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Abstract. Let X be the normalization of an integral degree d ≥ 9 plane curve Y . We prove
that X has a unique g2

d if h1(P2, IZ(dd/2e−3)) = 0, where Z is the conductor of Y . Moreover,
Y is the unique plane model of X of degree at most d.
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Introduction

Let Y ⊂ P2 be an integral plane curve of degree d ≥ 2. Let v : X → Y
denote the normalization map and let Z ⊂ P2 be the conductor of v. We have
deg(Z) = (d− 1)(d− 2)/2− g(X).

Under what assumptions the map induced by v∗(OY (1)) is the only g2
d on

X and X has no base point free g2
t , t < d?

If Y is smooth, this is true if d ≥ 4, but not for d = 3. For very singular Y ,
this is certainly false, e.g. for X of genus g ≥ 4 we at least need to exclude the
Brill-Noether range for curves with general moduli and at least 2 different g2

d’s.
In this paper we give the following result which only uses a cohomological

assumption on Z.

Theorem 1. Fix an integer d ≥ 9 and a degree d integral plane curve
Y ⊂ P2. Let v : X → Y denote the normalization map and let Z ⊂ P2 be
the conductor of v. Assume h1(P2, IZ(dd/2e − 3)) = 0. Then v∗(OY (1)) is the
unique g2

d on X, it is a complete linear series and X has no g2
t with t < d.

The following example shows that Theorem 1 is sometimes sharp.

Example 1. Fix integers d ≥ 4 and m such that d/2 ≤ m < d. Let Y ⊂
P2 be an integral degree d curve with a unique singular point, p, which is an
ordinary m-point. Let v : X → Y be the normalization map. The pencil of
lines through p induces a g1

d−m on X. Thus 2g1
d−m induces a g2

2d−2m on X,
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perhaps not complete. Even when d = 2m, the line bundle giving this g2
d is not

v∗(OY (1)), because h0(P2, v∗(OY (1))) = 3 (Lemma 2) and the elements of the
minimal sum 2g1

d/2 are not contained in lines. The conductor of the singularity of

Y is Z := (m− 1)p, which has degree
(
m
2

)
. We have hi(P2, I(m−1)p(m− 2)) = 0,

i = 0, 1, and h1(P2, I(m−1)p(m− 3)) =
(
m
2

)
−
(
m−1

2

)
= m− 1. Taking m = dd/2e

we get h1(P2, IZ(dd/2e − 3)) = dd/2e − 1 and h1(P2, IZ(dd/2e − 2)) = 0.

For a smooth plane curve C ⊂ P2 of degree d ≥ 4 the usual way to see that
it has a unique g2

d is to prove that for each g1
d−1 on C there is a unique p ∈ C

such that this g1
d−1 is induced by the pencil of lines through p. If Y is singular,

we do not know how to get the uniqueness of the g2
d from a description of the

pencils on X evincing the gonality of X. Of course, it would be sufficient to
prove that all base point free g1

d−1 on X are induced by a pencil of lines through
a smooth point of Y . This observation gives us no simplification for the proof.

Of course, one can give additional conditions on Z and get, perhaps, results
for other linear series. A standard way to improve cohomological conditions (or
to have them for free) is to assume something about the singularities, e.g. only
ordinary nodes or ordinary cusps, so that the conduction scheme Z is just a
finite set, or to further require that the finite set is general and for a fixed Z
the plane curve Y is general ([3, 4, 5]). If we prescribe that Y has only ordinary
multiple points with, say, multiplicity m1 ≥ · · · ≥ ms ≥ 2 and that the s
singular points of Y are general in P2, the computation of the lowest integer ρ
such that h1(IZ(ρ)) = 0 is related to the famous Segre - Harbourne - Gimigliano
- Hirschowitz conjecture ([2]).

We work over an arbitrary algebraically closed field. Some steps could be
done in characteristic zero using a monodromy argument for grt , r ≥ 2, not
composed with an involution ([1, p. 111]) and we expect that a characteristic
zero assumption may help to generalize Theorem 1.

1 Proof of Theorem 1:

Let ρ be the minimal integer ≥ 0 such that h1(IZ(ρ)) = 0. Adjunction gives
ρ ≤ d − 3. Note that ρ = 0 if and only if deg(Z) ≤ 1, i.e. if and only if Y is
either smooth or it has a unique singular point which is either an ordinary node
or an ordinary cusp, i.e. if and only g ≥ (d− 1)(d− 2)/2− 1.

Lemma 1. The integer ρ is the maximal non-negative integer x ≤ d − 3
such that h0(X, v∗(OY (x))) =

(
x+2

2

)
.

Proof. Fix a non-negative integer x ≤ d − 3. Since deg(Y ) = d > x, we have
h0(X, v∗(OY (x))) ≥

(
x+2

2

)
. Fix a general degree x curve J ⊂ P2 and set E :=
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Y ∩ J . Since J is general, Z ∩ J = ∅. Consider the residual exact sequence of
Z ∪A with respect to J :

0→ IZ(d− 3− x)→ IZ∪E(d− 3)→ IE,J(d− 3)→ 0 (1.1)

By the definition of ρ we have h1(P2, IZ(d − 3 − x)) = 0 if and only if x ≤
d− 3− ρ. QED

Remark 1. In the set-up of Theorem 1 we have ρ ≥ 2.

Lemma 2. Fix integers d ≥ 4 , t ∈ {1, 2} and a degree d integral plane
curve Y ⊂ P2. Let v : X → Y denote the normalization map and let Z ⊂ P2 be
the conductor of v. If h1(P2, IZ(d− 3− t)) = 0, then h0(X, v∗(OY (t)) =

(
t+2

2

)
.

Proof. Since Y is neither a line nor a conic, h0(v∗(OY (1))) ≥
(
t+2

2

)
. Fix a general

degree t curve L ⊂ P2 and set A := Y ∩L. Since L is general, Z∩L = ∅. Consider
the residual exact sequence of Z ∪A with respect to A:

0→ IZ(d− 3− t)→ IZ∪A(d− 3)→ IA,L(d− 3)→ 0 (1.2)

By assumption h1(P2, IZ(d − 3 − t)) = 0. Thus the long cohomology exact
sequence of (1.2) gives h1(P2, IZ∪A(d − 3 − t)) ≤ h1(L, IA,L(d − 3)). Since
deg(A) = td, deg(OL(d − 3)) = td − 3t, t ∈ {1, 2}, and L ∼= P1, we have
h1(L, IA,L(d− 3)) =

(
t+2

2

)
− 1. Thus h0(X, v∗(OY (t)) ≤

(
t+2

2

)
. QED

Remark 2. ([6, Rem. at p. 116]) Let A ⊂ P2 be a zero-dimensional scheme,
A 6= ∅. Set z := deg(A). Let τ be the maximal integer such that h1(IA(τ)) > 0.
If z ≥ 9 and z < 3τ , then either there is a line L such that deg(A ∩ L) ≥ τ + 2
or there is conic D (possibly singular) such that deg(D ∩A) ≥ 2τ + 2. If z ≥ 4
and z ≤ 2τ + 1, there is a line L such that deg(A ∩ L) ≥ τ + 2.

Lemma 3. Fix an integer d ≥ 6 and a degree d integral plane curve Y ⊂
P2. Let v : X → Y denote the normalization map and let Z ⊂ P2 be the
conductor of v. Assume h1(P2, IZ(d− 5)) = 0. Take a base point free grd which
is a subseries of v∗(OY (2)). Then r = 1 and there is a line L ⊂ P2 such that
g1
d = v∗(OY (2))(−Y ∩ L).

Proof. Lemma 2 gives h0(X, v∗(OY (2))) = 6. The line bundle v∗(OY (2)) has
degree 2d and it is base point free. For any zero-dimensional scheme W ⊂ P2

such that deg(W ) ≥ 4 we have h0(P2, IW (2)) ≥ 3 if and only if W is contained
in a line. Apply this observation to the degree d zero-dimensional subscheme B
of X such that v∗(OY (2))(−B) is the line bundle associated to the grd. QED
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Proof of Theorem 1: Let t be the minimal degree of a g2
t on X. Since t is min-

imal, the g2
t is base point free and complete, say g2

t = |R| for some degree
t line bundle R on X. To conclude the proof it is sufficient to prove that
R = v∗(OY (1)) and h0(X, v∗(OY (1))) = 3. The latter equality is true by Lemma
2. Take a general B ∈ |R| and set A := v(B). Since B is general and |R| is
base point free, A ∩ Z = ∅. Adjunction gives h1(P2, IA∪Z(d − 3)) = 2 and
h1(P2, IZ∪A′(d − 3)) < 2 for all A′ ( A. For each p ∈ P2 the set of all lines
L ⊂ P2 containing p is one-dimensional. Since B is a general element of a g2

t

and Zred is a finite set, if a line L satisfies #(A ∩ L) ≥ 2, then L ∩ Z = ∅.
Moreover, only finitely many lines contain at least 2 points of Zred, while for
each p ∈ Zred all lines through p, except finitely many, intersect the connected
component, Zp, of Z with p as its reduction in a scheme of degree µp, where µp is
the multiplicity of Zp. Thus if J ⊂ P2 is a line such that A∩J 6= ∅ and Z∩J 6= ∅,
then #(A ∩ J) = 1, R ∩ Zred is a single point, p, and deg(Z ∩ J) = µp. Note
that if Zp has multiplicity µp, then deg(Zp) ≥

(
µp+1

2

)
and h1(IZp(µp − 2)) > 0.

Since h1(P2, IZ(dd/2e−3)) = 0, the Castelnuovo Mumford Lemma gives that
the sheaf IZ(dd/2e − 2) is globally generated. Thus A ∩W = ∅ for a general
W ∈ |IZ(dd/2e−2)|. Consider the residual exact sequence of Z∪A with respect
to W :

0→ IA(bd/2c − 1)→ IZ∪A(d− 3)→ IZ,W (d− 3)→ 0 (1.3)

Since h1(P2, IZ(d − 3)) = 0, we have h1(W, IZ,W (d − 3)) = 0. Thus the long
cohomology exact sequence of (1.3) gives h1(IA(bd/2c − 1) ≥ 2. Let τ be the
largest integer such that h1(IA(τ)) > 0. Since τ ≥ bd/2c − 1, we have #A ≤
2τ + 3. Thus either there is a line L such that #(A ∩ L) ≥ τ + 2 or there is a
conic C such that #(C ∩A) ≥ 2τ + 2 (Remark 2).

(a) Assume the existence of a line L such that #(A∩L) ≥ τ+2. If A ⊂ L,
then the g2

t is a subseries of v∗(OY (1)). Since h0(v∗(OY (1))) = 3 (Remark 1), we
get a contradiction. Now assume A * L. Consider the residual exact sequence
of Z ∪A with respect to W ∪ L:

0→ IA\A∩L(bd/2c − 2)→ IZ∪A(d− 3)→ IZ∪(A∩L),W∪L(d− 3)→ 0 (1.4)

Since A∩L 6= A, we have h1(P2, IZ∪(A∩L)(d−3)) < 2. Thus the long cohomology
exact sequence of (1.4) gives h1(IA\A∩L(bd/2c − 2)) > 0. Since #(A ∩ L) ≥
τ + 2 ≥ bd/2c, we have #(A \A ∩ L) ≤ dd/2e. Thus there is a line J such that
#(J ∩ (A \ A ∩ L)) ≥ bd/2c. If d is even, we get A ⊂ L ∪ J . If d is odd, we get
#(A \ A ∩ (L ∪ J)) ≤ 1. Using the residual exact sequence of W ∪ L ∪ J and
that h1(P2, IZ∪A′(d − 3)) < 2 for all A′ ( A, we get A ⊂ L ∪ J for all integers
d. Set C := L ∪ J . Consider the residual exact sequence of C:

0→ IResC(Z)(d− 5)→ IZ∪A(d− 3)→∈ I(C∩Z)∪A,C(d− 3)→ 0 (1.5)
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Since ResC(Z) ⊆ Z, we have h1(IResC(Z)(d−5)) = 0. Thus the long cohomology
exact sequence of (1.5) gives h1(C, IA∪(Z∩C),C(d− 3)) ≥ 2. Since #(A∩L) ≥ 2,
we have Z ∩L = ∅. First assume #(A ∩ J) ≥ 2 and hence Z ∩ J = ∅. Each line
contains at most t−1 ≤ d−1 points of A and #A = t ≤ d. Since h1(IA(d−3)) =
h1(C, IA,C(d − 3)) ≥ 2, we get #A ≥ 2d − 3 (e.g., by Remark 2 or a residual
exact sequence of L), a contradiction. Now assume #(A∩ J) = 1. Since A * L,
J ∩L /∈ A. Remark 2 (or the residual exact sequence of A∪ (C∩Z) with respect
to L) gives deg(J ∩ (A ∪ Z)) ≥ d − 2 and hence deg(Z ∩ J) ≥ d − 3. We saw
that the unique connected component, Zp, of Z intersecting J has multiplicity
≥ d− 3. Thus h1(IZp(d− 5)) > 0, a contradiction.

(b) By step (a) we may assume that there is no line L such that #(A∩L) ≥
τ + 2. Thus there is a conic C such that #(C ∩ A) ≥ 2τ + 2. Assume for the
moment A * C. Consider the residual exact sequence of Z ∪A with respect to
W ∪ C:

0→ IA\A∩C(bd/2c − 3)→ IZ∪A(d− 3)→ IZ∪(A∩C),W (d− 3)→ 0 (1.6)

Since #(A\A∩C) ≤ 1 and d ≥ 6, we have h1(P2, IA\A∩C(bd/2c−3)) = 0. Thus
the long cohomology exact sequence of (1.6) gives h1(P2, IZ∪(A∩C)(d− 3)) = 2.
Since h1(IZ∪A′(d− 3)) < 2 for all A′ ( A, we get A ⊂ C. Since h1(IResC(Z)(d−
5)) = 0, (1.5) gives h1(C, I(Z∩C)∪A,C(d − 3)) ≥ 2. If C is reducible, then we
conclude as in step (a). Now assume C irreducible. Set α := deg(Z ∩ C). Since
C is a smooth conic, h1(C, I(Z∩C)∪A,C(d− 3)) ≥ 2 if and only if t+α ≥ 2d− 3.
Since t ≤ d, we get α ≥ d − 3. Thus h1(IZ∩C(x)) > 0 if 2x + 2 ≤ d − 3, i.e. if
x ≤ b(d − 5)/2c. If d is even we get h1(IZ∩C(d/2 − 3)) > 0, a contradiction. If
d = 2k + 1 is odd, we get h1(IZ∩C(k − 2)) > 0, a contradiction. QED
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