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Abstract. The chordal distance function on a complex projective space algebraically defines
an angle between any two complex lines, which is known as the Hermitian angle. In this
expository paper, we show that one can canonically construct a real line corresponding to each
of these complex lines so that the real angle between these two real lines exactly agrees with
the Hermitian angle between the complex lines. This way, the Hermitian angle is interpreted
as a real angle, and some well known results pertaining Hermitian angles are proved using
real geometry. As an example, we give a direct and elementary proof that the chordal distance
function satisfies the triangle inequality.
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1 Introduction

In this expository article we give real interpretations and proofs of some
known results of complex geometry, which students and researchers entering
the area might find useful until they get used to manipulating complex entities.
The usual complex proofs are much simpler thanks to the power of algebraic
techniques which permeates the whole of complex geometry. The advantage
gained by using algebraic tools in complex geometry has a heavy price for the
beginner since algebra tends to overshadow the underlying real geometry. We
expose here the real implementations of complex geometry in the context of the
Hermitian angle between two complex lines.

Angles between vector subspaces of an Euclidean space have attracted at-
tention as generalization of an angle between two vectors. It is believed that
such a generalization was first discussed by Jordan in [13]. There are other ap-
proaches to understand the relative positions of subspaces as in the context
of Schubert calculus but that approach is used to answer some cohomological
questions which we do not enter here.
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28 C. Koca, A. S. Sertoz

The Hermitian angle between two complex lines of the complex projective
space Pn is well known. Each such line corresponds to a real plane in R2n+2.
Thus the Hermitian angle between two complex lines is the angle between two
real planes touching each other at the origin in R2n+2.

We are interested in visualizing this angle as the angle between two real rays
in R2n+2. So the question we ask is how to construct two real lines corresponding
to two complex lines so that the real angle between these two real lines is the
Hermitian angle between the given complex lines. To this end we first recall in
section 4 the usual definition of a real ray associated to a complex point. Then
in theorems 1 and 2 we answer this question.

Our presentation is mostly expository in nature and contains more material
than necessary to prove our main result. Since the material on this subject is
somewhat scattered in the literature we hope that our manuscript will be useful
to the students and researchers for reference purposes also.

The complex geometric description of the Hermitian angle and its conse-
quences are well understood. Our aim is not provide extra explanation to these
facts. We aim at showing that a complex line, which is not a real line, can pro-
duce in a somewhat canonical way real line and the Hermitian angle between
these complex lines is equal to the real angle between these real lines, which we
believe most geometers will find interesting and satisfying.

An excellent introduction to the background of the study of angles between
vector spaces, real or complex, can be found in Scharnhorst’s article [21]. For
further details and for different approaches we refer the reader to [3, 5, 6, 9, 15,
12, 22]

In this article as a bonus we first recall the relation between the Fubini-Study
metric and the chordal distance function on Pn. For completeness, we show
directly that this distance function is actually a metric using the subadditivity
of the sine function. The notation and the perspective used in the proof is later
used to construct a real line corresponding to a complex point in Pn. Finally,
we show that the algebraically defined angle between two complex points of
the complex space can be realized as the angle between the two canonically
constructed real lines. We close with an example which we believe carries the
beauty of higher dimensional real geometry in at least the smallest dimension
where we can actually see things.

2 From Fubini-Study to a distance function

In this section we recall some facts regarding the Fubini-Study metric and
the chordal distance. The reader is referred to Rumely’s book [19] for further
details.
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The Fubini-Study metric is a Riemannian metric on complex projective space
Pn, first introduced by Fubini [6] and Study [22]. It can be expressed in complex
affine coordinates as

ds2 =

∑
dzidz̄i

1 +
∑
ziz̄i
− (
∑
zidz̄i)(

∑
z̄idzi)

(1 +
∑
ziz̄i)2

. (2.1)

This metric is invariant under the action of the unitary group U(n+ 1) on Pn.
In fact it is the only metric on Pn on which the unitary group acts isometrically
(and transitively) [14].

On the other hand, the chordal distance between two points ξ = [ξ0, . . . , ξn]
and η = [η0, . . . , ηn] on Pn is defined by

d(ξ, η) =

(∑
i<j |ξiηj − ξjηi|2
|ξ|2|η|2

)1/2

(2.2)

(see [19]). As we will see in following sections, this distance function is indeed
well-defined and invariant under the action of the unitary group, and moreover
we will give an elementary proof that it satisfies the triangle-inequality.

To see the relation between the chordal distance and the Fubini-Study met-
ric, let us take two points on Pn, say ξ and η, lying in the same affine chart.
By using the unitary invariance, we can assume, without loss of generality,
that ξ = [1, 0, . . . , 0] and η = [1, r, 0, . . . , 0], where r ≥ 0 is some real num-
ber. Therefore, in the first local affine chart, we can write ξ = (0, 0, . . . , 0) and
η = (r, 0, . . . , 0) in Cn. We will now compute two types of distances between ξ
and η (see [19]).

(1) Geodesic distance between ξ and η: Geodesic distance is simply de-
fined by the length of the geodesic joining two points. Let us denote the
length of the geodesic joining ξ to η by θξ,η. In the local coordinates we de-
scribed, the geodesics emanating from ξ (the origin) are indeed real lines
(see [14], p.277). The geodesic joining ξ to η can thus be parametrized
by γ(s) = (s, 0, . . . , 0) ∈ R2n, 0 ≤ s ≤ r. The length of the tangent
vector of γ (computed with respect to the Fubini-Study metric (2.1)) is
‖γ′(s)‖ = 1

1+s2
. Therefore, the length of the geodesic is

θξ,η =

ˆ r

0
‖γ′(s)‖ds = arctan(r).

Since tan θξ,η = r, it follows that sin θξ,η = r√
1+r2

.

(2) Chordal distance between ξ and η:. Using (2.2), we easily compute
that

d(ξ, η) =
r√

1 + r2
.
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Hence, the conclusion is that the chordal distance d(ξ, η) is precisely the sine
of the geodesic distance θξ,η between ξ and η, computed with respect to the
Fubini-Study metric. As pointed out by Harbater [9], even though the chordal
distance and the geodesic distance (with respect to the Fubini-Study metric) are
not exactly the same, infinitesimally speaking, they do agree; that is, the chordal
distance induces the Fubini-Study metric on the tangent bundle (see Corollary
1.1.4 in [9]).

In Section 3, we will give equivalent definitions for d(ξ, η) and θξ,η, which
will tell another geometric story.

3 The Hermitian angle between complex vectors

In this section we review some results from the literature. We start with the
following function

d(ξ, η) =

( |ξ|2|η|2 − |(ξ, η)|2
|ξ|2|η|2

)1/2

, (3.3)

where

ξ = (ξ1, . . . , ξn+1), η = (η1, . . . , ηn+1) ∈ Cn+1 − {0}

and

(ξ, η) =
n∑
k=0

ξkη̄k.

This function is clearly invariant under the C∗-action on each component of the
argument. Hence, it induces a function d : Pn × Pn → R. Moreover, because
of the unitary invariance of the hermitian inner product (ξ, η), we see that d is
also unitary-invariant. A short computation shows that this definition of d is in
fact equivalent to the one defined in (2.2). For non-zero ξ and η, the Hermitian
angle

θξ,η ∈ [0, π/2]

is defined by the relation

cos θξ,η =
|(ξ, η)|
|ξ| |η|

(see [21]). For the Hermitian angle θξ,η it may be convenient to use the identity

d(ξ, η) = sin θξ,η, (3.4)

which justifies the notation used in the previous section.
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The range of θξ,η is justified by the relations

d(±ξ, η) = d(ξ,±η) = d(ξ, η), (3.5)

so that if ξ and η are in Rn+1−{0} ⊂ Cn+1−{0}, then θξ,η denotes the smaller
angle between the real rays defined by ξ and η.

4 Real rays associated to complex vectors

In this section, corresponding to each point of Pn we will construct a real
line in R2n+2 passing through the origin. We will then relate the angle θξ,η to
an angle between two real rays constructed using the complex vectors ξ and η.

Let ξ = (ξ1, . . . , ξn+1) ∈ Cn+1 − {0}. Set

ξj = ξR,j + iξI,j , ξR,j , ξI,j ∈ R, j = 1, . . . , n+ 1.

We now define two real vectors

ξR = (ξR,1, ξI,1, . . . , ξR,n+1, ξI,n+1) ∈ R2n+2

and
ξI = (−ξI,1, ξR,1, . . . ,−ξI,n+1, ξR,n+1) ∈ R2n+2.

Notice that while the numbers ξR,j and ξI,j are the real and imaginary parts of
the number ξj ∈ C, the vectors ξR and ξI are not the real and imaginary parts
of the vector ξ ∈ Cn+1. Instead, ξR and ξI are the vectors corresponding to the
vectors ξ and iξ in the underlying real space R2n+2.

Moreover, in complex geometry one would usually write that ξI = JξR,
where J is the complex structure, an operator that has in R2n+2 the same effect
multiplication by i has in Cn+1. In fact J rotates vectors by 90◦, so that J2 = −I.

For λ = λ1 + iλ2 ∈ C with λ1, λ2 ∈ R, we see that

(λξ)R = λ1ξR + λ2ξI . (4.6)

Hence to the point [ξ] ∈ Pn we assign canonically the plane

spanR{ξR, ξI} ⊂ R2n+2.

This is the real plane which corresponds to the complex line ξ in the underlying
real space.

For two vectors ξ, η ∈ Cn+1 we can write

(ξ, η) = ξ · η̄ = ξR · ηR + i ξR · ηI , (4.7)

where as usual · is the dot product.
In Scharnhorst’s notation ξ = a, ξR = A and ξI = Ã, see [21].
We now collect several useful identities.
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Lemma 1. For any ξ, η ∈ Cn+1 − {0} we have the following identities.

(1) ξR · ξI = 0,

(2) ξR · ξR = ξI · ξI = |ξ|2,

(3) ξR · ηR = ξI · ηI ,

(4) ξR · ηI = −ξI · ηR,

(5) |(ξ, η)|2 = (ξR · ηR)2 + (ξR · ηI)2.

Proof. The verification of these identities is straightforward and is left to the
reader. �

We now define the angle θξR,ηR ∈ [0, π/2] to be the smaller angle between
the rays in R2n+2 defined by the points ξR and ηR. The angles θξR,ηI etc are
defined similarly.

Putting these together we now have

Lemma 2. For any ξ, η ∈ Cn+1 − {0} we have

cos2 θξ,η = cos2 θξR,ηR + cos2 θξR,ηI .

Proof.

cos2 θξ,η =
|(ξ, η)|2
|ξ|2 |η|2

=
(ξR · ηR)2 + (ξR · ηI)2

|ξ|2 |η|2

=
(ξR · ηR)2

|ξR|2 |ηR|2
+

(ξR · ηI)2

|ξR|2 |ηI |2
= cos2 θξR,ηR + cos2 θξR,ηI . �

The angles θξR,ηR and θξR,ηI are angles between real lines in R2n+2, whereas
the angle θξ,η is an algebraically obtained angle between two complex points in
Pn. This lemma relates the cosine of the Hermitian angle with the cosines of
two real angles.

We now proceed to show that the angle θξ,η can also be visualized as an
angle between two real lines in R2n+2.

5 Geometric Visualization of the Hermitian angle

The real rays ξR, ηR and ηI lie in some R3 of R2n+2. We consider them as
vectors oriented as in the following figure.
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This choice of orientation is possible since the lines ηR and ηI are orthogonal
to each other and the direction of the vectors do not change the Hermitian angle,
see (3.5). Moreover the correct orientation to obtain the set-up of the following
figure may require switching places of ηR and ηI but this does not affect our
calculations.

A

B

ηR

D

ηI

E

ξR

C

Proj(ξR; η)

Let AE = 1 on the ray ξR. Let Proj(ξR; η) be the projection of ξR on the
real plane spanned by ηR and ηI . On Proj(ξR; η) take C as the projection of the
point E.
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Let the plane through EC and perpendicular to ηR intersect ηR at B. Sim-
ilarly let the plane through EC and perpendicular to ηI intersect ηI at D.

Then ABCD is a rectangle and the triangles 4EAB, 4EAD, 4EAC and
4ABC are right triangles.

In the previous section we defined the angles

∠EAB = θξR,ηR and ∠EAD = θξR,ηI .

Now define the angle

θξR,Proj(ξR;η) := ∠EAC.

Note that if Proj(ξR; η) = 0, then EA ⊥ spanRr{ηR, ηI}, so in this case we have
θξR,Proj(ξR;η) := π

2 .

We can now realize the Hermitian angle as a real angle between two real
lines. The following result can be found in [21, p. 97] but deriving it using only
real terms may nonetheless be beneficial.

Theorem 1. For any ξ, η ∈ Cn+1 − {0}, the Hermitian angle θξ,η is equal
to the real angle θξR,Proj(ξR;η).

Proof. From the above right triangles and using the fact that we chose AE = 1
we have the following identities.

cos θξR,ηR = AB, in 4EAB
cos θξR,ηI = AD = BC, in 4EAD

cos θξR,Proj(ξR;η) = AC, in 4EAC

Since we have AB2 +BC2 = AC2 in 4ABC, we will have

cos2 θξR,ηR + cos2 θξR,ηI = cos2 θξR,Proj(ξR;η).

From Lemma (2) of the previous section we now conclude that

cos θξ,η = cos θξR,Proj(ξR;η),

and hence

θξ,η = θξR,Proj(ξR;η),

since these angles are in [0, π/2]. �
In the next section we will show that the angle θξR,Proj(ξR;η) is independent

of the choice of homogeneous coordinates for [ξ].
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6 Invariance of the angle

Since the homogeneous coordinates of [ξ] are well defined only up to mul-
tiplication by a complex constant λ, the corresponding real line ξR is not well
defined. However in this section we will show that the angle between the line
(λξ)R and its projection on spanR{ηR, ηI} is independent of the λ ∈ C− {0}.

We first recall the definition of projection. In particular we have

Proj(ξR; η) =

(
ξR · ηR
|ηR|2

)
ηR +

(
ξR · ηI
|ηI |2

)
ηI .

Now we once more collect some identities.

Lemma 3. For any ξ, η ∈ Cn+1 − {0}, we have the following identities.

ξR · Proj(ξI ; η) = 0,

ξI · Proj(ξR; η) = 0,

Proj(ξR; η) · Proj(ξI ; η) = 0,

|Proj(ξR; η)| = |Proj(ξI ; η)| =
|(ξ, η)|
|η| = |ξ| cos θξ,η,

ξR · Proj(ξR; η) = ξI · Proj(ξI ; η) =
(ξR · ηR)2

|η|2 +
(ξR · ηI)2

|η|2 .

Remark: In the literature such planes as spanR{ξR, ξI} and spanR{ηR, ηI}
are called isoclinic subspaces, see [21, 20] and the references given there.

Remark: If a projection is zero, then the corresponding angle is π/2. For
example if Proj(ξR; η) = 0, then by the lemma cos θξ,η = 0 and in the range from
0 to π/2 we have θξ,η = π/2. This is compatible with the geometric visualization
of two planes being perpendicular.

Proof. The verification of these identities are mostly straightforward once the
results of Lemma (1) and equation (4.7) are consulted. �

Using these identities we finally prove the invariance of the angle θξR,Proj(ξR;η).

Theorem 2. For any ξ, η ∈ Cn+1 − {0}, the Hermitian angle θξ,η is equal
to the real angle between any non-zero vector in spanR(ξr, ξI) and its projection
on spanR(ηR, ηI).

Proof. Writing (λξ)R = λ1ξR + λ2ξI , where λ = λ1 + iλ2 with λ1, λ2 ∈ R, we
have

Proj(λ1ξR + λ2ξI ; η) = λ1 Proj(ξR; η) + λ2 Proj(ξI ; η).

Writing
α = λ1ξR + λ2ξI ,
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we want to show that
θξ,η = θα,Proj(α;η).

For this we have the following set of equations which follow from Lemmas (1)
and (3).

cos θα,Proj(α;η) =
(λ1ξR + λ2ξI) · [λ1 Proj(ξR; η) + λ2 Proj(ξI ; η)]

|λ1ξR + λ2ξI | |λ1 Proj(ξR; η) + λ2 Proj(ξI ; η))|

=
λ2

1(ξR · Proj(ξR; η)) + λ2
2(ξI · Proj(ξI ; η))

(λ2
1 + λ2

2)|ξR| |Proj(ξR; η)|

+
λ1λ2[ξR · Proj(ξI ; η) + ξI · Proj(ξR; η)]

(λ2
1 + λ2

2)|ξR| |Proj(ξR; η)|

=
ξR · Proj(ξR; η)

|ξR| |Proj(ξR; η)|

= cos θξR,Proj(ξR;η).

Since these angles are in [0, π/2], we have

θα,Proj(α;η) = θξR,Proj(ξR;η).

But it now follows from Theorem (1) that

θξ,η = θα,Proj(α;η),

proving the invariance of the angle. �
Thus we have shown that the angle between [ξ] and [η] in Pn can be visualized

in R4 as in the figure below.

Here the cones represent the two planes spanR{ξR, ξI} and spanR{ηR, ηI} in
some R4 touching each other only at the origin. The angle between these two
planes is well defined since the angle between any line through the origin on
spanR{ξR, ξI} and its projection on spanR{ηR, ηI} is equal to the angle θξ,η as
shown in the figure.

7 The triangle inequality

It is known that the function (·, ·) given at the beginning in (3.3) is a metric
on the space of Pn induced by the Fubini-Study metric of the tangent space
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θξ,η

ξR

Proj(ξR; η)

spanR{ηR, ηI}

spanR{ξR, ξI}

⊂ R4

of Pn. Therefore it follows indirectly that d(·, ·) satisfies the triangle inequality.
However we will show in this section that this triangle inequality can be proved
directly from the given definition of d(·, ·) using the techniques we developed so
far.

We start with a lemma.

Lemma 4. For ξ, η, ζ ∈ Cn+1 − {0} we have

θξ,ζ + θζ,η ≥ θξ,η.

Proof. Let u := Proj(ξR; ζ) and v := Proj(u; η). First assume that u 6= 0 and
v 6= 0. Then the angle between ξR and u is θξ,ζ by Theorem 1, and the angle
between u and v is θζ,η by Theorem (2).

Let the angle between ξR and v be denoted by θ(ξR, v).
We have three real vectors, ξr, u and v emanating from the origin. Since

each of the three angles θξ,ζ , θζ,η and θ(ξR, v) is in [0, π/2], their sum is less
than 2π. Hence following Euclid we conclude that

θξ,ζ + θζ,η ≥ θ(ξr, v),

see [4, Book XI, Propositions 20, 21 and 23].
The vectors v and Proj(ξR; η) are both in spanR(ηR, ηI). Therefore the angle

between ξR and its projection on spanR(ηR, ηI) is smaller or equal to the angle
between ξR and any other vector in spanR(ηR, ηI). This means

θ(ξR, v) ≥ θξ,η.

These two last inequalities give us the required inequality that

θξ,ζ + θζ,η ≥ θξ,η,



38 C. Koca, A. S. Sertoz

as claimed.
Next assume that u = 0 or v = 0. Then θξ,ζ = π

2 or θζ,η = π
2 , respectively.

Since the maximum value of θξ,η is π
2 , the claimed inequality holds without

further work. �
Using theorem (1) as a starting proof, an alternate proof of this lemma can

be found in [23, section 3].
The triangle inequality then reduces to the following.

Theorem 3. Let θξ,η, θξ,ζ , θζ,η ∈ [0, π/2] be such that θξ,ζ+θζ,η ≥ θξ,η. Then

sin θξ,ζ + sin θζ,η ≥ sin θξ,η,

or in equivalent formulation, see (3.4),

d(ξ, ζ) + d(ζ, η) ≥ d(ξ, η).

Proof. We first recall that sinx is sub-additive on [0, π], i.e. for x, y ∈ [0, π] we
have

sinx+ sin y ≥ sin(x+ y). (7.8)

Now without loss of generality we may assume that θξ,ζ ≤ θζ,η.
We have two cases to consider.
Case 1: θξ,η ≤ θξ,ζ + θζ,η ≤ π/2.

In this case we have from (7.8)

sin θξ,ζ + sin θζ,η ≥ sin(θξ,ζ + θζ,η) ≥ sin θξ,η.

Case 2: θξ,η ≤ π/2 ≤ θξ,ζ + θζ,η.
Here we consider two subcases.

Subcase 2.1: θξ,η ≤ θζ,η ≤ π/2. In this case since sin θζ,η ≥ sin θξ,η, the result
follows trivially.

Subcase 2.2: θζ,η ≤ θξ,η ≤ π/2. In this case we must have π/4 ≤ θζ,η since
π/2 ≤ θξ,ζ + θζ,η and by assumption θξ,ζ ≤ θζ,η. Then θξ,ζ ≥ π/2 − θζ,η, and
hence sin θξ,ζ ≥ cos θζ,η. We thus have

sin θξ,ζ + sin θζ,η ≥ cos θζ,η + sin θζ,η ≥ 1 ≥ sin θξ,η.

�

8 More on isoclinic planes

To be consistent with our notation we will consider the Grassmannian

G(2,R2n+2).
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Let P and Q be two planes in R2n+2 both passing through the origin. By abuse
of notation we will also use P and Q to denote the corresponding points in
G(2,R2n+2).

For any non-zero v ∈ R2n+2, let θv,Proj(v;Q) be the angle between v and its
orthogonal projection on Q.

Whitehead in [23] defines the angle between P and Q as

θP,Q = max{θv,Proj(v;Q)|v ∈ P − {0}}.

If P = spanR{ξR, ξI} and Q = spanR{ηR, ηI} for some ξ, η ∈ Cn+1 − {0}, then
P and Q are isoclinic subspaces by theorem (2). Hence the cardinality of the set
{θv,Proj(v;Q)|v ∈ P − {0}} is one. In other words as planes corresponding to to
complex lines are isoclinic, all such angles for them are equal to the Hermitian
angle between them.

9 Principal angles and singular values

The idea of finding several angles to measure how one subspace deviates from
the other seems to have started with Jordan, [13, Section 37]. Then Hotelling [11,
Section 7], and later Afriat [1, Section 5] worked on this idea. These angles are
called principal angles and they are related to singular values of some matrices,
see [2, 8, 7, 10, 18, 24].

We will define these concepts only for planes in R2n+2 since that is the only
relevant medium for us.

The purpose of this section is to derive algebraically the equality of certain
geometric identities.

Let P and Q be two planes in R2n+2 both passing through the origin. We
will define the principal angles [θ1, θ2] between P and Q recursively. θ1 ∈ [0, π/2]
is that angle for which

cos θ1 = max{x · y|x ∈ X, y ∈ Y, |x| = |y| = 1}.

Let x1 ∈ X and y1 ∈ Y be two unit vectors such that

cos θ1 = x1 · y1.

For a non-zero x ∈ X let x⊥ denote the orthogonal complement of x in X. Now
we define θ2 as that angle for which

cos θ2 = max{x · y|x ∈ x⊥1 , y ∈ y⊥1 , |x| = |y| = 1}.

Similarly let x2 ∈ x⊥1 and y2 ∈ y⊥1 be two unit vectors such that

cos θ2 = x2 · y2.
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The vectors {x1, x2} and {y1, y2} are called principal vectors.

One can likewise recover the principal angles from the principal vectors as
follows.

Let A be the 2n+2 by 2 matrix whose columns are the entries of the principal
vectors x1 and x2. Similarly define B as the 2n+ 2 by 2 matrix whose columns
are the entries of the principal vectors y1 and y2. Then the singular values of
the 2 by 2 matrix AtB are cos θ1 and cos θ2.

In our setting P = spanR{ξR, ξI} and Q = spanR{ηR, ηI}. The principal
angles are θξr,Proj(ξR;η) and θξI ,Proj(ξI ;η).

The principal vectors then are{
ξR
|ξ| ,

ξI
|ξ|

}
,

{
Proj(ξR; η)

|Proj(ξR; η)| ,
Proj(ξI ; η)

|Proj(ξI ; η)|

}
.

Using the identities in lemma (3) we see that the matrix AtB is already diagonal

AtB =

(
a 0
0 a

)
,

where we expect a = cos θξ,η. In fact using lemmas (3) and (2) we see that

a =
ξR · Proj(ξR; η)

|ξ| |Proj(ξR; η)|

=
(ξR · ηR)2

|ξ| |η|
1

|(ξ, η)| +
(ξR · ηI)2

|ξ| |η|
1

|(ξ, η)|

=

(
ξR · ηR
|ξ| |η|

)2 |ξ| |η|
|(ξ, η)| +

(
ξR · ηI
|ξ| |η|

)2 |ξ| |η|
|(ξ, η)|

=
cos2 θξR,ηR + cos2 θξR,ηI

cos θξ,η

=
cos2 θξ,η
cos θξ,η

= cos θξ,η.

There is a shorter way of obtaining the cosines of the principal angles. By
using theorem 2.1 of [24, page 328] we can replace the matrix B above by any
orthonormal base of spanR(ηR, ηI) and still the singular values of AtB will be
the cosines of the principal angles. Hence we can use the usual orthonormal base
for spanR(ηR, ηI) {

ηR
|η| ,

ηI
|η|

}
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and the columns of B consists of the entries of these base elements. Then we
have

AtB =

(
u v
−v u

)
,

where

u =
ξR · ηR
|ξ| |η| =

ξR · ηI
|ξ| |η| , v =

ξR · ηI
|ξ| |η| .

The two singular values of such a matrix are equal to each other and each is of
the form (

u2 + v2
)1/2

which, using lemma (2), simplifies to

(cos2 θξR,ηR + cos2 θξR,ηI )
1/2 = cos θξ,η,

as expected.

10 An example

We take

ξ = (3 + 4i, 5
√

3) ∈ C2, η = (1, 0) ∈ C2.

Then

ξR = (3, 4, 5
√

3, 0)

ξI = (−4, 3, 0, 5
√

3)

ηR = (1, 0, 0, 0)

ηI = (0, 1, 0, 0),

all vectors being in R4. We use standard basis for R4 and consider ξR, ηR and
ηI in the xyz-space as R3 ⊂ R4, see figure below.

Here spanR(ηR, ηI) is the xy-plane and Proj(ξR; η) = (3, 4, 0). A simple
calculation shows that the angle between ξR and Proj(ξR; η) is π/3.

Next we define β = (11 − 2i, 5
√

3(1 − 2i)). Note that βR = ξR − 2ξI . This
vector βR now cannot be seen in our xyz-space except at the origin where it
intersects this R3. Again the angle between βR and Proj(βR; η) can be easily
seen to be π/3 as predicted by the theorem 2.
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x

y

z

ξR

Proj(ξR; η)

βR

Proj(βR; η)

Here βR = ξR − 2ξI and is not visible in this xyz-space.

We conclude by showing that the above isocliny angles agree with the cor-
responding Hermitian angles.

cos θξ,η =
|(ξ, η)|
|ξ| |η| =

1

2
, θξ,η =

π

3
,

and similarly

cos θβ,η =
|(β, η)|
|β| |η| =

1

2
, θβ,η =

π

3
.
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