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1 Introduction and preliminaries

In this note, our aim is to show that families of smooth hypersurfaces of
Rn+1 which are all “C1–close” enough to a fixed compact, embedded one, have
uniformly bounded constants in some relevant inequalities for mathematical
analysis, like Sobolev, Gagliardo–Nirenberg, “geometric” Calderón–Zygmund,
trace and extension inequalities. These technical results are quite useful, in par-

iSupported by The Netherlands Organisation for Scientific Research (NWO), Grant Num-
ber 613.009.148

iiMember of the INDAM–GNAMPA research group
iiiMember of the INDAM–GNAMPA research group and partially supported by PRIN

Project 2022E9CF89 “GEPSO – Geometric Evolution Problems and Shape Optimization”
http://siba-ese.unisalento.it/ © 2024 Università del Salento
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ticular, in the study of the geometric flows of hypersurfaces, when one studies the
behavior of the hypersurfaces “close” (in some norm, for instance in C1–norm)
to critical ones (possibly “stable”) or the asymptotic limits of flows existing for
all times (see for instance [2, 3, 10, 13], where such controls on the constants
are necessary).

We start by setting up some notation and recall some basic facts about
hypersurfaces in Euclidean spaces that we need in the sequel, possible references
are [6, 1, 15].

We will consider smooth, compact hypersurfaces M , embedded in Rn+1,
getting a Riemannian metric g by pull–back of the standard scalar product
〈· | ·〉 of Rn+1 via the embedding map ϕ : M → Rn+1, hence, turning it into
a Riemannian manifold (M, g). Then, we use ∇ for the associated Levi–Civita
covariant derivative and µ for the canonical measure induced by the metric g,
which actually coincides with the n–dimensional Hausdorff measure Hn of Rn+1

restricted to M . Then, the components of g in a local chart are

gij =

〈
∂ϕ

∂xi

∣∣∣ ∂ϕ
∂xj

〉
and the “canonical” measure µ, induced on M by the metric g is then locally
described by µ =

√
det gij L n, where L n is the standard Lebesgue measure on

Rn.
The inner product on M , extended to tensors, is given by

g(T, S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ikj1...jl

Ss1...skz1...zl

where gij is the matrix of the coefficients of the metric tensor in the local
coordinates and gij is its inverse. Clearly, the norm of a tensor is then

|T | =
√
g(T, T ) .

The induced Levi–Civita covariant derivative on (M, g) of a vector field X
and of a 1–form ω are respectively given by

∇jXi =
∂Xi

∂xj
+ ΓijkX

k , ∇jωi =
∂ωi
∂xj
− Γkjiωk ,

where Γijk are the Christoffel symbols of the connection ∇, expressed by the
formula

Γijk =
1

2
gil
( ∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

)
. (1.1)

With ∇mT we will mean the m–th iterated covariant derivative of a tensor T .
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Being M embedded, we can assume it is a subset of Rn+1 (hence the em-
bedding map is the identity) and we denote with ν : M → Rn+1 its global
unit normal vector field, pointing outward. It is indeed well known (theorem of
Jordan–Brouwer, see [6, Proposition 12.2], for instance) that any compact, em-
bedded M “divides” Rn+1 in two connected components, one of them bounded
(called “the interior”), both having M as its smooth boundary, hence the hy-
persurface is orientable and such field ν exists.

Then, we define the second fundamental form B which is a symmetric 2–form
given, in a local chart, by its components

Bij = −
〈

∂2ϕ

∂xi∂xj

∣∣∣∣ ν〉
and whose trace is the mean curvature H = gijBij of the hypersurface (with
these choices, the standard sphere of Rn+1 has positive mean curvature).

Remark 1. If the hypersurface M is locally the graph of a function f :
U → R with U an open subset of Rn, that is, M = {(x, f(x)) : x ∈ U}, then
we have

gij = δij +
∂f

∂xi

∂f

∂xj
, ν = − (∇Rnf,−1)√

1 + |∇Rnf |2
, (1.2)

Bij = −
HessR

n

ij f√
1 + |∇Rnf |2

, (1.3)

H = − ∆Rnf√
1 + |∇Rnf |2

+
HessR

n
f(∇Rnf,∇Rnf)(√

1 + |∇Rnf |2
)3 = −divR

n

( ∇Rnf√
1 + |∇Rnf |2

)
(1.4)

where HessR
n
f is the (standard) Hessian of the function f .

Then, the following Gauss–Weingarten relations hold,

∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
− Bijν

∂ν

∂xj
= Bjlg

ls ∂ϕ

∂xs
, (1.5)

which easily imply

∇2ϕ = −Bν and ∆ϕ = −Hν .

The symmetry properties of the covariant derivative of B are given by the
following Codazzi equations,

∇iBjk = ∇jBik = ∇kBij
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which imply the following Simons’ identity (see [23]),

∆Bij = ∇i∇jH + H Bilg
lsBsj − |B|2Bij . (1.6)

Finally, the Riemann tensor can be expressed as (Gauss equations),

Rijkl = BikBjl − BilBjk . (1.7)

If now we choose a fixed smooth, compact, embedded hypersurface M0 of
Rn+1, it is well known (by its compactness and smoothness) that, for ε > 0
small enough, M0 has a tubular neighborhood

Nε =
{
x ∈ Rn+1 : d(x,M0) < ε

}
(where d is the Euclidean distance on Rn+1) such that the orthogonal projection
map π : Nε → M0 giving the (unique) closest point on M0, is well defined
and smooth. Then, if E is “the interior” of M0, the signed distance function
dE : Nε → R from M0

dE(x) =

{
d(x,M0) if x /∈ E
−d(x,M0) if x ∈ E

is smooth in Nε and ν(x) = ∇Rn+1
dE(x), for every x ∈M0. Moreover, for every

x ∈ Nε, the projection map π is given explicitly by

πE(x) = x−∇Rn+1
d2
E(x)/2 = x− dE(x)∇Rn+1

dE(x)

(indeed, actually ∇Rn+1
dE(x) = ∇Rn+1

dE(πE(x)) = ν(πE(x)) for every x ∈ Nε).
From now on, we will consider smooth hypersurfaces contained in Nε that

can be written (possibly after reparametrization) as graph over M0, that is,

M =
{
x+ ψ(x)ν(x) : x ∈M0

}
,

for a smooth “height function” ψ : M0 → R with |ψ(x)| < ε, for every x ∈M0.
We define the following families (clearly all containing M0),

C1
δ(M0) =

{
M =

{
x+ ψ(x)ν(x) : x ∈M0

}
for a smooth ψ : M0 → R with ‖ψ‖C1(M0) < δ

}
where δ ∈ (0, ε) and we are considering on M0 the induced metric from Rn+1 (in
order to define |dψ|). Sometimes, we will use the expression “C1–close to M0”,
meaning that the above constant δ is small. Moreover, since we will use it, we
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also define the subfamily C1,α
δ (M0) of the hypersurfaces M ∈ C1

δ(M0) such that
the “height function” satisfies ‖ψ‖C1,α(M0) < δ.

We are going to see that the constants in Sobolev, Gagliardo–Nirenberg,
some geometric Calderón–Zygmund inequalities, trace and extension inequali-
ties are uniformly bounded, depending only on M0 and δ.

Before starting discussing that, we introduce another technical construction.
We notice that, possibly choosing a smaller ε > 0, the tubular neighborhood
Nε of M0 defined above, can be covered by a finite number of open hypercubes
Q1, . . . , Qk ⊆ Rn+1 respectively centered at some points p1, . . . , pk ∈ M0, such
that, for every i ∈ {1, . . . , k} and every M ∈ C1

δ(M0), with δ ∈ (0, ε), the
“pieces” of hypersurfaces M ∩ Qi can be written as orthogonal graphs on the
affine hyperplanes ΠpiM0 = pi + TpiM0, parallel to the tangent hyperplanes to
M0 at the points pi ∈M0 and passing through them, as in the following figure.

p
i

M

p
i

Π M0

M0

Q
i

Figure 1
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Then, we let ρi : Rn+1 → [0, 1] a smooth partition of unity (with compact
support) for Nε, associated to the open covering Qi, hence, if M ∈ C1

δ(M0) and
u : M → R, there holds

u(y) =
k∑
i=1

u(y)ρi(y)

with the compact support of uρi : M → R contained in the piece M ∩ Qi of
the hypersurface M , which is described as the graph of a smooth function θi :
ΠpiM0 → R, that is, M ∩Qi is the image of the map x 7→ Θ(x) = x+θi(x)ν(pi)
on ΠpiM0∩Qi. Moreover, it is easy to see that, possibly choosing an even smaller
ε > 0, we have ‖θi‖C1(ΠpiM0) 6 2δ, for every i ∈ {1, . . . , k}, since also M0 can
be locally written as an orthogonal graph on ΠpiM0.

We notice and underline that the family (and the number) of the hyper-
cubes Qi, as well as the width ε > 0 of the tubular neighborhood Nε that we
considered for this construction, only depend on M0, precisely on its local and
global geometry (in particular, on its second fundamental form B0 – see [9] for
more details).

We highlight to the reader that in the following, we will often denote with C
a constant which may vary from a line to another.

2 Sobolev, Poincaré and Gagliardo–Nirenberg inter-
polation inequalities

We start discussing the Sobolev constants CS(M,p) of any compact n–
dimensional hypersurface M , for every p ∈ [1, n), entering in the following
inequalities (which are known to hold, see [5, Chapter 2], for instance),

‖u‖Lp∗ (M) =
(ˆ

M
|u|p∗ dµ

)1/p∗

6CS(M,p)
(ˆ

M
|∇u|p + |u|p dµ

)1/p

=CS(M,p)‖u‖W 1,p(M)

for every C1–function u : M → R (or u ∈ W 1,p(M)), where p∗ = np
n−p is the

Sobolev conjugate exponent of p. It is well known that a bound on CS(M, 1)
implies a bound on CS(M,p), for every p ∈ [1, n) (see [5, Chapter 2, Section 5],
for instance), hence we concentrate on the case p = 1, where 1∗ = n

n−1 .

We first want to argue localizing things by means of the construction of
the previous section. We then have a finite family of hypercubes Qi centered at
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pi ∈M0, the partition of unity ρi and a parametrization x 7→ Θ(x) = x+θi(x)νi
on ΠpiM0 ∩Qi of each piece M ∩Qi of any smooth hypersurface M ∈ C1

δ(M0),
where νi = ν(pi) and the functions θi : ΠpiM0 → R satisfy ‖θi‖C1(ΠpiM0) 6 2δ,
for every i ∈ {1, . . . , k}. Moreover, in dealing with any piece M ∩ Qi, we will
assume (without clearly losing generality) that ΠpiM0 = Rn ⊆ Rn+1 and we
observe that in such parametrization, by formula (1.2), the Riemannian measure
µ associated to the (induced) metric g on M is given by µ = JΘ L n, with L n

the Lebesgue measure on ΠpiM0 = Rn and JΘ =
√

1 + |∇Rnθi|2 , which clearly
satisfies 1 6 JΘ 6 1 + 2δ.

For every C1–function u : M → R, we can write(ˆ
M
|u| n

n−1 dµ
)n−1

n
=
(ˆ

M

∣∣∣ k∑
i=1

uρi

∣∣∣ n
n−1

dµ
)n−1

n
6

k∑
i=1

(ˆ
M∩Qi

|uρi|
n
n−1 dµ

)n−1
n

as the compact support of uρi is contained in M ∩Qi.
Then, for every C1 function v : M → R with compact support in M ∩ Qi,

there holds(ˆ
M∩Qi

|v(y)| n
n−1 dµ(y)

)n−1
n

=
(ˆ

Rn
|v(x+ θi(x)νi)|

n
n−1JΘ(x) dx

)n−1
n

6C(δ)
(ˆ

Rn
|v(x+ θi(x)νi)|

n
n−1 dx

)n−1
n
,

as JΘ 6 1 + 2δ and applying the Sobolev inequality for functions with compact
support in Rn, we have(ˆ

Rn
|v(x+ θi(x)νi)|

n
n−1 dx

)n−1
n

6 C

ˆ
Rn
|∇Rn[v(x+ θi(x)νi)]| dx

= C

ˆ
Rn

∣∣∇v(x+ θi(x)νi) ◦
(
Id +∇Rnθi(x)⊗ νi

)∣∣ dx
6 C

ˆ
Rn
|∇v(x+ θi(x)νi)|

∣∣Id +∇Rnθi(x)⊗ νi
∣∣ dx

= C

ˆ
Rn
|∇v(x+ θi(x)νi)|

√
1 + |∇Rnθi|2 dx

= C

ˆ
M
|∇v(y)| dµ(y) , (2.8)

as
√

1 + |∇Rnθi|2 = JΘ. Hence,(ˆ
M∩Qi

|v| n
n−1 dµ

)n−1
n
6 C(δ)

ˆ
M
|∇v| dµ
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and setting vi = uρi, after summing on i ∈ {1, . . . , k}, we conclude

(ˆ
M
|u| n

n−1 dµ
)n−1

n
6

k∑
i=1

(ˆ
M∩Qi

|vi|
n
n−1 dµ

)n−1
n

6C(δ)

k∑
i=1

ˆ
M
|∇vi| dµ

=C(δ)
k∑
i=1

ˆ
M
|∇u|ρi + |u| |∇ρi| dµ

6C(δ)

ˆ
M
|∇u| dµ+ C(M0, δ)

ˆ
M
|u| dµ , (2.9)

as |∇ρi| 6 C(M0, δ), for every i ∈ {1, . . . , k}. This clearly gives a uniform
bound on CS(M, 1) for all the hypersurfaces in C1

δ(M0), depending only on M0

(in particular, on its second fundamental form B0, as we said in the previous
section) and δ > 0.

Let now see an alternate line, based on the “global” graph representation of
the hypersurfaces M ∈ C1

δ(M0) over M0.

For every C1 function u : M → R, we have

(ˆ
M
|u(y)| n

n−1 dµ(y)
)n−1

n
=
(ˆ

M0

|u(x+ ψ(x)ν(x))| n
n−1 JΨ(x) dµ0(x)

)n−1
n

where JΨ is the Jacobian of the map Ψ : M0 →M and it is an easy check that,
at every point x ∈M0, there holds

1

C(B0, δ)
6 JΨ 6 C(B0, δ) , (2.10)

for some constant C(B0, δ) > 0, where B0 is the second fundamental form of
M0. Moreover, C(B0, δ) goes to 1 as δ → 0. Notice that the fact that B0 appears
here can be seen from the expression of dΨ, that is

dΨx = IdTxM0 + dψx ⊗ ν(x) + ψ(x)dνx ,

as, by the Gauss–Weingarten relations (1.5), dνx is related to B0(x).
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Then, by applying the Sobolev inequality holding for M0, we have(ˆ
M0

|u(x+ ψ(x)ν(x))| n
n−1 dµ0(x)

)n−1
n

6CS(M0, 1)

ˆ
M0

∣∣∇0[u(x+ ψ(x)ν(x))]
∣∣ dµ0(x)

+ CS(M0, 1)

ˆ
M0

|u(x+ ψ(x)ν(x))| dµ0(x)

6CS(M0, 1)

ˆ
M0

|∇u(x+ ψ(x)ν(x))| |dΨ(x)| dµ0(x)

+ CS(M0, 1)

ˆ
M0

|u(x+ ψ(x)ν(x))| dµ0(x)

6C(M0, δ)

ˆ
M
|∇u(y)| JΨ−1(y) dµ(y)

+ C(M0, δ)

ˆ
M
|u(y)| JΨ−1(y) dµ(y)

6C(M0, δ)
( ˆ

M
|∇u(y)| dµ(y) +

ˆ
M
|u(y)| dµ(y)

)
.

Hence, (ˆ
M
|u| n

n−1 dµ
)n−1

n
6 C(M0, δ)

(ˆ
M
|∇u| dµ+

ˆ
M
|u| dµ

)
.

As before, this means that the constant C(M0, δ) uniformly bounds CS(M, 1)
for all the hypersurfaces in C1

δ(M0), moreover, since C(M0, δ)→ 1, as δ → 0, it
also shows the continuous dependence of CS(M, 1) under the C1–convergence
of the hypersurfaces.

Theorem 1. Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded
in Rn+1. Then, there exist uniform bounds, depending only on M0 and δ (more
precisely, on the “C1– structure” of the immersion of M0 in Rn+1, its dimension
and its second fundamental form), for all the hypersurfaces M ∈ C1

δ(M0) on:

(i) the volume of M from above and below away from zero,

(ii) the Sobolev constants for p ∈ [1, n) of the embeddings W 1,p(M) ↪→ Lp
∗
(M),

(iii) the Sobolev constants for p ∈ (n,+∞] of the embeddings W 1,p(M) ↪→
C0,1−n/p(M),

(iv) the constants in the Poincaré–Wirtinger inequalities on M for p ∈ [1,+∞],

(v) the constants in the embeddings of the fractional Sobolev spaces W s,p(M),
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(vi) the constants in the Gagliardo–Nirenberg interpolation inequalities on M .

Moreover, all these bounds go to the corresponding constants for M0, as δ → 0.

Proof.
(i) This is trivial due to the C1–closedness of M to M0.
(ii) As explained at the beginning of the section, we can estimate the constant

in the Sobolev inequality for p ∈ [1, n), by means of CS(M, 1), which is uniformly
bounded for all the hypersurfaces M ∈ C1

δ(M0), by the above discussion.
(iii) If p > n, we show that there exists a uniform constant C(M0, p, δ) such

that
‖u‖C0,α(M) 6 C(M0, p, δ)‖u‖W 1,p(M) (2.11)

with α = 1− n/p and

‖u‖C0,α = sup
y∈M
|u(y)|+ sup

y,y∗∈M, y 6=y∗

|u(y)− u(y∗)|
|y − y∗|α ,

for all M ∈ C1
δ(M0) and every C1 function u : M → R.

In the same setting and notation at the beginning of this section, it is easy
to see that we can choose a special family of hypercubes Qi such that enlarging
their edges of a small value σ > 0, we have hypercubes Q̃i with the further
property that M ∩ Q̃i can be still written as an orthogonal graph on ΠpiM0 =
Rn ⊆ Rn+1.

The following holds

sup
y∈M
|u(y)| 6

k∑
i=1

sup
y∈M∩Qi

|u(y)ρi(y)|

and for every C1 function v : M → R with compact support in M ∩ Qi, by
applying the Sobolev inequality for p > n in Rn and arguing as in obtaining
estimate (2.8), we have

sup
y∈M∩Qi

|v(y)| = sup
x∈Rn

|v(x+ θi(x)νi)|

6C
(ˆ

Rn

∣∣∇v(x+ θi(x)νi) ◦
(
Id +∇Rnθi(x)⊗ νi

)∣∣p dx)1/p

6C(δ)
(ˆ

Rn
|∇v(x+ θi(x)νi)|p dx

)1/p

6C(δ)
(ˆ

Rn
|∇v(x+ θi(x)νi)|pJΘ dx

)1/p

=C(δ)
(ˆ

M
|∇v(y)|p dµ(y)

)1/p
, (2.12)
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as JΘ > 1. Setting vi = uρi and estimating as in getting inequality (2.9), we
conclude

sup
M
|u| 6 C(M0, p, δ)

(ˆ
M
|∇u|p + |u|p dµ

)1/p
. (2.13)

Regarding the seminorm [u]C0,α = supy,y∗∈M, y 6=y∗
|u(y)−u(y∗)|
|y−y∗|α , given two points

y, y∗ ∈M , we have

|u(y)− u(y∗)| =
∣∣∣ k∑
i=1

vi(y)− vi(y∗)
∣∣∣ 6 k∑

i=1

|vi(y)− vi(y∗)| . (2.14)

Then, for any C1 function v : M → R with compact support in M ∩Qi, if y and
y∗ both belong to the intersection of M with the “enlarged” hypercube Q̃i, we
can write y = x + θi(x)νi and y∗ = x∗ + θi(x

∗)νi for some x, x∗ ∈ Q̃i ∩ ΠpiM0

(by our initial choice of the family Qi) and there holds

|v(y)− v(y∗)| = |v(x+ θi(x)νi)− v(x∗ + θi(x
∗)νi)|

6C(M0, p) |x− x∗|α ‖∇R
n
(v ◦Θ)‖Lp(Rn)

6C(M0, p, δ) |y − y∗|α ‖∇R
n
(v ◦Θ)‖Lp(Rn)

6C(M0, p, δ) |y − y∗|α ‖∇v‖Lp(M) ,

where the first inequality follows as in the proof of Theorem 4 in Section 5.6.2
of [14], the second one holds since |x−x∗| 6 |y−y∗| and the third one is obtained
arguing like in estimate (2.12).

If both y∗ and y do not belong to M ∩ Q̃i clearly |v(y)− v(y∗)| = 0, while if
y ∈M ∩ Q̃i with v(y) 6= 0 but y∗ 6∈M ∩ Q̃i, then y ∈M ∩Qi, hence |y−y∗| > σ
and

|v(y)− v(y∗)|
|y − y∗|α 6

|v(y)|
σα

6 C(M0, p, δ)
‖∇v‖Lp(M)

σα
,

by estimate (2.12).
It follows that, for every y and y∗ in M , we have

|v(y)− v(y∗)|
|y − y∗|α 6 C(M0, p, δ)(1 + σ−α)‖∇v‖Lp(M) .

Then, putting together this and inequality (2.14), we conclude, for every y and
y∗ in M ,

|u(y)− u(y∗)| 6
k∑
i=1

|vi(y)− vi(y∗)| 6 C(M0, p, δ) |y − y∗|α ‖∇u‖W 1,p(M)

which, with inequality (2.13) gives the desired estimate (2.11).
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(iv) In order to obtain the conclusion for the Poincaré–Wirtinger inequality,
for any p ∈ [1,+∞] and all M ∈ C1

δ(M0),

‖u− ũ‖Lp(M) 6 C(M0, p, δ)‖∇u‖Lp(M) ,

where ũ =
ffl
M u dµ, we argue by contradiction assuming this uniform estimate is

false. Then, for each k ∈ N, there would exist a graph hypersurface Mk ∈ C1
δ(M0)

and a function uk ∈W 1,p(Mk) such that

‖uk − ũk‖Lp(Mk) > k‖∇uk‖Lp(Mk).

where ũk =
ffl
Mk

uk dµk. We renormalize these function as

vk =
uk − ũk

‖uk − ũk‖Lp(Mk)
,

then,
´
Mk

vk dµk = 0, ‖vk‖Lp(Mk) = 1 and ‖∇vk‖Lp(Mk) 6 1/k.
If we consider the functions wk = vk ◦Ψk : M0 → R, where Ψk : M0 → Mk

is given by Ψk(x) = x+ψk(x)ν(x) (as in the second way to deal with CS(M, 1),
at the beginning of this section), we have

0 < C ′(M0, p, δ) 6 ‖wk‖Lp(M0) 6 C(M0, p, δ) (2.15)

and
‖∇wk‖Lp(M0) 6 C(M0, p, δ)/k . (2.16)

In particular, the functions wk are equibounded in W 1,p(M0), hence by the
Rellich–Kondrachov embedding theorem and the estimate (2.16), there exists a
subsequence (not relabeled) converging in Lp(M0) to a constant function equal
to some λ ∈ R which cannot be zero, by the estimate (2.15). Moreover, there
holdsˆ

M0

wk(x) JΨk(x) dµ0(x) =

ˆ
Mk

wk ◦Ψ−1
k (y) dµk(y) =

ˆ
Mk

vk(y) dµk(y) = 0 ,

hence, since JΨk are equibounded (formula (2.10)) and assuming, possibly pass-
ing again to a subsequence, that Vol(Mk) → V > 0, by means of point (i), we
conclude

0 =

ˆ
M0

(wk(x)− λ) JΨk(x) dµ0(x) + λ

ˆ
M0

JΨk(x) dµ0(x)→ λV ,

as k →∞, being
´
M0

JΨk(x) dµ0(x) = Vol(Mk). This is clearly a contradiction,
as λ, V 6= 0 and we are done.
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The case p = +∞ is analogous.
(v) As for the “usual” (with integer order) Sobolev spaces, all the constants

in the embeddings of the fractional Sobolev spaces are also uniform for the
family C1

δ(M0). The proof is along the same line, localizing with a partition of
unity and using the inequalities holding in Rn (see [21] and [22]).

(vi) Finally, we want to show that for any q, r real numbers 1 6 q 6 +∞, 1 6
r 6 +∞ and j,m integers 0 6 j < m, there exists a constant C depending on
j,m, r, q, θ,M0 and δ such that the following interpolation inequalities hold

‖∇ju‖Lp(M) 6 C
(
‖∇mu‖Lr(M) + ‖u‖Lr(M)

)θ‖u‖1−θLq(M), (2.17)

for all M ∈ C1
δ(M0), where

1

p
=
j

n
+ θ
(1

r
− m

n

)
+

1− θ
q

for every θ ∈ [j/m, 1] such that p is nonnegative, with the exception of the case
r = n

m−j 6= 1 for which the inequality is not valid for θ = 1.

Moreover, if u : M → R is a smooth function with
ffl
M u dµ = 0, inequal-

ity (2.17) simplifies to

‖∇ju‖Lp(M) 6 C‖∇mu‖θLr(M)‖u‖1−θLq(M) . (2.18)

We can obtain inequality (2.17) arguing as in Proposition 5.1 of [20], essen-
tially following the line of the proof of Theorem 3.70 in [5], but substituting the
Sobolev–Poincarè inequality (41) in the argument there with its version where
the constant is uniform for all M ∈ C1

δ(M0). Indeed, the other “ingredients” in
such proof are a bound on the volume (uniform, by point (i)) and some “uni-
versal” inequalities in which the constants do not depend on the hypersurfaces
at all [5, Theorem 3.69].

Such Sobolev–Poincarè inequality (41) in Theorem 3.70 of [5] reads

‖u‖Lp∗ (M) 6 CSP (M,p)‖∇u‖Lp(M) , (2.19)

for every C1–function u : M → R (or u ∈ W 1,p(M)) with
´
M u dµ = 0, (here,

as before, p∗ = np
n−p is the Sobolev conjugate exponent) and we actually need

it with a uniform constant, in order to get inequality (2.18), by the very same
proof of such theorem.

This inequality actually follows by points (ii) and (iv). Indeed, for every
u ∈W 1,p(M), by Sobolev inequality, we have

‖u‖Lp∗ (M) 6 C(M0, p, δ)
(
‖∇u‖Lp(M) + ‖u‖Lp(M)

)
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and, by Poincarè–Wirtinger inequality, as ũ =
´
M u dµ = 0,

‖u‖Lp(M) 6 C(M0, p, δ)‖∇u‖Lp(M)

hence, we obtain inequality (2.19) with CSP (M,p) bounded by a uniform con-
stant C(M0, p, δ), for every M ∈ C1

δ(M0). QED

Remark 2 (The fractional Sobolev spaces W s,p(M)). At point (v) of the
theorem above we considered the fractional Sobolev space W s,p on the hyper-
surfaces M ∈ C1

δ(M0), which are usually defined via local charts for M and
partitions of unity, that is, getting back to the definition with the Gagliardo
W s,p–seminorms in Rn (we refer to [4, 12, 21, 22], for details). They can be also
defined equivalently by considering directly on M the Gagliardo W s,p–seminorm
of a function u ∈ Lp(M), for s ∈ (0, 1), as follows:

[u]pW s,p(M) =

ˆ
M

ˆ
M

|u(x)− u(y)|p
|x− y|n+sp

dµ(x) dµ(y)

and setting ‖u‖W s,p(M) = ‖u‖Lp(M) + [u]W s,p(M). Moreover, the constants giv-
ing the equivalence of the two norms obtained by localization or by this direct
definition are uniform for all M ∈ C1

δ(M0). Indeed, the localization method
of Section 1, is “uniform” for all M ∈ C1

δ(M0), meaning that the number of
necessary local charts is fixed and the diffeomorphisms between Rn and “cor-
responding” (associated to correlated local charts, that is, being a graph on
the same piece of M0, as in our construction) local “pieces” of any different
hypersurfaces M ∈ C1

δ(M0), are uniformly “C1–close” one to each other.

3 Geometric Calderón–Zygmund inequalities

Theorem 2. Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embed-
ded in Rn+1 and p ∈ (1,+∞). Then, if δ > 0 is small enough, there exists a
constant C(M0, p, δ) such that the following geometric Calderón–Zygmund in-
equality holds,

‖B‖Lp(M) 6 C(M0, p, δ)
(
1 + ‖H‖Lp(M)

)
for every M ∈ C1

δ(M0).

Proof. We recall the local representation as graphs of the hypersurfaces M ∈
C1
δ(M0) over M0, as at the beginning of the previous section. We have a finite

family of hypercubes Qi centered at pi ∈ M0, the partition of unity ρi and a
parametrization x 7→ Θ(x) = x + θi(x)νi on ΠpiM0 ∩ Qi of each piece M ∩ Qi
of any smooth hypersurface M ∈ C1

δ(M0), where νi = ν(pi) and the functions
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θi : ΠpiM0 → R satisfy ‖θi‖C1(ΠpiM0) 6 2δ, for every i ∈ {1, . . . , k}. Moreover, in
dealing with any piece M∩Qi, we will assume (clearly without losing generality)
that ΠpiM0 = Rn ⊆ Rn+1 and thatQi∩ΠpiM0 is the hypercubeQ2R ⊆ ΠpiM0 =
Rn with edges of length 2R > 0, centered at the origin. Finally, we can also ask
that the family of hypercubes Q′i ⊆ Rn with edges parallel to the ones of Qi
and of length R (half of the one of Qi), centered at pi, covers any hypersurface
M ∈ C1

δ(M0).

By formulas (1.3) and (1.4), in the parametrization of M ∩Qi given by Θ,
the second fundamental form B and mean curvature H of M are then expressed
by

B ◦Θ = − HessR
n
θi√

1 + |∇Rnθi|2
(3.20)

and

H ◦Θ = − ∆Rnθi√
1 + |∇Rnθi|2

+
HessR

n
θi(∇Rnθi,∇Rnθi)(√
1 + |∇Rnθi|2

)3 .

Letting and ρ : Rn → [0, 1] a cut–off function with compact support in Q2R

and equal to 1 on QR = Q′i ∩ ΠpiM0 and setting AR = {(x, θi(x)) : x ∈ QR},
A2R = {(x, θi(x)) : x ∈ Q2R}, we have

‖B‖pLp(AR) =

ˆ
QR

|B ◦Θ|pJΘ dx 6
ˆ
QR

ρp|HessR
n
θi|p dx =

ˆ
Rn
|ρHessR

n
θi|p dx ,

(3.21)
as µ = JΘ L n and JΘ =

√
1 + |∇Rnθi|2 . Then, we estimate

ˆ
Rn
|ρHessR

n
θi|p dx 6C

ˆ
Rn
|HessR

n
(ρθi)|p dx+ C

ˆ
Rn
|2∇Rnρ⊗∇Rnθi|p dx

+ C

ˆ
Rn
|θiHessR

n
ρ|p dx

6C
ˆ
Rn
|HessR

n
(ρθi)|p dx+ C ,

where C = C(M0, p, δ), as the last two integrals in the first line are clearly
bounded by a constant C = C(M0, p, δ).

Hence, applying the standard Calderón–Zygmund estimates in Rn (see [16],
for instance) to the last term above, we get

ˆ
Rn
|ρHessR

n
θi|p dx

6 C

ˆ
Rn
|∆Rn(ρθi)|p dx+ C
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6 C

ˆ
Rn
|ρ∆Rnθi|p dx+ C

ˆ
Rn
|2〈∇Rnρ | ∇Rnθi〉|p dx+ C

ˆ
Rn
|θi∆Rnρ|p dx

6 C

ˆ
Rn

∣∣∣−ρ(H ◦Θ)
√

1 + |∇Rnθi|2 +
ρHessR

n
θi(∇Rnθi,∇Rnθi)

1 + |∇Rnθi|2
∣∣∣p dx+ C

6 C

ˆ
Rn
|ρ(H ◦Θ)|p dx+ C

ˆ
Rn
|ρHessR

n
θi(∇R

n
θi,∇R

n
θi)|p dx+ C

6 C

ˆ
Rn
|ρ(H ◦Θ)|p dx+ C

ˆ
Rn
|∇Rnθi|2p|ρHessR

n
θi|p dx+ C

where the constant C depends only on M0, p and δ (we estimated the last
two integrals in the second line with such a constant, as we did above for the
Hessian).

If δ > 0 is small enough, then C|∇Rnθi|2p < 1/2 and we get

ˆ
Rn
|ρHessR

n
θi|p dx 6 2C

ˆ
Rn
|ρ(H ◦Θ)|p dx+ 2C 6 2C

ˆ
Q2R

|(H ◦Θ)|p dx+ 2C

which clearly implies, by formula (3.21),

‖B‖Lp(AR) 6C
ˆ
Q2R

|(H ◦Θ)|p dx+ C 6 C
ˆ
Q2R

|(H ◦Θ)|pJΘ dx+ C

6C
(
1 + ‖H‖pLp(A2R)

)
,

with C = C(M0, p, δ).
Hence, by construction and invariance by isometry,

‖B‖Lp(M∩Q′i) 6 C
(
1 + ‖H‖pLp(M∩Qi)

)
6 C

(
1 + ‖H‖pLp(M)

)
.

Since the number of hypercubes Q′i covering M is fixed and C = C(M0, p, δ),
we obtain the thesis of the theorem. QED

We have an analogous theorem for Schauder estimates, after defining appro-
priately the Hölder C0,α–norm of a tensor T on M , that is,

‖T‖C0,α(M) = sup
M
|T |+ [T ]C0,α(M)

where we need to give a meaning to the seminorm [T ]C0,α(M).
If T is an m–form (hence, a covariant m–tensor), one possibility is to “extend

the action” of the tensor T from the bundle ⊕mTM of covariant m-–tensors on
M to the one of the whole “ambient” Rn+1 by means of the orthogonal projection
on the tangent bundle TM (as we identify TxM with a vector subspace of
TxRn+1 ≈ Rn+1, for every x ∈ M). To give an example, if T = B, letting



Uniform Sobolev, interpolation and geometric Calderón–Zygmund inequalities 69

πx : Rn+1 → TxM be the orthogonal projection on the tangent space of M ,
for every x ∈ M , we can define the “extension” of B (without relabeling it) by
considering at every x ∈M the bilinear form Bx : ⊕2TxRn+1 ≈ Rn+1×Rn+1 →
R as Bx(v, w) = Bx(πx(v), πx(w)). Extending analogously a general m–form T
from operating on ⊕mTM to ⊕mTRn+1, its norm as a multilinear functional
is unchanged at every point x ∈ M and we can then consider its components
Tj1...jm in the canonical basis of Rn+1 to define

[T ]C0,α(M) =
n+1∑

j1,...,jm=1

[Tj1...jm ]C0,α(M)

=

n+1∑
j1,...,jm=1

sup
x,y∈M
x 6=y

|Tj1...jm(x)− Tj1...jm(y)|
|x− y|α .

Finally, if the tensor is of general type (it has also contravariant components),
we “transform” it in a covariant one by means of the musical isomorphisms
(see [15], for instance) and then proceed as above. Anyway, in the following all
the tensors will be covariant.

Remark 3. This “global”, partially coordinate–free definition (only the
canonical coordinates of Rn+1 are involved, not any coordinate chart for M)
is useful in general, but in our special case of families of hypersurfaces which
are representable as graphs on a fixed one, we can also consider an equivalent
Hölder seminorm by means of the local description of M with the hypercubes
Qi, which is more convenient for our computations. For any m–form T on M ,
we set (in the notation of the proof of Theorem 2)

[T ]C0,α(V ) =

n∑
j1,...,jm=1

[Tj1...jm ◦Θ]C0,α(Θ−1(V ))

=

n∑
j1,...,jm=1

sup
x,y∈Θ−1(V )

x6=y

|Tj1...jm(Θ(x))− Tj1...jm(Θ(y))|
|x− y|α ,

for every open set V ⊆ M ∩ Qi, where Tj1...jm are the components of T in the
parametrization x 7→ Θ(x) = x+ θi(x)en+1. Then, we define

[T ]C0,α(M) =
k∑
i=1

[T ]C0,α(AR),

by means of the finite family of sets AR (whose number is fixed) covering M ∈
C1
δ(M0).
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Theorem 3. Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded
in Rn+1 and α ∈ (0, 1]. Then, if δ > 0 is small enough, there exists a constant
C(M0, α, δ) such that the following geometric Schauder estimate holds,

‖B‖C0,α(M) 6 C(M0, α, δ)
(
1 + ‖H‖C0,α(M)

)
for every M ∈ C1,α

δ (M0).

Proof. In the same setting and notation of the proof of Theorem 2, for every
hypercube Qi, the function θi belongs to C1,α(Q2R), with ‖θi‖C1,α(Q2R) 6 2δ.
Then, keeping into account Remark 3, we deal with ‖B‖C0,α(AR), which satisfies

‖B‖C0,α(AR) = ‖B ◦Θ‖C0,α(QR) =

∥∥∥∥ HessR
n
θi√

1 + |∇Rnθi|2

∥∥∥∥
C0,α(QR)

6 C ‖θi‖C2,α(QR) ,

(3.22)
by equality (3.20) and since QR = Θ−1(AR), by construction.

Hence, by the standard Schauder estimates in Q2R = Θ−1(A2R) (see [16],
for instance), we get

‖θi‖C2,α(QR)

6 C ‖∆Rnθi‖C0,α(Q2R) + C‖θi‖C1,α(Q2R)

6 C

∥∥∥∥−(H ◦Θ)
√

1 + |∇Rnθi|2 +
HessR

n
θi(∇Rnθi,∇Rnθi)

1 + |∇Rnθi|2
∥∥∥∥
C0,α(Q2R)

+C

6 C ‖H ◦Θ‖C0,α(Q2R) + C ‖∇Rnθi‖2C0,α(Q2R)‖HessR
n
θi‖C0,α(Q2R) + C

6 C ‖H ◦Θ‖C0,α(Q2R) + Cδ2‖θi‖C2,α(Q2R) + C ,

where the constant C depends only on M0, α and δ, as ‖θi‖C1,α(Q2R) 6 2δ. This
estimate clearly implies, by formula (3.22) and equality (3.20),

‖B‖C0,α(AR) 6 C ‖H‖C0,α(M) + Cδ2‖B‖C0,α(M) + C

and since the family of sets AR covering M ∈ C1
δ(M0) is finite and its number

is fixed, we conclude

‖B‖C0,α(M) 6 C ‖H‖C0,α(M) + Cδ2‖B‖C0,α(M) + C ,

with a constant C depending only on M0, α and δ (and we can clearly choose
C to be monotonically increasing with δ).

Then, if δ > 0 is small enough, we have Cδ2 ‖B‖2C0,α(M) < ‖B‖2C0,α(M)/2,
hence we get

‖B‖C0,α(M) 6 2C ‖H‖C0,α(M) + 2C ,
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that is,
‖B‖C0,α(M) 6 C

(
1 + ‖H‖C0,α(M)

)
,

where the constant C depends only on M0, α and δ, which is the thesis of the
theorem. QED

We now deal with families of n–dimensional graph hypersurfaces in M ∈
C1
δ(M0) over M0 with a uniform bound ‖B‖L∞(M) on the second fundamental

form.
Arguing again in the same setting and notation of the proof of Theorem 2,

for p ∈ (1,+∞) and any C2–function u : M → R (or u ∈W 2,p(M)), we have

‖∇2u‖Lp(M) 6 C
k∑
i=1

‖∇2(uρi)‖Lp(M∩Qi) (3.23)

(here ∇ is the Levi–Civita connection of M) and, for every C2 function v : M →
R, with compact support in M ∩Qi, there holdsˆ

M∩Qi
|∇2v(y)|p dµ(y) =

ˆ
Rn

∣∣(∇2v)(x+ θi(x)νi)
∣∣pJΘ(x) dx

6C(δ)

ˆ
Rn

∣∣(∇2v)(x+ θi(x)νi)
∣∣p dx , (3.24)

as JΘ =
√

1 + |∇Rnθi|2 6 1 + 2δ.
In the coordinates given by the parametrization Θ, the coefficients of the

metric g of M (induced by Rn+1) in M ∩Qi are

g`m(Θ(x)) = δ`m +
∂θi
∂x`

(x)
∂θi
∂xm

(x) ,

hence, they and the ones of the inverse matrix are bounded by a constant
depending only on M0 and δ. By formula (1.1), the Christoffel symbols of the
Levi–Civita connection ∇ satisfy

|Γs`m(Θ(x))| 6 C
n∑

p,q,r=1

∣∣∣∂(gpq ◦Θ)

∂xr
(x)
∣∣∣ = C

n∑
p,q,r=1

∣∣∣ ∂2θi
∂xr∂xp

(x)
∂θi
∂xq

(x)
∣∣∣ . (3.25)

Then, recalling the first formula (1.5),∣∣∣ ∂2θi
∂x`∂xm

(x)
∣∣∣ =
∣∣∣ ∂2Θ

∂x`∂xm
(x)
∣∣∣

=
∣∣∣Γs`m(Θ(x))

∂Θ

∂xs
(x)− B`m(Θ(x))ν(Θ(x))

∣∣∣
6C|Γs`m(Θ(x))|

∣∣∣ ∂Θ

∂xs
(x)
∣∣∣+ |B`m(Θ(x))|

6C|HessR
n
θi(x)| |∇Rnθi(x)| (1 + |∇Rnθi(x)|) + |B(Θ(x))| ,
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where in the last passage we estimated the Christoffel symbols by means of
inequality (3.25). As |∇Rnθi| 6 2δ, we conclude

|HessR
n
θi(x)| 6C|HessR

n
θi(x)| |∇Rnθi(x)|+ C|B(Θ(x))|

6C|HessR
n
θi(x)|δ + C|B(Θ(x))|

with a constant C depending only on δ, which implies, if δ is smaller than 1/2C,
the estimate

|HessR
n
θi(x)| 6 2C(M0, δ)|B(Θ(x))| ,

for every x ∈ Qi ∩ΠpiM ⊆ Rn.
By the first formula (3.25), it follows

|Γs`m(Θ(x))| 6 C|HessR
n
θi(x)| |∇Rnθi| 6 Cδ|B(Θ(x))|

with C = C(δ), then computing schematically, we have

(∇2v)(Θ(x)) = HessR
n
(v ◦Θ)(x)− Γ(Θ(x)) ?∇Rn(v ◦Θ)(x) , (3.26)

hence,

|(∇2v)(Θ(x))| 6 C|HessR
n
(v ◦Θ)(x)|+ Cδ|B(Θ(x))| |∇Rn(v ◦Θ)(x)| .

Applying the Calderón–Zygmund inequality in Rn, we get
ˆ
Rn

∣∣(∇2v)(x+ θi(x)νi)
∣∣p dx 6C ˆ

Rn
|HessR

n
[v(x+ θi(x)νi)]|p dx

+ Cδ

ˆ
Rn
|B(Θ(x))|p |∇Rn [v(x+ θi(x)νi])|p dx

6C
ˆ
Rn
|∆Rn [v(x+ θi(x)νi)]|p dx

+ C(δ)

ˆ
Rn
|B(Θ(x))|p |∇v(Θ(x))|p dx .

6C
ˆ
Rn
|∆Rn [v(x+ θi(x)νi)]|p dx

+ C(δ)

ˆ
M∩Qi

|B(y)|p|∇v(y)|p dµ(y) , (3.27)

arguing as in estimate (2.12) to get the last inequality.
Contracting equation (3.26) with the inverse of the metric and estimating,

we have

|∆Rn(v ◦Θ)(x)| 6 C|(∆v)(Θ(x))|+ Cδ|(B ◦Θ)(x)| |∇Rn(v ◦Θ)(x)|
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thus, by inequalities (3.24) and (3.27), we obtain

ˆ
M∩Qi

|∇2v(y)|p dµ(y) 6C
ˆ
Rn
|(∆v)(x+ θi(x)νi)|p dx

+ C

ˆ
M∩Qi

|B(y)|p|∇v(y)|p dµ(y)

6C
ˆ
M∩Qi

|∆v(y)|p dµ(y)

+ C

ˆ
M∩Qi

|B(y)|p|∇v(y)|p dµ(y) ,

with C = C(M0, p, δ), arguing again as above.

Getting back to inequality (3.23), we conclude

‖∇2u‖pLp(M) 6C
k∑
i=1

‖∇2(uρi)‖pLp(M∩Qi)

6C
k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+ C

ˆ
M∩Qi

|B|p|∇(uρi)|p dµ

6C
k∑
i=1

ˆ
M∩Qi

|∆u|p dµ+ C

ˆ
M∩Qi

(
|u|p + |∇u|p

)
dµ

6C
ˆ
M
|∆u|p dµ+ C

ˆ
M

(
|u|p + |∇u|p

)
dµ , (3.28)

with C = C(M0, p, δ, ‖B‖L∞(M)). Interpolating the integral of |∇u|p between
‖∇2u‖Lp(M) and ‖u‖Lp(M) by means of the uniform Gagliardo–Nirenberg in-
equalities of the previous section, we obtain the following theorem.

Theorem 4. Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded
in Rn+1 and p ∈ (1,+∞). Then, if δ > 0 is small enough, there exists a con-
stant C which depends only on M0, p, δ and ‖B‖L∞(M) such that the following
Calderón–Zygmund inequality holds,

‖∇2u‖Lp(M) 6 C‖∆u‖Lp(M) + C‖u‖Lp(M) (3.29)

hence,

‖u‖W 2,p(M) 6 C‖∆u‖Lp(M) + C‖u‖Lp(M) , (3.30)

for every hypersurface M ∈ C1
δ(M0) and u ∈W 2,p(M).
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Remark 4. Notice that if p < n, we can modify the chain of inequali-
ties (3.28) as follows:

‖∇2u‖pLp(M) 6C
k∑
i=1

‖∇2(uρi)‖pLp(M∩Qi)

6C
k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+ C

ˆ
M∩Qi

|B|p|∇(uρi)|p dµ

6C
k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ

+ C
(ˆ

M∩Qi
|B|n dµ

)p/n(ˆ
M∩Qi

|∇(uρi)|np/(n−p) dµ
)(n−p)/n

6C
k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+ C‖B‖pLn(M∩Qi)‖∇
2(uρi)‖pLp(M∩Qi) .

Hence, arguing as before, it is easy to conclude that inequalities (3.29) and (3.30)
hold with a constant C = C(M0, p, δ, ‖B‖Ln(M)), if δ > 0 is small enough.
Moreover, since we have seen in Theorem 2 that a control on ‖H‖Ln(M) implies
a control on ‖B‖Ln(M), we have uniform Calderón–Zygmund inequalities for
families of n–dimensional graph hypersurfaces over M0, with mean curvature
uniformly bounded in Ln(M).

With a similar argument, computing as in Theorem 3, we have analogous
Schauder estimates for C2,α functions u : M → R, with M ∈ C1,α

δ (M0) and
δ > 0 small enough,

‖u‖C2,α(M) 6 C‖∆u‖C0,α(M) + C‖u‖C0,α(M) , (3.31)

where the constant C depends only on M0, α ∈ (0, 1], δ and ‖B‖C0,α(M) (or
‖H‖C0,α(M), by Theorem 3).

Remark 5. Localizing and computing in coordinates (see Remark 3), it
is easy to generalize estimates (3.29), (3.30) and (3.31) also to tensors, under
the same hypotheses. The same holds also for all the estimates of the previous
section (see [20] for an example of how this can be done).

3.1 Geometric higher order Calderón–Zygmund estimates

We let M0 as above and p > 1, we want now to deal with ‖∇kB‖Lp(M),
assuming that we have a uniform bound on ‖H‖Lq(M) with q > n, where M
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is any n–dimensional graph hypersurface over M0 in C1
δ(M0), if δ > 0 is small

enough.

Theorem 5. Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded
in Rn+1. Then, for any q > n, if δ > 0 is small enough, there exists a constant
C which depends only on M0, p, q, δ and ‖H‖Lq(M), such that the following
geometric higher order Calderón–Zygmund inequality holds, for p ∈ (1, n),

‖∇kB‖Lp(M) 6 C
(
1 + ‖∇kH‖Lp(M)

)
hence,

‖B‖Wk,p(M) 6 C
(
1 + ‖H‖Wk,p(M)

)
,

for any hypersurface M ∈ C1
δ(M0) and k ∈ N.

Moreover, the same inequalities hold for any p ∈ (1,+∞) with a constant C
depending only on M0, p, δ and ‖B‖L∞(M).

Proof. We first deal with the case p ∈ (1, n). Fixed k ∈ N, by means of inequal-
ity (3.29), which holds with a constant C = C(M0, p, δ, ‖B‖Ln(M)), by Remark 4
and taking into account Remark 5, we have

‖∇kB‖Lp(M) = ‖∇i1∇i2(∇i3 · · · ∇ikB)‖Lp(M)

6C‖∆(∇i3 · · · ∇ikB)‖Lp(M) + C‖∇i3 · · · ∇ikB‖Lp(M)

=C‖g`m∇`∇m∇i3 · · · ∇ikB‖Lp(M) + C‖∇k−2B‖Lp(M)

6C‖g`m∇`∇i3∇m · · · ∇ikB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C‖Riem ?∇k−2B‖Lp(M) + C‖∇Riem ?∇k−3B‖Lp(M)

6C‖g`m∇`∇i3∇i4∇m · · · ∇ikB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C‖Riem ?∇k−2B‖Lp(M) + C‖∇Riem ?∇k−3B‖Lp(M)

+ C‖∇2Riem ?∇k−4B‖Lp(M)

· · ·
6C‖g`m∇`∇i3∇i4 · · · ∇ik∇mB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C
k−2∑
s=0

‖∇sRiem ?∇k−2−sB‖Lp(M)

6C‖g`m∇i3∇`∇i4 · · · ∇ik∇mB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C
k−2∑
s=0

‖∇sRiem ?∇k−2−sB‖Lp(M)

· · ·
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6C‖g`m∇i3∇i4 · · · ∇ik∇`∇mB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C
k−2∑
s=0

‖∇sRiem ?∇k−2−sB‖Lp(M)

=C‖∇k−2∆B‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C

k−2∑
s=0

‖∇sRiem ?∇k−2−sB‖Lp(M)

where the symbol T ? S (following Hamilton [17]) denotes a tensor formed by
a sum of terms each one given by some contraction of the pair T , S with the
inverse of the metric gij . A very useful property of such ? product is that
|T?S| 6 C|T ||S| where the constant C depends only on the “algebraic structure”
of T ? S, moreover, it clearly holds ∇T ? S = ∇T ? S + T ?∇S.

By formula (1.7) for the Riemann tensor, we can then write Riem = B ? B,
hence

‖∇kB‖Lp(M) 6C‖∇k−2∆B‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C
k−2∑
s=0

‖∇s(B ? B) ?∇k−2−sB‖Lp(M)

6C‖∇k−2∆B‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C
∑
s,r,t∈N

s+r+t=k−2

‖∇sB ?∇rB ?∇tB‖Lp(M) . (3.32)

Now, by Simons’ identity (1.6), we have

∇k−2∆B = ∇kH +∇k−2(HB2)−∇k−2(|B|2B) ,

hence,

‖∇k−2∆B‖Lp(M) 6 ‖∇kH‖Lp(M) + C
∑
s,r,t∈N

s+r+t=k−2

‖∇sB ?∇rB ?∇tB‖Lp(M) .

Using this estimate in inequality (3.32), we conclude

‖∇kB‖Lp(M) 6C‖∇kH‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C
∑
s,r,t∈N

s+r+t=k−2

‖∇sB ?∇rB ?∇tB‖Lp(M) .

We now estimate any of the terms in the last sum as follows: we have

‖∇sB ?∇rB ?∇tB‖Lp(M) 6 C‖∇sB‖Lαp(M)‖∇rB‖Lβp(M)‖∇tB‖Lγp(M) , (3.33)
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with

α =
k + 1

s+ 1
, β =

k + 1

r + 1
, γ =

k + 1

t+ 1
,

hence, 1/α+1/β+1/γ = 1, as s+r+t = k−2. Moreover, using the interpolation
estimates (2.17) (extended to tensors – see Remark 5), there hold

‖∇sB‖Lpα(M) 6C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θα‖B‖1−θαLn(M)

‖∇rB‖Lpβ(M) 6C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θβ‖B‖1−θβLn(M)

‖∇tB‖Lpγ(M) 6C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θγ‖B‖1−θγLn(M)

with θα = s+1
k+1 , θβ = r+1

k+1 and θγ = t+1
k+1 , determined by

1

pα
=
s

n
+ θα

(1

p
− k

n

)
+

1− θα
n

1

pβ
=
r

n
+ θβ

(1

p
− k

n

)
+

1− θβ
n

1

pγ
=
t

n
+ θγ

(1

p
− k

n

)
+

1− θγ
n

.

Noticing that θα ∈ (s/k, 1), θβ ∈ (r/k, 1) and θγ ∈ (t/k, 1), if we choose θα, θβ
and θγ such that

s

k
< θα < θα =

s+ 1

k + 1
,

r

k
< θβ < θβ =

r + 1

k + 1
and

t

k
< θγ < θγ =

t+ 1

k + 1
,

respectively close to θα, θβ and θγ , the uniquely determined values qα, qβ and
qγ satisfying

1

pα
=
s

n
+ θα

(1

p
− k

n

)
+

1− θα
qα

1

pβ
=
r

n
+ θβ

(1

p
− k

n

)
+

1− θβ
qβ

1

pγ
=
t

n
+ θγ

(1

p
− k

n

)
+

1− θγ
qγ

must be close to n, thus properly choosing θα, θβ and θγ , as above, we have
that qα, qβ and qγ are smaller than q > n. Hence, by the interpolation estimates
again, we have

‖∇sB‖Lpα(M) 6C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θα‖B‖1−θαLqγ (M)

‖∇rB‖Lpβ(M) 6C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θβ‖B‖1−θβ
L
qβ (M)

‖∇tB‖Lpγ(M) 6C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θγ‖B‖1−θγLqγ (M) .
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Then, since ‖B‖Lqα (M), ‖B‖Lqβ (M) and ‖B‖Lqγ (M) are bounded by C‖B‖Lq(M),
being the three exponents smaller that q (the volumes are equibounded for all
M ∈ C1

δ(M0)), we get

‖∇sB‖Lpα(M) 6C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θα‖B‖1−θαLq(M)

‖∇rB‖Lpβ(M) 6C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θβ‖B‖1−θβLq(M)

‖∇tB‖Lpγ(M) 6C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θγ‖B‖1−θγLq(M) ,

Letting

Θ = (θα + θβ + θγ) <
s+ 1

k + 1
+
r + 1

k + 1
+
t+ 1

k + 1
= 1 ,

as s + r + t = k − 2, putting these estimates in inequality (3.33) and recalling
Theorem 2, we conclude

‖∇sB ?∇rB ?∇tB‖Lp(M)6C
(
‖∇kB‖Lp(M)+ ‖B‖Lp(M)

)Θ ‖B‖3−Θ
Lq(M)

6C
(
‖∇kB‖Lp(M)+ ‖B‖Lp(M)

)Θ(
1 + ‖H‖Lq(M)

)3−Θ

6C
(
‖∇kB‖Lp(M)+ ‖B‖Lp(M)

)Θ
, (3.34)

with C = C(M0, p, δ, ‖H‖Ln(M), ‖H‖Lq(M)) = C(M0, p, δ, ‖H‖Lq(M)), as q > n.
Hence, by means of Young inequality, as Θ < 1, we estimate

‖∇kB‖Lp(M) 6C‖∇kH‖Lp(M)

+ C‖∇k−2B‖Lp(M) + C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)Θ
6C‖∇kH‖Lp(M)

+ C‖∇k−2B‖Lp(M) + Cε‖∇kB‖Lp(M) + C‖B‖Lp(M) + C ,

then choosing ε > 0 such that Cε < 1/2, after “absorbing” in the left hand side
the term Cε‖∇kB‖Lp(M) and estimating ‖B‖Lp(M) with C(1 + ‖H‖Lp(M)), we
obtain

‖∇kB‖Lp(M) 6 C‖∇kH‖Lp(M) + C‖∇k−2B‖Lp(M) + C‖H‖Lp(M) + C .

The term ‖∇k−2B‖Lp(M) can be treated analogously, by interpolation between

‖∇kB‖Lp(M) and ‖B‖Lp(M) (it is actually easier to deal with it) and ‖H‖Lp(M) 6
C(M0, p, q, δ)‖H‖Lq(M), hence we finally have the desired estimate

‖∇kB‖Lp(M) 6 C‖∇kH‖Lp(M) + C ,

with C = C(M0, p, q, δ, ‖H‖Lq(M)), for any M ∈ C1
δ(M0) with δ > 0 small

enough.



Uniform Sobolev, interpolation and geometric Calderón–Zygmund inequalities 79

If p ∈ (1,+∞), we argue as before, but using directly inequality (3.29),
which holds with a constant C = C(M0, p, δ, ‖B‖L∞(M)) and getting inequal-
ity (3.34) with a constant C = C(M0, p, δ, ‖B‖L∞(M)), by simply choosing a
suitably large q > n and estimating ‖B‖Lq(M) with C‖B‖L∞(M). The rest of the
proof goes in the same way, estimating all the terms ‖B‖Lq(M) and ‖H‖Lq(M)

with C‖B‖L∞(M). QED

4 Other inequalities

Let M0 be a smooth and compact hypersurface embedded in Rn+1, bounding
a domain E0 and ε > 0 the width of a tubular neighborhood Nε of M0. For any
δ ∈ (0, ε), we consider the family C1

δ (E0), defined as{
E = Ψ(E0) :

Ψ : E0 → E is a diffeomorphism with ‖Ψ− Id‖C1(E0) < δ

Ψ(x) = x+ ψ(x)ν0(x) for every x ∈M0 and ‖ψ‖C1(M0) < δ

}
where ν0 is the unit normal vector field pointing outward of M0.

Then, the Jacobian of the map Ψ : E0 → E (and also the tangential one of
its restriction to M0) is bounded from above and from below by some constants
which depend only on δ and the second fundamental form of M0 (see Section 2
for details).

It clearly follows that if E ∈ C1
δ (E0), then M = ∂E = Ψ(M0) ∈ C1

δ(M0).
Moreover, if M ∈ C1

δ′(M0), then there exists a smooth function ψ : M0 → R
with ‖ψ‖C1(M0) < δ′, such that M =

{
x + ψ(x)ν(x) : x ∈ M0

}
, then we can

construct a smooth diffeomorphism Ψ : E0 → E as follows (E is the domain
bounded by M):

Ψ(x) =

{
x if x ∈ E0 \Nε

x+ ζ(d0(x)/ε)ψ(π0(x))∇Rn+1
d0(x) if x ∈ E0 ∩Nε

where d0 is the signed distance function from M0 (which is negative in E0) and
t 7→ ζ(t) is a smooth monotone nondecreasing function, defined on R, such that
it is equal to 1 if t > 0 and to 0 if t 6 −1/2, with |ζ ′(t)| 6 3, for every t ∈ R.
So, it follows

‖Ψ− Id‖C1(E0) = ‖ζ(d0(·)/ε)ψ(π0(·))∇Rn+1
d0(·)‖C1(E0∩Nε)

6C(M0, ε)‖ψ‖C1(M0) .

Hence, fixed any δ ∈ (0, ε), depending the constant C only on M0 and ε, possibly
choosing δ′ small enough, the set E belongs to C1

δ (E0).
We now discuss some uniform inequalities involving also the domains which

are bounded by the hypersurfaces.



80 S. Della Corte, A. Diana, C. Mantegazza

4.1 Trace inequalities

Letting E0, M0, ε > 0 and δ > 0 as above and any E ∈ C1
δ (E0) (with

associated smooth diffeomorphism Ψ : E0 → E), it is well known that the trace
of any function u ∈ H1(E) (a real function on M = ∂E, which we still simply
denote by u, that coincides with the restriction of u to M , if u ∈ C0(E)) is
well defined and that the following trace inequality holds (see [24, Chapter 4,
Proposition 4.5]),

‖u‖2
H1/2(M)

6 CE

ˆ
E
u2 + |∇u|2 dx , (4.35)

which implies

‖u− ũ‖2
H1/2(M)

6 CE

ˆ
E
|∇u|2 dx ,

where ũ =
ffl
E u dx (see also [14, 19]). We want to show that these inequalities

hold with uniform constants C(M0, δ), for every E ∈ C1
δ (E0).

Expressing ‖u‖2
H1/2(M)

by means of the Gagliardo W 1/2,2–seminorm of a

function u ∈ L2(M) and setting Φ = Ψ|M0 : M0 →M , we have

‖u‖2
H1/2(M)

= ‖u‖L2(M) + [u]2
W 1/2,2(M)

= ‖u‖L2(M) +

ˆ
M

ˆ
M

|u(y)− u(y∗)|2
|y − y∗|n+1

dµ(y) dµ(y∗)

6 C‖u ◦ Φ‖L2(M0)

+

ˆ
M0

ˆ
M0

|u(Φ(x))− u(Φ(x∗))|2
|Φ(x)− Φ(x∗)|n+1

JΦ(x)JΦ(x∗) dµ0(x)dµ0(x∗)

6 C‖u ◦Ψ‖L2(M0)

+ C

ˆ
M0

ˆ
M0

|u(Ψ(x))− u(Ψ(x∗))|2
|x− x∗|n+1

dµ0(x)dµ0(x∗)

6 CE0

ˆ
E0

|u(Ψ(x))|2 + |∇0(u ◦Ψ(x))|2 dx

6 C

ˆ
E
u2 + |∇u|2 dx = C‖u‖2H1(E) , (4.36)

where the constant C depends only on E0 (we applied inequality (4.35) for E0

in passing from the fourth to the fifth line) and δ (in bounding |dΨ|, |dΦ|, JΨ
and JΦ above and below away from zero).

Remark 6. With a similar argument, we can show the following general-
ization of this inequality, with a uniform constant

‖u‖Hs−1/2(M) 6 C(E0, s, δ)‖u‖Hs(E)
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(see again [24, Chapter 4, Proposition 4.5]), for s ∈ (1/2, 3/2).

4.2 Inequalities for harmonic extensions

We let E0, M0, ε > 0 and δ > 0 as above and E ∈ C1
δ (E0) (with associated

smooth diffeomorphism Ψ : E0 → E), with M = ∂E ∈ C1
δ(M0).

We denote by u : E → R the harmonic extension of a function f : M → R in
H1/2(M) to E. We aim to show that the following inequality (see [24, Chapter 5,
Proposition 1.7])

‖u‖H1(E) 6 CE‖f‖H1/2(M) , (4.37)

which implies ˆ
E
|∇u|2 dx 6 CE‖f‖2H1/2(M)

,

for every E ∈ C1
δ (E0), with uniform constants C = (E0, δ).

Arguing as above, in formula (4.36), we end up with the following inequali-
ties:

‖u‖H1(E) 6C(E0, δ)‖u ◦Ψ‖H1(E0)

‖u ◦Ψ‖H1(E0) 6CE0‖f ◦Ψ‖H1/2(M0) = CE0‖f ◦ Φ‖H1/2(M0)

‖f ◦ Φ‖H1/2(M0) 6C(M0, δ)‖f‖H1/2(M)

where the second estimate is given by inequality (4.37) for E0. Putting them
together, we have the conclusion.

Remark 7. As above, we also have the following generalization, for s ∈
[1/2, 3/2),

‖u‖Hs+1/2(E) 6 C(E0, s, δ)‖f‖Hs(M)

(see again [24, Chapter 5, Proposition 1.7]).

5 Some remarks

We collect here some remarks about the conclusions of the previous sections.

� All the constants depend on the geometric properties of M0, in particular
on the maximal width of a tubular neighborhood, its volume and its sec-
ond fundamental form. Hence, uniformly controlling such quantities gives
uniform estimates for larger families of hypersurfaces, see [7, 8, 9, 11, 18]
for a deeper and detailed discussion).
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� Notice that for Sobolev, Poincaré, interpolation, trace and “harmonic ex-
tension” inequalities, we do not ask δ > 0 to be small, but just δ < ε,
while for the Calderón–Zygmund–type inequalities, that we worked out in
Section 3, a smallness condition on δ is necessary for the conclusions.

� All the inequalities holds uniformly also for families of immersed–only
hypersurfaces (non necessarily embedded), if they can be expressed as
graphs on a fixed compact, smooth hypersurface, possibly immersed–only
too.

� It is easy to see that everything we did still works also if the ambient is
a flat, complete Riemannian manifold, in particular in any flat torus Tn.
With some effort, the results can be generalized to graph hypersurfaces in
any complete Riemannian manifold, then the constants also depends on
the geometry (in particular, on the curvature) of such an ambient space.

Acknowledgements. We would like to thank to the anonymous referee
for the detailed reading and careful check of the article. His corrections and
suggestions were greatly useful in improving the quality of our paper.
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H. Poincaré C Anal. Non Linéaire, 29, no. 4, 545–572, 2012.

[8] P. Breuning: C1–regularity for local graph representations of immersions, Trans. Amer.
Math. Soc., 365, no. 12, 6185–6198, 2012.

[9] P. Breuning: Immersions with bounded second fundamental form, J. Geom. Anal., 25,
no. 2, 1344–1386, 2015.

[10] S. Della Corte, A. Diana, C. Mantegazza: Global existence and stability for the
modified Mullins–Sekerka flow and surface diffusion flow, Math. Engineering, 4, Paper
n.054, 104 pp, 2022.



Uniform Sobolev, interpolation and geometric Calderón–Zygmund inequalities 83

[11] S. Delladio: On hypersurfaces in Rn+1 with integral bounds on curvature, J. Geom.
Anal, 11, no. 1, 17–42, 2001.
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