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1 Introduction

The concept of (m, p)-quasi-Einstein metric was firstly introduced by Huang
and Wei[24]. Later on many geometers considered (m, p)-quasi-Einstein metrics
in different contexts ([8],[21],[28],[30],[32]). The concept of (gradient) (m, p)-
quasi-Einstein metric can be regarded as an extension of the one of (gradient)
Einstein metric.

Though, recently, (m, p)-quasi-Einstein metrics on almost coKéhler mani-
folds have been studied by Wang [32], then by De et al.([15]), still there are
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some points left out for further investigations. In this article we go on with a
careful study of (k, u)-almost coKéhler manifolds equipped with (m, p)-quasi-
Einstein metrics.

In 1982, as an initiative to solve the famous Poincaré conjecture, Hamilton
[23] introduced the concept of Ricci flow given by

0

&g = _287

where g and S denote a Riemannian metric and its Ricci tensor, respectively.
Self similar solutions, up to diffeomorphisms and scalings, of a Ricci flow are
known as Ricci solitons and are given by

£x8+ 28 = 2)g,

where £ x indicates the Lie-derivative operator along the potential vector field
X on a manifold A" and ) is a real number, called the soliton constant. If instead
of a constant, A is considered as a smooth function, then the Ricci solitons are
named almost Ricci solitons|[1].
The notion of Ricci soliton was generalized by Nurowski et al.[25] using the
equation
(£x9) + 2018 + 201 X° @ X° = 2)g, (1.1)

where ay, by are real constants and X? is the 1-form g-associated with X, namely
Xb(G1) = g(X,G1), for any vector field G; on N. Particular types of gener-
alized Ricci solitons have been studied by several authors([19],[29]) in different
perspectives. If X = Df, for a smooth function f on A/, D being the gradient
operator, then generalized Ricci solitons are called gradient generalized Ricci
solitons.

We recall the definition of (m, p)-quasi-Einstein metric, also named (m, p)-
quasi-Einstein soliton [15].

Definition 1.1. The metric g of a Riemannian manifold N is called an (m, p)-
quasi- Finstein metric if there exist three real numbers m, p, A, m > 0, and a
vector field X on N such that

2
(£x9) +28 = EXb ® X"+ 2(pr + A)g, (1.2)

where v denotes the scalar curvature. If X° is closed, then the g is called a closed
(m, p)-quasi-FEinstein metric.

In this article, a triplet (g, X, \) satisfying (1.2) is named an (m, p)-quasi-
Einstein structure.
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The metric g is called a p-Finstein soliton if there exist two real numbers p,
A and a vector field X such that

(£x9) + 28 = 2(pt + N)g. (1.3)

Roughly speaking, p-Einstein solitons are considered as (m, p)-quasi-Einstein
metrics such that m = oco.

Definition 1.2. The metric g of a Riemannian manifold N is called a gradient
(m, p)-quasi-Finstein metric if there exist a smooth function § on N and three
real numbers m, p, A\, m > 0, such that

Hessf+ S = %df@df—l—ﬁg, (1.4)

where = pt+ . A triplet (g,f, \) satisfying (1.4) is named a gradient (m, p)-
quasi-Einstein structure.
A gradient p-Einstein soliton (g,f, A) is a solution of the equation

Hessf+ S = fyg, (1.5)

1
where = pr+ X ([14],[31]). If p = 5 @ gradient p-Einstein soliton is called
gradient Einstein soliton [7].

Cosymplectic manifolds, introduced by Blair, were studied by Goldberg and
Yano and many others (see [3], [20], [22] and the references therein).

A cosymplectic manifold is also named a coKahler manifold. Almost cosymplec-
tic manifolds, also named almost coK&hler manifolds, were introduced in [22].
Then several authors developed the study of these manifolds, providing explicit
examples and curvature properties ([11, 12, 16, 18, 26, 27]). We also refer to [5]
for an exhaustive overview on the theory of (almost) coKéhler manifolds.

The aim of this article is the study of (m, p)-quasi-Einstein metrics and of p-
Einstein solitons on almost coKéhler manifolds, assuming that the curvature
satisfies the (k, u)-condition.

The paper is organized as follows. In Section 2 we synthesize well-known
properties of almost coKéhler manifolds. Particular attention to the (s, u)-
condition is paid and recent results on (m, p)-quasi-Einstein metrics are recalled.
These results help in proving that the metric tensor of a (k, u)-almost coKéhler
manifold N?"*! cannot support neither a closed (m, p)-quasi-Einstein nor a p-
Einstein structure, provided that x < 0. Finally we give an alternative proof of
similar results dealing with gradient structures on three-dimensional manifolds.

Throughout this paper all the manifolds are assumed to be connected and
of class C*, as well as tensor fields, in particular functions, are C°° smooth.
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2 (k,p)-almost coKahler manifolds

A (2n + 1)-dimensional smooth manifold AN?"*! is called an almost contact

metric manifold if there exist a Riemannian metric g, a 1-form 7, a (1, 1)-tensor
field ¢ and a vector field £ such that[2]

¢ =—I+n©& nE) =1, g(¢G1,¢H1)+n(Gr)n(H1) = (G, H),

where 7 is defined by g(G1,¢) = n(G1), for any vector field G; on N?**+! and T
is the identity endomorphism. Then (¢, &, 7, g) is named almost contact metric
structure and £ is the Reeb vector field. For this structure we have

=0, nop=0 and g(¢G17H1) = _g(G17¢H1)7

for any vector fields G; and H; on N?"*1. On an almost contact metric manifold
N?F1 e can define the 2-form ® by

®(G1, Hi) = g(G1, ¢H1),

for any vector fields G and Hy on N2t If dyp = 0 and d® = 0, then N?"t!
is called an almost coKéhler manifold [10, 11, 13]. These manifolds set up the
Chinea-Gonzalez class Cy & Cy [9]. Almost coKéahler manifolds whose Reeb vec-
tor field £ is V-parallel are also named K-cosymplectic manifolds and set up
the class Cs.

Given an almost contact metric manifold A" *1 one defines the (1, 1)-tensor
1
fields h, b/ putting h = §£5¢, W =hod.

If A/?"*+1 is almost coKahler, both the operators h, k' are symmetric and
satisfy the properties

hé =0, tr(h)=0, tr(h')=0, hd¢=—¢h, VE=N, (2.1)
¢lg =1+ 2h%, trh® = =8(¢,€), (2.2)

where [ = R(.,£)¢ denotes the Jacobi operator and S indicates the Ricci
tensor ([16], [26]).
In [4] Blair et al. introduced the notion of (k, u)-nullity distribution associated
with an almost contact metric manifold, x, u being real numbers. In particular,
a (k, u)-almost coKahler manifold is an almost coKéhler manifold such that the
Reeb vector field belongs to the (k, p)-nullity distribution, that is the curvature
R satisfies

R(G1, H1)¢ = k(n(H1)G1 — n(G1)Hy) + p(n(Hi)RGy — n(G1)hHy),  (2.3)
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for any vector fields G, H; on N2+ If = 0, then ¢ belongs to the x-nullity
distribution and N?"*! is called an N (k)-almost coK#hler manifold. More gen-
erally, one can consider (k, u)-spaces, namely almost contact metric manifolds
whose Reeb vector field belongs to the (, p) distribution, x, u denoting smooth
functions varying exclusively in the direction of &.

We refer to ([6], [12]) for a detailed study of these spaces. This paper deals
with manifolds satisfying (2.3), with &, u constants.
So, let N?"*! be a (k, p)-almost coKihler manifold. Then, one has

h? = k¢?. (2.4)

It follows that x < 0 and x = 0 if and only if £ is V-parallel. Moreover, the
Ricci operator @) satisfies

Q& = 2nkE (2.5)

and if kK < 0, QQ acts as
Q(G1) = 2nkn(G1)§ + phGi. (2.6)

In particular, if & < 0, N?"*! has constant scalar curvature t = 2ns and the
covariant derivative Vh, V denoting the Levi-Civita connection, satisfies

(Ve h) Hi — (V)G = k(n(H1)¢G1 — n(G1)pH: @7
+20(¢G1, H1)E) + p(n(Gi)R Hy — n(H1)h Gy), '

for every vector fields Gy, Hy ([6], [18], [33]).

We also recall the following results, that will be utilized in section 3, 4.

Theorem 2.1. ([11]) An N(k)-almost coKahler manifold with k < 0 is locally
isomorphic to a solvable non-nilpotent Lie-group g,, 0 = v/ —k, endowed with
an almost coKahler structure.

Theorem 2.2. ([15]) Let the metric g of a (k, p)-almost coKahler manifold
N2+ be q gradient (m, p)-quasi-Einstein metric. Then, if & < 0, N2t reduces
to an N(k)-almost coKahler manifold.

Theorem 2.3. ([15]) There does not exist a gradient (m, p)-quasi-Einstein
structure (g,f, \) with Df = (£)€, for some non-constant smooth function f,
on a compact (k, jt)-almost coKahler manifold N*"*1 with n > 1, k < 0.
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3 (m, p)-quasi-Einstein metrics on (2n+1)-dimensional
(k, p)-almost coK&dhler manifolds

In this section, we prove the non-existence of closed (m, p)-quasi-Einstein

metrics and of closed p-Einstein solitons on a (k, p)-almost coKéahler manifold.

In this connection, it should be mentioned that in [16] and [18], Endo proved
the non-existence of (k, u)-almost coKéhler Einstein manifolds.

Theorem 3.1. Let (N1 ¢, & n,g) be a (k, u)-almost coKihler manifold, rx <
0. Then g cannot be a closed (m, p)-quasi-Einstein metric.

Proof. Assume that (g, X, \) is a closed (m, p)-quasi-Einstein structure. By (1.2)
and (2.6) for every G1 € x(N) one has

1
Ve X == nrn(Gr)§ — phGr+ —g(X, G1)X (3.1)

+ (pr + N)Gh.
Applying (3.1) and (2.7) one gets

R(G1, H\)X = (2nk — p?)(n(G1)R (Hy) — n(H1)h' (G1))
+ur(n(G1)oHr — n(H1)9Gr + 2g(¢H;i, G1)§) (3.2)
(g(X, HI)VG1X - g(X, Gl)vH1X)'

3~ 5

+

Q.

In particular, by (3.2) and (3.1), we obtain

9(R(G1, H1) X, §) =2kpg(pH1, G1)
o (gt A 200) (g(X, ()
~ a(X, Gu)u(H).

Moreover, by (2.3) one has

o(R(G1, H1)§, X) =r(n(H1)9(G1, X) — n(G1)g(H1, X))
+u(n(H1)g(hG1, X) —n(G1)g(hHy, X)).

Being g(R(G1, H1)¢, X) = —g(R(G1, H1)X, §), we obtain
1

2rpg(PH1, G1) + (—(pr + A = 2nk) — £)(9(X, H1)n(G1)

m (3.3)
— (X, Gu)n(Hy)) + p(n(H1)g(hG1, X) — n(G1)g(hHi, X))) =0.
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Given a point = € N, we consider Hy € T,(N), Hy # 0 such that n(H;) = 0.
Then by (3.3), we have
2/<c,ug(H1,H1) =0.

It follows that u = 0. Hence N is an N(k)-contact manifold and (3.1), (3.2)
reduce to

1
Ve, X = —2nkn(G1)€ + EQ(X’ G1)X + (prt+ N)Gi. (3.4)

R(Gy, H1)X = 2nk(n(G1)R (Hy) — n(Hy)R' (G1))
47%MXimeX—MKGDVmX) (39

By (3.4) and (3.5) one has
S(G1, X) = ———(a(X, G1) = n(X)n(G1))
+ (g4 X)a(X, Gu).

Being N an N(k)-manifold, we have S = 2nxn ® n. It follows, for every G; €
XW)
(pr+ A = K)g(X, G1) + (1 — m)rn(X)n(G1) = 0. (3.6)

Therefore, one has
(ot + A — K)(X — (X)) = 0. (3.7)

Assume that pr + X\ = k. By (3.3), being u = 0, we get, for G1, H; € x(N)
(m +2n — 1)r(g(X, Hi)n(G1) — 9(X, G1)n(Hy)) = 0,
and being m 4+ 2n — 1 > 0, one has
X —n(X)§=0.

Therefore, taking account of (3.7), we obtain X = f¢, with f = n(X). Thus
(3.4) entails

1
TH(G1) + Gi(f)€ = (—2nk + EfQ)n(Gl)f +(pr+ NG, GrexNV). (3.8)
Taking the inner product with &, we obtain

G =€, €)= 2wt [P+ g
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Now, (3.8) reduces to
fR(G1) = (pr+ M) (G1 = n(G1)E), G1 € X(N). (3.9)
Taking the trace in (3.9), one has
pt+A=0, fh =0.

Now it follows that X = 0, and S = 0. Thus we arrive at a contradiction. This
proves the theorem. QED

Remark 3.1. By Theorems 2.1, 3.1, it follows that the metric of a solvable non-
nilpotent Lie group g5, 0 = vV —k, endowed with an almost coKahler structure
defined in [11], cannot be (m, p)-quasi-Einstein metric.

Proposition 3.1. Let (N?"*1 ¢, & n,g) be a (k, u)-almost coKahler manifold,
Kk < 0. Then g cannot be a closed p-Einstein soliton.

Proof. Assume that g is a closed p-Einstein soliton with potential vector field
X. By (1.3) and (2.6), for any G; € x(N) one gets

Ve, X = —uhGy1 — 2nkn(Gr)§ + (2nkp + V) Gi. (3.10)
It follows

R(G1, H1)X = (2nk — i) (n(G1)W (Hy) — n(H1)R' (Gh))
+ur(n(Gr)oH — n(Hy)pG1 + 2g(oH;, G1)§).

Thus, by (2.6) and (3.11) we obtain

(3.11)

uhX + 2nkn(X)€ = 0.

It follows n(X) = 0, so X, & are orthogonal. Arguing as in Theorem 3.1 and
applying (3.10) one obtains

—2nk+2nkp+ A= g(VeX,§) = —g(Vel, X) =0,

and

g(th ¢G1) = g(h,Xa Gl) = g(leva) =
— (Vi X,€) = (205 — 2nmp — An(Gh) =0,
for any Gy € x(N). It follows hX = 0, kX = —k¢?’X = —h?X = 0. Then, we

have X = 0 and (N, g) is an Einstein manifold. This contradicts the hypothesis
k < 0. Hence, the proposition is proved. QED
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Remark 3.2. It is known that any (0, n)-almost coKahler manifold is a K-
cosymplectic manifold. The following result of Chen [8] can be regarded as the
counterpart of Proposition 3.2.

Theorem 3.2. ([8]) Let M be a K -cosymplectic manifold. Suppose that V' is a
closed vector field on M such that

1 1
“Lyg+S— —VPeVb=)g,
2 m

A€ER, A#0. Then M is n-Einstein.

4 Gradient (m,p)-quasi-Einstein metrics on three -
dimensional (k, ;1)-almost coK&dhler manifolds

In this section we give an alternative proof of the non-existence of gradient
(m.p)-quasi-Einstein structures (g,f,\) on a (x, u)-almost coKéhler manifold
(N3, ¢,€,m,8). We point up that this result can be regarded as the counterpart
of Theorem 2.3 dealing with manifolds of dimension 2n + 1 > 3. Moreover, we
prove the non-existence of gradient p-Einstein solitons on A®. The proofs are
based on the property that the Weyl tensor of any Riemannian manifold (A3, g)
vanishes. Equivalently, the curvature tensor R acts as

R(G1, H1)Fy =g(Hy, F1)QG1 — 9(G1, F1)QHy + S(Hy, F1)Gy

v (4.1)
—8(G1, F1)Hy — §(G(H17F1)G1 —9(G1, F1)Hy),
for any vector fields G1, Hy, F1.
Let (M3, ,&,1,9) be a (k, p)-almost coKéhler manifold. Then @ acts as
v T
Q= (5—/4)[+(3/£—§)77®§+uh. (4.2)

Moreover, according to Theorem 2.2, if A® admits a gradient (m,p)-quasi-
Einstein metric and x < 0, then z = 0 and N3 is a an N(x)-almost coK#hler
manifold. Hence if kK < 0, we have

t=2kr, Q=2rNRXE. (4.3)

R(G1, H1)F1 = — k(g(Hy, F1)G1 — 9(G1, F1)Hy) — 26(n(G1)n(F1) H,

—n(H1)n(F1)G1 + 9(G1, Fi)n(H1)§ — g(Ha, Fl)n(Gl)g)(' |
4.4

3

In particular, (N?, g) cannot be an Einstein manifold.

Firstly, we state a preliminary result.
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Proposition 4.1. Let (N3, ¢,£,1m,9) be a (k, u)-almost coKihler manifold, x <
0, and § be a smooth function such that Df = £(f)€. Then (g,f, A) cannot be a

gradient (m, p)-quasi- Einstein metric.

Proof. Assume that (g,f,\) is a gradient (m, p)-quasi-Einstein structure and
Df = £(§)€. By (1.4), (4.4), for any vector fields G, Hy, we get

G1(£())n(Hr) + £(F)g(h' Gy, Hy) = —2kn(G1)n(Hy)

o (4.5)
+ —&()*(Gn(H) + (2ip + Ng(Gr, Hn).

Let p be a point of N3 and consider X € T,N3, such that hX = v/—xX and
|| X]|| = 1. Putting G1 = X, H; = ¢X in (4.5), we have, at p,

£(fg(h' X, ¢X) =0, namely —r&(f)(p) = 0.
It follows Df = £(f)¢ = 0 and by (4.5) we obtain
(2kp+ N)g —26n®@n=0.
It follows k = 0, A = 0, and this contradicts the hypothesis x < 0. QED

Theorem 4.1. Let (N3,¢,&,1,9) be a (k, 1)-almost coKahler manifold. If k <
0, g cannot be a gradient (m, p)-quasi-Einstein metric.

Proof. We assume that (g, f, \) is a gradient (m, p)-quasi-Einstein structure. By
(1.4), (4.3), for any vector fields Gy, one has

Ve, Df = ~26n(G1)E + - Ci(f)DF + (2xp + NG, (4.6)

Taking the covariant derivative along any vector field Hy, we get

Vi, (Va, Df) = —2H1(n(G1))€ — 2kn(G1)h'Hy

+ %(Hl(Gl(f))Df + G1(f)V i, Df) + (26p + \) Vi, G1. (4.7
It follows
R(Gh, H1)Df = —2k(n(H1)W' Gy — n(G1)R Hy)
= 2 ((Gr) ~ GalIn(H)E + - 2+ N ()G~ GrpH).

In particular, taking the inner product with &, we get

L @n(p— 1) + A (Hy()n(G) — Gr(fn(H)).  (4.9)

m

9(R(G1, H1)Df,€) =
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On the other hand, applying Theorem 2.2, N3 is an N(k)-almost coKihler
manifold, so we have

9(R(G1, H1)Df,€) = —&(n(H1)G1(f) — n(G1)H(f)).

Then, comparing with (4.9), one obtains

(L (25p— 1)+ 2) ~ W) (@) ~ r(m(E)) =0, (410

Equation (4.10) implies

(- (2n(p — 1) + A) — 5)(DF ~ £()€) = 0.

If 26(p — 1) + A — mr # 0, then Df = £(f)€ and by Prop. 4.1, this case cannot
occur. Hence, we have
2kp+ A= (2+m)k. (4.11)

By direct computation, applying (4.8), (4.11) one obtains, for any vector field

G
§(G1, D) = 22 (E(fn(Gr) + (m + DG ().

Moreover, applying (4.3), we have
S(G1, Df) = 26n(G1)S(F)-

It follows )
m J—
df = —— .
F= it
This entails £(f) = 0, df = 0 and (1.4) reduces to S = (2kp + A\)g = (m + 2)kg.
Hence (A3, g) is an Einstein manifold and we obtain a contradiction.

An analogous statement holds in the case of p-Einstein solitons. In fact, we
prove the next result.

Theorem 4.2. Let (N3, $,€,1,9) be a (k, 1)-almost coKahler manifold. If k <
0, then g is not a gradient p-FEinstein soliton.

Proof. Being N3 a (k, u)-almost coK#hler manifold, the Ricci operator acts as

([18], [6])
Q =2k ® &+ ph. (4.12)

Assume that (g, f, \) is a gradient p-Einstein soliton. By (1.5), (4.12) the covari-
ant derivative acts as

Ve, Df = —26n(G1)€ — phGr + (2kp + V) Gh. (4.13)
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Then, by direct computation, for any vector fields G1, Hy one gets

R(G1,H1)Df = —QK(n(Hl)h’Gl —n(Gy)W Hy) + ,LL((Vth)Gl — (Vg h)Hy).
(4.14)
Taking the inner product by &, we have

9(R(G1, H1)Df, &) = —pg(Va, &, hG1) + pg(Va, &, hHy)
= —2ug(¢pH1,h*G1) = 2kpg(Gy, ¢H)).

Hence, applying the (k, u)-condition, one obtains

2kp9(G1, 9H1) + £ (n(H1)G1(F) — n(G1)H1(f))
p(n(H1)g(hG1, Df) — n(G1)g(hHi, Df)) = 0.

In particular, putting G1 = ¢H;, with H; orthogonal to &, we get kug(Hi, H1) =
0. It follows u = 0, so S = 2kn ® 7. On the other hand, by (4.14) we obtain
S(G1, Df) = 0, for any vector field G;. It follows S(&, Df) = 2k&(f) = 0, and
then £(f) = 0.

Therefore, for any vector field G, we have

g(vG1‘Df7 5) = —Q(VGlf, Df) = _g(h‘/Gla Df)

By (4.13) we have g(Vg,Df,&) = (2k(p — 1) + A\)n(Gy). Hence, for any G;
orthogonal to £ one gets g(h'G1, Df) = 0, so Df is orthogonal to the distribution
< & >+ namely Df = £(f)¢€ = 0. Applying (1.5), g is an Einstein metric and we
obtain a contradiction. QED

Acknowledgment. The authors are thankful to the referee for his/her valu-
able suggestions towards the improvement of the paper.
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