ + (ρr + λ)G1, G1 ∈ χ(N ). (3.8)

Taking the inner product with ξ, we obtain

df = ξ(f)η, ξ(f) = −2nκ+
1

m
f2 + ρr + λ.
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Now, (3.8) reduces to

fh′(G1) = (ρr + λ)(G1 − η(G1)ξ), G1 ∈ χ(N ). (3.9)

Taking the trace in (3.9), one has

ρr + λ = 0, fh′ = 0.

Now it follows that X = 0, and S = 0. Thus we arrive at a contradiction. This
proves the theorem. QED

Remark 3.1. By Theorems 2.1, 3.1, it follows that the metric of a solvable non-
nilpotent Lie group gσ, σ =

√
−k, endowed with an almost coKähler structure

defined in [11], cannot be (m, ρ)-quasi-Einstein metric.

Proposition 3.1. Let (N 2n+1, φ, ξ, η, g) be a (κ, µ)-almost coKähler manifold,
κ < 0. Then g cannot be a closed ρ-Einstein soliton.

Proof. Assume that g is a closed ρ-Einstein soliton with potential vector field
X. By (1.3) and (2.6), for any G1 ∈ χ(N ) one gets

∇G1X = −µhG1 − 2nκη(G1)ξ + (2nκρ+ λ)G1. (3.10)

It follows

R(G1, H1)X = (2nk − µ2)(η(G1)h′(H1)− η(H1)h′(G1))

+µκ(η(G1)φH1 − η(H1)φG1 + 2g(φHi, G1)ξ).
(3.11)

Thus, by (2.6) and (3.11) we obtain

µhX + 2nκη(X)ξ = 0.

It follows η(X) = 0, so X, ξ are orthogonal. Arguing as in Theorem 3.1 and
applying (3.10) one obtains

−2nκ+ 2nκρ+ λ = g(∇ξX, ξ) = −g(∇ξξ,X) = 0,

and

g(hX, φG1) = g(h′X,G1) = g(∇G1ξ,X) =

− g(∇G1X, ξ) = (2nκ− 2nκρ− λ)η(G1) = 0,

for any G1 ∈ χ(N ). It follows hX = 0, κX = −κφ2X = −h2X = 0. Then, we
have X = 0 and (N , g) is an Einstein manifold. This contradicts the hypothesis
κ < 0. Hence, the proposition is proved. QED
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Remark 3.2. It is known that any (0, µ)-almost coKähler manifold is a K-
cosymplectic manifold. The following result of Chen [8] can be regarded as the
counterpart of Proposition 3.2.

Theorem 3.2. ([8]) Let M be a K-cosymplectic manifold. Suppose that V is a
closed vector field on M such that

1

2
£V g + S − 1

m
V b ⊗ V b = λg,

λ ∈ R, λ 6= 0. Then M is η-Einstein.

4 Gradient (m, ρ)-quasi-Einstein metrics on three -
dimensional (κ, µ)-almost coKähler manifolds

In this section we give an alternative proof of the non-existence of gradient
(m.ρ)-quasi-Einstein structures (g, f, λ) on a (κ, µ)-almost coKähler manifold
(N 3, φ, ξ, η, g). We point up that this result can be regarded as the counterpart
of Theorem 2.3 dealing with manifolds of dimension 2n + 1 > 3. Moreover, we
prove the non-existence of gradient ρ-Einstein solitons on N 3. The proofs are
based on the property that the Weyl tensor of any Riemannian manifold (N 3, g)
vanishes. Equivalently, the curvature tensor R acts as

R(G1, H1)F1 =g(H1, F1)QG1 − g(G1, F1)QH1 + S(H1, F1)G1

− S(G1, F1)H1 −
r

2

(
g(H1, F1)G1 − g(G1, F1)H1

)
,

(4.1)

for any vector fields G1, H1, F1.
Let (N 3, φ, ξ, η, g) be a (κ, µ)-almost coKähler manifold. Then Q acts as

Q = (
r

2
− κ)I + (3κ− r

2
)η ⊗ ξ + µh. (4.2)

Moreover, according to Theorem 2.2, if N 3 admits a gradient (m, ρ)-quasi-
Einstein metric and κ < 0, then µ = 0 and N 3 is a an N(κ)-almost coKähler
manifold. Hence if κ < 0, we have

r = 2κ, Q = 2κη ⊗ ξ. (4.3)

R(G1, H1)F1 =− κ
(
g(H1, F1)G1 − g(G1, F1)H1

)
− 2κ

(
η(G1)η(F1)H1

− η(H1)η(F1)G1 + g(G1, F1)η(H1)ξ − g(H1, F1)η(G1)ξ
)
.
(4.4)

In particular, (N 3, g) cannot be an Einstein manifold.

Firstly, we state a preliminary result.
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Proposition 4.1. Let (N 3, φ, ξ, η, g) be a (κ, µ)-almost coKähler manifold, κ <
0, and f be a smooth function such that Df = ξ(f)ξ. Then (g, f, λ) cannot be a
gradient (m, ρ)-quasi-Einstein metric.

Proof. Assume that (g, f, λ) is a gradient (m, ρ)-quasi-Einstein structure and
Df = ξ(f)ξ. By (1.4), (4.4), for any vector fields G1, H1, we get

G1(ξ(f))η(H1) + ξ(f)g(h′G1, H1) = −2κη(G1)η(H1)

+
1

m
ξ(f)2η(G1)η(H1) + (2κρ+ λ)g(G1, H1).

(4.5)

Let p be a point of N 3 and consider X ∈ TpN 3, such that hX =
√−κX and

||X|| = 1. Putting G1 = X, H1 = φX in (4.5), we have, at p,

ξ(f)g(h′X,φX) = 0, namely
√
−κξ(f)(p) = 0.

It follows Df = ξ(f)ξ = 0 and by (4.5) we obtain

(2κρ+ λ)g− 2κη ⊗ η = 0.

It follows κ = 0, λ = 0, and this contradicts the hypothesis κ < 0. QED

Theorem 4.1. Let (N 3, φ, ξ, η, g) be a (κ, µ)-almost coKähler manifold. If κ <
0, g cannot be a gradient (m, ρ)-quasi-Einstein metric.

Proof. We assume that (g, f, λ) is a gradient (m, ρ)-quasi-Einstein structure. By
(1.4), (4.3), for any vector fields G1, one has

∇G1Df = −2κη(G1)ξ +
1

m
G1(f)Df + (2κρ+ λ)G1. (4.6)

Taking the covariant derivative along any vector field H1, we get

∇H1(∇G1Df) = −2κH1(η(G1))ξ − 2κη(G1)h′H1

+
1

m

(
H1(G1(f))Df +G1(f)∇H1Df

)
+ (2κρ+ λ)∇H1G1.

(4.7)

It follows

R(G1, H1)Df = −2κ
(
η(H1)h′G1 − η(G1)h′H1

)
− 2κ

m

(
H1(f)η(G1)−G1(f)η(H1)

)
ξ +

1

m
(2κρ+ λ)

(
H1(f)G1 −G1(f)H1

)
.

(4.8)

In particular, taking the inner product with ξ, we get

g(R(G1, H1)Df, ξ) =
1

m

(
2κ(ρ− 1) + λ

)(
H1(f)η(G1)−G1(f)η(H1)

)
. (4.9)
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On the other hand, applying Theorem 2.2, N 3 is an N(κ)-almost coKähler
manifold, so we have

g(R(G1, H1)Df, ξ) = −κ
(
η(H1)G1(f)− η(G1)H1(f)

)
.

Then, comparing with (4.9), one obtains( 1

m

(
2κ(ρ− 1) + λ

)
− κ)

(
H1(f)η(G1)−G1(f)η(H1)

)
= 0. (4.10)

Equation (4.10) implies( 1

m

(
2κ(ρ− 1) + λ

)
− κ)

(
Df− ξ(f)ξ

)
= 0.

If 2κ(ρ− 1) + λ−mκ 6= 0, then Df = ξ(f)ξ and by Prop. 4.1, this case cannot
occur. Hence, we have

2κρ+ λ = (2 +m)κ. (4.11)

By direct computation, applying (4.8), (4.11) one obtains, for any vector field
G1

S(G1, Df) =
2κ

m

(
ξ(f)η(G1) + (m+ 1)G1(f)

)
.

Moreover, applying (4.3), we have

S(G1, Df) = 2κη(G1)ξ(f).

It follows

df =
m− 1

m+ 1
ξ(f)η.

This entails ξ(f) = 0, df = 0 and (1.4) reduces to S = (2κρ+ λ)g = (m+ 2)κg.
Hence (N 3, g) is an Einstein manifold and we obtain a contradiction. QED

An analogous statement holds in the case of ρ-Einstein solitons. In fact, we
prove the next result.

Theorem 4.2. Let (N 3, φ, ξ, η, g) be a (κ, µ)-almost coKähler manifold. If κ <
0, then g is not a gradient ρ-Einstein soliton.

Proof. Being N 3 a (κ, µ)-almost coKähler manifold, the Ricci operator acts as
([18], [6])

Q = 2κη ⊗ ξ + µh. (4.12)

Assume that (g, f, λ) is a gradient ρ-Einstein soliton. By (1.5), (4.12) the covari-
ant derivative acts as

∇G1Df = −2κη(G1)ξ − µhG1 + (2κρ+ λ)G1. (4.13)
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Then, by direct computation, for any vector fields G1, H1 one gets

R(G1, H1)Df = −2κ
(
η(H1)h′G1 − η(G1)h′H1

)
+ µ

(
(∇H1h)G1 − (∇G1h)H1

)
.

(4.14)
Taking the inner product by ξ, we have

g(R(G1, H1)Df, ξ) = −µg(∇H1ξ, hG1) + µg(∇G1ξ, hH1)

= −2µg(φH1, h
2G1) = 2κµg(G1, φH1).

Hence, applying the (κ, µ)-condition, one obtains

2κµg(G1, φH1) + κ
(
η(H1)G1(f)− η(G1)H1(f)

)
+ µ(η(H1)g(hG1, Df)− η(G1)g(hH1, Df)) = 0.

In particular, putting G1 = φH1, with H1 orthogonal to ξ, we get κµg(H1, H1) =
0. It follows µ = 0, so S = 2κη ⊗ η. On the other hand, by (4.14) we obtain
S(G1, Df) = 0, for any vector field G1. It follows S(ξ,Df) = 2κξ(f) = 0, and
then ξ(f) = 0.
Therefore, for any vector field G1, we have

g(∇G1Df, ξ) = −g(∇G1ξ,Df) = −g(h′G1, Df).

By (4.13) we have g(∇G1Df, ξ) =
(
2κ(ρ − 1) + λ

)
η(G1). Hence, for any G1

orthogonal to ξ one gets g(h′G1, Df) = 0, so Df is orthogonal to the distribution
< ξ >⊥, namely Df = ξ(f)ξ = 0. Applying (1.5), g is an Einstein metric and we
obtain a contradiction. QED
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