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Abstract. For a submodule N of an R-module M, a unique product of prime ideals in R is
assigned, which is called the generalized prime ideal factorization of N in M, and denoted as
Prr(N). But for a product of prime ideals p1 - - - p, in R and an R-module M, there may not
exist a submodule N in M with Py (N) = p1---py. In this article, for an arbitrary product
of prime ideals p; - - - p, and a module M, we find conditions for the existence of submodules
in M having p; - - - p,, as their generalized prime ideal factorization.
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1 Introduction

Throughout this article, R denotes a commutative Noetherian ring with
identity and M will be a finitely generated unitary R-module. The reference for
standard terminology and notations will be [3] and [4].

A proper submodule N of an R-module M is called a prime submodule of
M if for any a € R and x € M, ax € N impliesa € (N: M)orx € N.If N
is a prime submodule of M, then (N : M) = p, a prime ideal in R, and we say
N is a p-prime submodule of M. Let N and K be submodules of M. Then K is
called a p-prime extension of N in M if N is a p-prime submodule of K, and it

is denoted as N & K. In this case, Ass(K/N) = {p}.
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Let N be a proper submodule of an R-module M. Then we have p €
Ass(M/N) if and only if there exists a p-prime extension of N in M [1, Lemma 3].
A p-prime extension K of N is said to be mazimal if K is maximal among the
submodules of M which are p-prime extensions of N in M. Since M is Noethe-
rian, maximal p-prime extensions exist. A filtration of submodules F : N =

P1 Pn . . . .
My C My C --- C M,y C M, = M is called a mazimal prime extension

(MPE) filtration of M over N, if M; 4 % M; is a maximal p;-prime extension
in M for 1 < i < n. It is proved that Ass(M/M;_1) = {pi,...,pn} for each
1 <4 < n[1, Proposition 14]. Hence, the set of prime ideals which occur in any
MPE filtration of M over N is exactly equal to Ass(M/N).

A maximal p-prime extension K of IV is said to be regular if p is a maximal

element in Ass(M/N), and the filtration F : N = M ’8 My C - C M, an

M, = M is called a regular prime extension (RPE) filtration of M over N if

M;_1 C M; is a regular p;-prime extension in M for 1 < ¢ < n. In this case, for

Pit1 Pj
each i < j, M; ¢ Miy1--- C Mj_q c M; is also an RPE filtration of M; over

M,;. Since RPE filtrations are MPE filtrations, Ass(M;/M;) = {piy1,...,p;} for
1 <i < j < n.In particular, Ass(M/N) = {p1,...,pn}-

The following lemma gives the condition for interchanging the occurrences
of prime ideals in an RPE filtration.

Lemma 1.1. [1, Lemma 20] Let N be a proper submodule of M and N =
Pit1

MyC - C My & M; ¢ My C--- C My = M be an RPE filtration of M

over N. If p;11 € p; for some 4, then there exists a submodule K; of M such that

Pi Pi
N=MyC--CM_ ¢ KiC My C---C M,= M is an RPE filtration of

M over N.
RPE filtrations satisfy the following uniqueness property.

Lemma 1.2. [1, Theorem 22] For a proper submodule N of M, the number
of times a prime ideal p occurs in any RPE filtration of M over N is unique,
and hence, any two RPE filtrations of M over N have the same length.

The submodules which occur in an RPE filtration are characterized as fol-
lows.

Lemma 1.3. [2, Lemma 3.1]. Let N be a proper submodule of an R-module
M.IN=My & M C-C My & M, =M is an RPE filtration of M over
N, then M; ={z e M |p;---pix CN}for1l<i<n.

Hence, the product of prime ideals that occur in any two RPE filtrations
of M over N is the same. This product is called the generalized prime ideal

factorization of N in M and denoted as Pjs(N) in [5], and sufficient conditions
for Pas(p1---pnM) = p1---p, were found, where py,...,p, are prime ideals in
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R [5, Theorem 2.14].
There may be products of prime ideals that are not the generalized prime
ideal factorization of any submodule of a given module.

Example 1.4. Let R = % and 7,vy,z denote the images of x,y, z
respectively in R. Let p be the prime ideal (Z,%). Then (p? : p) = (Z,7,2).
Suppose there exists an ideal a in R with Pr(a) = p2. Then there exists an
RPE filtration a ¢ a & R and therefore, Ass(R/a) = {p}. By Lemma 1.3,
a; = (a:p), and since p? C a, we have (p? : p) C (a : p). Since (7,7,%) = (p? :
p) C(a:p)=a; € R and (7,7,2) is a maximal ideal, (Z,7,Z) = (a : p). Then
(Z,79,%Z) = (a: p) for every p € p\ a. This would imply that (7,7,%z) € Ass(R/a),
a contradiction. Therefore, an ideal a in R cannot have Pg(a) = p2.

In this article, for a product of prime ideals py - - - p,, (p;’s not necessarily dis-

tinct), we find conditions for the existence of submodules N of M with Py (V) =
p1 -+ pn. We also give a necessary and sufficient condition for Pys(p1---p, M) =

p1--Pn-

2 Ideals as Generalized Prime Ideal Factorization of
Submodules

Lemma 2.1. Let N be a submodule of M and p1,...,p, be some minimal
prime ideals in Ass(M/N). Then there exists a submodule K of M containing
N such that Py (K) = p1---p.

Proof. Let N = M, (8 My C---C M, an M, = M be an RPE filtration of
M over N. Since {q1,...,qn} = Ass(M/N), for each 1 < i <7, p; = q; for some
J. Since p1,...,p, are minimal, we can reorder qi,...,q, such that q; Z q; for
1<j<k<nand qu_py; = p; for 1 <7 < r. So using Lemma 1.1 sufficient
times we can have an RPE filtration

p p pr
N=KyCKi C CKpyCKpnyi1CCKn1CKp=M
of M over N. Then
p p pr
Kpy CKpyi1 Cor CKnqC Ky=M

is an RPE filtration. So if K = K,,_,, then K is a submodule of M containing
N with Py (K) =p1--pr.

Now we show that for a prime ideal p in R, p € Supp(M) is a necessary and
sufficient condition for the existence of a submodule N in M with Py (N) = p.
More generally, we have the following result.
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Proposition 2.2. Let M be an R-module and p,...,p, be prime ideals in
R such that p; Z p; for every i,j € {1,...,n} with i # j. Then the following
are equivalent:

(1) {p1,-..,pn} S Supp(M);

(2) p; € Supp(M/p1---ppM) for every 1 < i < n;

(3) p; is minimal in Ass(M/p1---p, M) for every 1 <i < n;
(4) There exists a submodule N in M with Py;(N) = p1---pp.

Proof. (i) = (ii): Suppose p; ¢ Supp(M/p1 - pp M) for some i. Then we have
(M/p1-+-ppM), = 0. So we get My, = (p1---pn)My,. Since (p1---pn)p, C
p;Ry,, by Nakayama’s lemma M,, = 0. Therefore p; ¢ Supp(M).

(il) = (iil): If g € Supp(M/py---pp M), then py---p, C q, and therefore q
contains some p;. So the set of minimal elements of Supp(M /p; - - - p, M) is con-
tained in {p1,...,pn}. Since p; Z p; for alli # j, p1, ..., py are minimal elements
in Supp(M/p1 - - - ppM). Therefore py, ..., p, are minimal in Ass(M /py - - - ppM).

(iii) = (iv): Since p1,...,p, are minimal in Ass(M/py ---p, M), by Lemma
2.1, there exists a submodule N of M with Py;(N) =p1 - pn.

(iv) = (i): Since pi,...,pn are the prime ideals which occur in an RPE
filtration of M over N, {p1,...,pn} = Ass(M/N) C Supp(M). QED

Corollary 2.3. Let p be a prime ideal in R. Then p € Supp(M) if and only
if there exists a submodule N in M with Py (N) = p.

In Proposition 2.2, the prime ideals are distinct. Now we find conditions for
the product of prime ideals that need not be distinct to be a generalized prime
ideal factorization of some submodule.

Proposition 2.4. Let p be a prime ideal in R and r be a positive integer.
If p € Ass(p"™ 1M /p"M), then there exists a submodule N in M such that
PM(N) = ]JT.

Proof. Let N ={zx € M| (p"M : ) € p}. Let x1,20 € N and u € R. Then
there exists a; € (p"M : z1) \ p and az € (p"M : x2) \ p. Then ajaz € (p"M :
ux1 + x2) \ p, which implies that ux; + 22 € N. Hence N is a submodule of M.
Since p € Ass(p"~!M /p" M), there exists x € p" ' M such that p = (p"M : z).
This implies « ¢ N. Therefore N is a proper submodule of M. Also, N D p" M.

We claim that Ass(M/N) = {p}. Let q € Ass(M/N). Then p" C q since
p"M C N. Therefore p C q. Now q = (N : z) for some z € M, z ¢ N, that
is, (p"M : z) C p. Let a € q. Then az € N, which gives (p"M : az) € p. Let
b € R\ p such that baz € p"M, ie., ba € (p"M : z) C p. This implies a € p.
Therefore q C p. Hence Ass(M/N) = {p}.
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IEN =My & M, C - C Myy & My = M is an RPE filtration of M
over N, then {p1,...,pr} = Ass(M/N) = {p}. So Pp;(N) = p*. Suppose k < r.
Then p"~! C p*, which implies p"~'M C p*M C N. So, for every z € p" ' M,
(p"M : x) € p. But p € Ass(p" ' M /p"M) implies p = (p"M : z) for some
x € p"~'M, a contradiction. Therefore, k > r, and this implies M, C M;, = M.
By Lemma 1.3, M, = {x € M | p’x C N}. For any x € M, p"x C p"M C N.

Therefore M, = M. So, N é M, % & M, = M is an RPE filtration of M
over N, and hence Py;(N) = p". QED

In Example 1.4, p ¢ Ass(p/p?) = {(Z,7,%)}. So p need not be an element of
Ass(p" M /p" M) even if p" M C p" 1 M.

Theorem 2.5. Let M be an R-module, p1,...,p, be distinct prime ideals
in R ordered as p; ¢ p; for ¢ < j, and r1,...,7, be positive integers. If p; €
Supp(p;" " pip1" - ppm M) for i = 1,...,n, then there exists a submodule
N in M such that Py (N) =pi™ - -pp"™.

Proof. We prove by induction on n. If n = 1, p; € Supp(p1"™*~'M) and by
Proposition 2.2, p; € Ass(p;"~!M/p1"*M). Then by Proposition 2.4, there
exists a submodule N in M with Py (N) = p1"t. Now let n > 1, and assume
that the result is true for n — 1 prime ideals. Then there exists a submodule L
in M with Py;(L) = pa™ - --p, . That is, we have an RPE filtration

LErP e EL@e P o = (2.1)
Then pp"2---p,"»M C L.

So, we have Ann(p1™~'L) C Ann(p1™ po"2---p,"" M) C p; since p; €
Supp(p1" ~tpa"2 - pp ™ M). That is, p; € Supp(p1"*~'L), and by Proposition
2.2, p1 € Ass(p1"™~1L/p1™ L). Then by Proposition 2.4, there exists a submodule
N in L such that Pr(N) = p;"'. That is, we have the RPE filtration

NerWerVe.. .2 =r (2.2)

Next, we show that

N=LPerWe PV c...eO=r2Pe...
Pn—1

LR LME LB (23)

Tn—1

ey c...
is an RPE filtration of M over N, which would imply that Py (N) = p1™ -+ - p,"™.
Since the filtration (2.1) is already an RPE filtration, it is enough to show that

p
Lg.i)l C1 Lg-l) is a regular prime extension in M for 1 < j <.
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From (2.2) we have that L;l_)l C Lgl) is a pq-prime extension for every
p
1 < j < ri. Suppose L§-1_)1 C1 Lgl) is not a maximal p;-prime extension in M
. . b .
for some j. Then there exists a submodule K D Lg.l) such that Lg-l_)l C Kisa

p1-prime extension in M. Since L( )1 C L( ) is a maximal p1-prime extension in
L, K¢ L. Let x € K\ L. For 2 gz <mn, smce p1 € pi, there exists p; € p1 \ p;.
Then p;x € L§‘91' Since Lgﬂ C L, from (2.1) we get that p;z € Lg) for every
2<i<n,1<k<nr.

IO

Since ppx € L, "4, L, "1 C M is a p,-prime extension, and py, ¢ pp, we

Pn
have z € L£ ") . Then PrT € L( ") o and L(n) 5 C L( ) is a prime extension

) "o Repeating thls argument 7, — 3 tlmes we get x € L&Z‘} ).
Replacing M by L 7(%_1) and p, by p,—1 in the previous paragraph, we get

implies x € L(

T € Lgn 2) Contlnumg this process, finally we get « € L( ) = = L, a contradiction.
Therefore, L( )1 C L( ) is a maximal prime extension in M for every 1 < j < ry,
and hence (2 3) is an MPE filtration of M over N.

So, for 1 < j < rq, we get Ass(M/Lgl_)l) ={p1,...,pn} and since py ¢ p; for

every ¢ > 1, p1 is maximal in Ass(M/ L§£)1). Therefore (2.3) is an RPE filtration
of M over N. Hence Ppr(N) =p1™ - p," . QED

The converse of Theorem 2.5 does not hold. For example, if pa C p; are
prime ideals in a ring R and M is the R-module p% &) p%, then for its submodule

N = S—; @ 0, we have the RPE filtration

R R R
N=Plgo B Zgo0 & Zoel-om
p2 p2 P2 P2
of M over N. So we have Py (N) = pipe. But poM = 0. Therefore p; ¢
Supp(p2M).
Next, we show that if we assume further that p; ¢ p; for ¢ # j, the converse
of Theorem 2.5 holds. We need the following lemma.

Lemma 2.6. [2, Lemma 2.8] If N E K is a regular p-prime extension in M,

then for any submodule L of M, NN L % K N L is a regular p-prime extension
in L when NNL#KnNL.

Theorem 2.7. Let N be a submodule of M with Py (N) = pi" ---p,"™,
where p1,...,p, are distinct prime ideals in R and ry,...,7, are positive in-
tegers. If all the prime ideals in Ass(M/N) are minimal, then we have p; €
Supp(p1™ - i1 T g T e p M) for i =1, ... n.
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Proof. Since p1,...,p, are minimal, for every ¢ we can reorder pi,...,p, such
that p; = p; and by Lemma 1.1, we have an RPE filtration

NerLPerVe..cM 2MELP .. L= m
of M over N. So it is enough to show that p; € Supp(p1”~'pa"™ - p, " M).
Clearly p1™ ---p,"»M C N and p1™ " 1po" -+ -p,""M C Lgl).
We claim that py" ~tps™ - -p,"» M € N.Let x € Lg)\LS)_l. Then p;" 'z C
Lgl) and p"' "'z ¢ N. So there exists b € p;"'~! such that bx € Lgl) \ N.
Choose a; € p; \ p1 for every 2 < j < n and let a = H2§j§na§j' Then

bax € p1" " po"2 .- p, " M. Suppose bax € N. Then, since bx € Lgl) \ N and

p
N C Lgl) is a pi-prime extension, we get a € p1, a contradiction. So bax ¢ N.
Therefore p1" " 1pg™ -+ -p,"» M Z N. So we have

N N (p1T1—1p27‘2 L. pn’rnM) C p17‘1—1p27‘2 L. pnTnM

= L 0 ("R ).
Then by Lemma 2.6,

N O (7 e g M) C e M
is a regular pi-prime extension in p;" " py"2 - - p,"» M. Then by Corollary 2.3,
p1 € Supp(p1"~p2"? - pu" M), QED

From Theorems 2.5 and 2.7, we get the following corollary.

Corollary 2.8. Let p1,...,p, be distinct prime ideals in R with p; ¢ p;
for ¢« # j, and rq,...,r, be positive integers. Then p;"* ---p," is the gener-
alized prime ideal factorization of some submodule of M if and only if p; €
Supp(p1™ - - P17 T g Tt ™ M) for every 1 < < n.

In [5] we have found conditions for Pps(p1---pnM) = p1---ppn [5, Theo-
rem 2.14] and showed that this need not always be true [5, Example 2.5]. Now
for an R-module M and a product of prime ideals a = p; - - - p,, (p;’s not neces-
sarily distinct), we give a necessary and sufficient condition for Pys(aM) = a.

Theorem 2.9. Let M be an R-module and pq, ..., p, be prime ideals in R,
not necessarily distinct, with p; maximal among {p;,...,p,} for 1 < i < n. Let
a=p;-Pn,aq9g=R,and a; =p;---p; fori=1,...,n—1. Then Py (aM)=1a
if and only if ASS(%) = {p;} for every 1 <i <mn.

Proof. If Ass(%) = {p;} for every 1 <i < n, we show that

p p P
aM C (aM : ay) - (aM :ag) C---C(aM :ap_1) C (aM :a)=M  (2.4)
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is an RPE filtration.

Ass(%) = {p;} implies that there exists a regular p;-prime extension
K of (aM : a;—1) in (aM : a;). Then K = {x € (aM : ;) | p;x C (aM : a;_1)} by
Lemma 1.3. For every x € (aM : a;), a,—1p;x = a;x C aM, that is, p;z C (aM :
a;—1). Therefore, K = (aM : a;), and hence (aM : a;) is the unique regular
p;-prime extension of (aM : a;—1) in (aM : a;). Suppose it is not maximal in
M. Then there exists x € M \ (aM : a;) such that p;z C (aM : a;_1), i.e, x €
(aM :a;_1p;) = (aM : a;), a contradiction. So (aM : a;) is a maximal p;-prime
extension of (aM : a;_1) in M for every i. Therefore (2.4) is an MPE filtration
of M over aM. This implies that Ass(ﬁ) = {pi,...,pn} for every 1 <
i < n. Since p; is maximal among {p;,...,pn}, p; is maximal in Ass(%).
Therefore (2.4) is an RPE filtration. Hence Pys(aM) = p1---p, = a.

Conversely, suppose that Py (aM) = a = py---p,. Since p; is maximal
among {p;,...,pn} for every 1 <i < n, we can construct an RPE filtration

p p Pn
aM:MgC1M1C2M2C---Mn_1CMn:M

of M over aM. Then by Lemma 1.3, M; = {x € M | p1---pix CaM},ie., M; =

(aM : a;) for every 1 < i < n. Then clearly ASS(%) = ASS(M]\:[_il) = {p;}

for every 1 <i < n. QED
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