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Abstract. A group G is said to be a T -group if normality in G is a transitive relation.
Clearly, as a simple group has the property T , it follows that T is not subgroup closed. A
group G is called a T̄ -group if all its subgroups are T -groups. In this note the structure of
groups all of whose (proper) subgroups either are nilpotent or satisfy the property T̄ will be
investigated.
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1 Introduction

A group G is said to be a T -group if normality in G is a transitive relation,
i.e., if every subnormal subgroup of G is normal. The structure of finite soluble
T -groups has been described by Gaschütz [6], while Robinson [8] investigated
infinite soluble groups with the property T . In particular, it turns out that
soluble T -groups are metabelian, locally supersoluble and that any finitely ge-
nerated soluble T -group either is finite or abelian. As every element of a (soluble)
T -group G fixes by conjugation every subgroup of a normal abelian subgroup
A of G, a natural tool in the investigation of T -groups are the so-called power
automorphisms, i.e. the automorphisms of a group G which fix every subgroup
of G (see, for instance, [8], [3] and [1]). Clearly, a simple group has the pro-
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perty T , so that T is not subgroup closed. A group G is called a T̄ -group if all
its subgroups are T -groups. It can be proved that every finite soluble T -group
satisfies the property T̄ , and that the finite T̄ -groups are soluble.

Let P be a class of group. Recall that a group G is said to be a minimal non-
P-group if G does not belong to the class P, but all proper subgroups of G are
P-groups. Minimal non-P-groups have been investigated by several authors for
various classes of groups P. For instance, finite minimal non-nilpotent groups
were analysed by Schmidt [11] in 1924, while Robinson [9] has classified finite
minimal non-T -groups showing in particular that they fall into seven types. It is
easy to prove that a finite minimal non-nilpotent group (minimal non-T -group,
respectively) is soluble. Note that the latter result cannot be extended to infinite
groups as the consideration of a Tarski group shows. Moreover, it can be proved
that a minimal non-T -group is finite if it has no infinite simple sections (see [4,
Proposition 1]). It is an open question whether there exists an infinite finitely
generated locally graded minimal non-T -group (here a group G is called locally
graded if each finitely generated non-trivial subgroup of G contains a proper
subgroup of finite index). On the other hand, a finitely generated locally graded
minimal non-nilpotent group is finite (see [2, Theorem 145]), while the infinite
dihedral 2-group and the Heineken-Mohamed groups (see [7]) are examples of
infinite soluble minimal non-nilpotent groups. More in general, a non-finitely
generated minimal non-nilpotent group is a countable locally finite p-group (for
some prime p) which either is a Chernikov p-group or a group of Heineken-
Mohamed type (see [2, Proposition 144]).

The aim of this short article is to investigate the structure of groups all
of whose proper subgroups either are nilpotent or satisfy the property T̄ . In
particular, for an infinite generalized soluble group with the latter property it is
proved that only the extreme and unavoidable cases can occur. Moreover, some
properties of finite groups G such that FitG = CG(G′) and all their proper
subgroups either are nilpotent or T -groups are pointed out.

Most of our notation is standard and can be found in [10].

2 Results

Let G be a T -group. If x is an element of a normal nilpotent subgroup H of
G, then 〈x〉 is normal in G and hence G′ ≤ CG(x). It follows that H ≤ CG(G′)
and thus the Fitting subgroup FitG of G coincides with CG(G′).

In the following we will say that a group G satisfies the Fitting property if
FitG = CG(G′). Denote by X the class of groups satisfying the Fitting property
all of whose proper subgroups either are nilpotent or T̄ -groups. Our first result
shows in particular that a finite X-group G is soluble and hence G′ ≤ Z(FitG).
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Lemma 1. Let G be a finite group all of whose proper subgroups are either
nilpotent or satisfy the property T̄ . Then G is soluble.

Proof. As a finite T̄ -group (a finite nilpotent group, respectively) is supersolu-
ble, then the statement follows from a celebrated Huppert’s theorem (see, for
instance, [10, 9.4.4]). QED

Clearly, Alt(4) is an X-group, while SL(2, 3) is a minimal non-T -group which
does not satisfy the Fitting property. On the other hand, the consideration of
the direct product D8 × S3 shows that there exist X-groups which neither are
minimal non-nilpotent nor minimal non-T -groups.

Lemma 2. Let G be a finite X-group. If N is a normal subgroup of G, then
the factor group G/N either is nilpotent or an X-group.

Proof. Clearly, arguing by induction on the order of G, we may suppose that
N is a minimal normal subgroup of G. If N is not contained in the Frattini
subgroup Φ(G) of G, then there exists a maximal subgroup M of G such that
N �M , so that G = MN . It follows that G/N either is nilpotent or an X-group.

Now suppose that N ≤ Φ(G). In particular, N is contained in Fit(G) by
Frattini’s theorem. Let H/N be a normal nilpotent subgroup of G/N . If P is a
Sylow p-subgroup of H, for some prime p, then PN is normal in G, and hence
Capelli-Frattini argument yields that G = NG(P )N . Therefore P is normal in
G, and so H is nilpotent. It follows that

Fit(G/N) = Fit(G)/N = CG(G′)/N = CG/N (G′N/N).

Thus G/N is an X-group and the statement is proved. QED

We shall say that a group G has a Sylow tower if every nontrivial homo-
morphic image of G contains a nontrivial normal Sylow subgroup. Two classical
results by Zappa [12] and Doerk [5] respectively, state that both a finite super-
soluble group and a finite minimal non-supersoluble group have a Sylow tower.

Proposition 1. Let G be a finite X-group. Then the following hold:
(1) G has a Sylow tower and all its normal Sylow subgroups have nilpotent class
at most 2.
(2) Let δ be the set of all primes p ∈ π(G) such that the Sylow p-subgroups of G
have nilpotency class at most 2. Then G has a unique Hall δ-subgroup H and
each complement of H in G is nilpotent.

Proof. As both a finite nilpotent group and a finite T̄ -group are supersoluble, G
either is supersoluble or is minimal non-supersoluble. It follows from the quoted
results by Zappa and Doerk that G has a nontrivial normal Sylow p-subgroup P ,
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for some prime p. On the other hand, G′ ≤ CG(FitG)) and hence [P ′, P ] = {1}.
Now an application of Lemma 2 shows that G has a Sylow tower and the Hall
δ-subgroup H is normal.

Let K be a complement of H in G, and assume that Q is a nontrivial Sylow
q-subgroup of K, for some prime q. Then Q has nilpotent class at least 3, and
hence the normalizer NG(Q) of Q in G is a proper subgroup of G. As a Sylow
subgroup of a finite T̄ -group is a Dedekind group, it follows that NG(Q) is
nilpotent and so even a Carter subgroup of G. Therefore K is nilpotent since
the Carter subgroups of G form a single conjugacy class of G. QED

Let G be a finite T̄ -group. If P is a Sylow p-subgroup of G, for some prime
p, then |P ′| ≤ 2 and so P ′ ≤ Z(G) since G is metabelian. Thus G/Z(G) is an
A-group, i.e. a group all of whose Sylow subgroups are abelian. Our next result
generalizes the above remark to a finite X-group in which all Sylow subgroups
have nilpotent class at most 2.

Theorem 1. Let G be a finite X-group all of whose Sylow subgroups have
nilpotency class at most 2. Then the factor group G/Z(G) is an A-group.

Proof. Obviously we may suppose that G neither is nilpotent nor an A-group.
Then G contains a non-abelian Sylow p-subgroup P , for some prime p. Let first
|π(G)| ≥ 3. By Lemma 1 there exist some proper Hall subgroups X and Y such
that G = XY and P ≤ X ∩ Y . Since each of X and Y either is nilpotent or a
T̄ -group, then P ′ is a central subgroup of G.

Therefore we may assume that G = PQ, where Q is a Sylow q-subgroup, for
some prime q 6= p. Let N be a minimal normal subgroup of G. Since by Lemma
2 the factor group G/N either is nilpotent or a T̄ -group, we have that

[G,P ′] ≤ N,

arguing by the induction on the order of G. Clearly, G can be considered as a
monolithic group and N is its monolith. It follows that Fit(G) = P and N is
contained in the socle Soc(P ′) of P ′. Moreover, making Soc(P ′) into a Q-module
by conjugation, we have that N = Soc(P ′) by Maschke’s Theorem. Note that
G′ is not contained in Φ(P ), since G is not nilpotent and Φ(P ) ≤ Φ(G). Thus,
another application of Maschke’s Theorem yields that

P/Φ(P ) = G′Φ(P )/Φ(P )×X/Φ(P ),

where X is a proper G-invariant subgroup of P . It follows that P = G′X and
X is not abelian, since G′ ≤ Z(P ) and P ′ 6= {1}.

It follows by induction that X ′ ≤ Z(G), and so even N = Soc(P ′) ≤ Z(G).
Thus P ′ is cyclic as N is the monolith of G. Clearly, a non-trivial automorphism
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induced by Q over P ′ is fixed point free, so that Q = CQ(P ′) since Soc(P ′) ≤
Z(G). As a consequence, P ′ ≤ Z(G) and the statement is proved. QED

Now we point out a property of the unique Hall δ-subgroup of a finite X-
group (see Proposition 1).

Theorem 2. Let G be a finite X-group. If H is the unique Hall δ-subgroup
of G, then H ′ ∩ Z(H) ≤ Z(G).

Proof. Clearly we may suppose that G is not nilpotent, H is a proper subgroup
of G and H ′ ∩ Z(H) 6= {1}. Note that the latter condition ensures that H is
not an A-group (see [10, 10.1.7]). Let N be a minimal normal subgroup of G
contained in H. Arguing by induction on the order of G, we have that

[G,H ′ ∩ Z(H)] ≤ N.

Therefore we may suppose that N is the unique minimal G-invariant subgroup
of H. By Proposition 1 there exists a normal Sylow p-subgroup Hp of G, for some
prime p. It follows that N ≤ Hp ≤ H, and so even H ′ ≤ Hp since G′ ≤ Z(FitG).
Moreover, as H is not an A-group, we have that Hp is not abelian. Denote by
K a complement of H in G. By Proposition 1 K is nilpotent of class at least 3.

If H is nilpotent, then the uniqueness of N yields that H = Hp = Fit(G). It
follows that K is abelian, a contradiction. Thus H is a T̄ -group and |H ′p| = 2.
On the other hand, H ′p is normal in G, and hence N = H ′p ≤ Z(G). Let k ∈ K
and x ∈ H ′ ∩ Z(H). There exists an element a ∈ N such that x−1xk = a, so
that

xk
2

= xkak = xka = xa2 = x.

Since 2 /∈ π(K), it follows that K = CK(H ′ ∩ Z(H)) and so even H ′ ∩ Z(H) ≤
Z(G), as required. QED

Our final results will concern infinite groups all of whose proper subgroups
either are nilpotent or satisfy the property T̄ .

Theorem 3. Let G be a group in which every proper subgroup either is
nilpotent or satisfies the property T̄ . If G is not finitely generated, then G either
is nilpotent or a T̄ -group or a minimal non-nilpotent group.

Proof. Clearly, the finitely generated subgroups of G either are all nilpotent
or all satisfy the property T̄ . Let H be a proper subgroup of G which is not
nilpotent. Then H is a T̄ -group, and hence all finitely generated subgroups of
G have the property T̄ . It follows that G is a T -group since the property T is
local (see [8, Corollary 2 to Lemma 2.1.1]). Let K be a proper subgroup of G,
and assume that it is nilpotent. If x and y are elements of K, then 〈x, y〉 is a
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Dedekind group, so that 〈x〉y = 〈x〉. It follows that also K is a Dedekind group.
Thus G is a T̄ -group, and the statement is proved. QED

Proposition 2. Let G be a group with no infinite simple sections. If every
proper subgroup of G either is nilpotent or satisfies the property T̄ , then G is
soluble.

Proof. It is well known that a T̄ -group without infinite simple sections is solu-
ble. Furthermore, we recalled in the introduction that a non-finitely generated
minimal non-nilpotent group is likewise soluble. Therefore, by Theorem 3 we
may suppose that G is finitely generated, and hence there exists a proper normal
subgroup N of G such that the factor group G/N is finite. Since N either is
nilpotent or satisfies the property T̄ and G/N is soluble by Lemma 1, we have
that G is soluble too. QED

Theorem 4. Let G be a finitely generated group with no infinite simple
sections. If every proper subgroup of G either is nilpotent or satisfies the property
T̄ , then G either is nilpotent or finite.

Proof. By Proposition 2, G is soluble. Clearly, we may assume that G contains
a proper subgroup which is not nilpotent. Let M be a maximal subgroup of G
containing the commutator subgroup G′ of G. As a finitely generated soluble T̄ -
group either is abelian or finite, M satisfies the maximal condition on subgroups.
It follows that G is polycyclic. Let N be a maximal non-nilpotent subgroup of
G. Then N is finite, since it is a finitely generated T̄ -group. Moreover, by a
Mal’cev’s Theorem (see [10, 5.4.16]) also the index |G : N | is finite. Therefore
G itself is finite, as required. QED

As a consequence of the last result we obtain the following theorem already
quoted in the introduction (see [4, Proposition 1]).

Corollary 1. Let G be a minimal non-T -group with no infinite simple sec-
tions. Then G is finite.

Proof. Assume for a contradiction that G is infinite. Since the property T is
local, we have that G is finitely generated, and so even nilpotent by Theorem 4.
Let A be a proper normal subgroup of G of finite index. As A is a non-periodic
Dedekind group then it is abelian and we may suppose that it is torsion free
(with finite rank). Let p and q be some distict primes numbers, and put m = pq.

If k is a positive integer, then the factor group G/Am
k

is finite and its Sylow

subgroups are proper, and hence abelian. Therefore G/Am
k

is abelian, so that

G′ ≤
⋂
k∈N

Am
k

= {1}.
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Thus G is abelian and this last contradiction proves the statement. QED
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