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Abstract. Applying r-repeated de la Vallée Poussin sums, we have proved four theorems
which show the upper bound of the r-repeated de la Vallée Poussin kernel, their convergence at
a point, the deviation between a continuous function and the r-repeated de la Vallée Poussin
sums of partial sums of its Fourier series, and finally we determine the degree of approximation
of functions belonging to ordinary Lipschitz class.
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1 Introduction

It is a well-known that the de la Vallée-Poussin sums have several properties
which are of interest in the theory of summation of Fourier series. These sums
as well as their generalization are used extensively by many researchers in the
recent and in past, having a great impact in mathematical research since they
has been introduced by Ch. J. de la Vallée-Poussin [27]. He was the first to
study the method of approximating periodic functions by polynomials bearing
his name. Similar works of this type appeared for these sums in articles [2], [3],
[4], [7], [8], [9], [10], [11], [18] or in another ones [1], [6], [19], [20], [22], [23], [25],
[5], and in references in that matter.

To begin with bringing to light of our intention we write some notions and
notations. Indeed, let f ∈ L[0, 2π] be a 2π-periodic function,

a0

2
+
∞∑
k=1

(ak cos kx+ bk sin kx), (1.1)

its Fourier series at the point x, where ak, bk are defined by

ak =
1

π

ˆ π

−π
f(x) cos kxdx, bk =

1

π

ˆ π

−π
f(x) sin kxdx, (k = 0, 1, . . . ),
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and

sm(f ;x) =
a0

2
+

m∑
k=1

(ak cos kx+ bk sin kx), (1.2)

m-th partial sums of the series (1.1).

We write u = O(v) whenever there exists a positive constant K, not neces-
sarily the same at each occurrence, such that u ≤ Kv. Also, we write

ϕx(t) := f(x+ 2t)− 2f(x) + f(x− 2t),

and

Φx(h) :=

ˆ h

0
|ϕx(t)|dt, h > 0.

Let λ := (λn) be a monotone non-decreasing sequence of integers such that
λ1 = 1 and λn+1 − λn ≤ 1. The means

Vn(λ, f ;x) =
1

λn

n−1∑
m=n−λn

sm(f ;x), (n ≥ 1), (1.3)

are called the generalized de la Vallée Poussin mean of the sequence (sm(f ;x)).

Regarding to summability of Fourier series Leindler (see [17]) proved the
following four theorems.

Theorem 1 ([17]). If the function f(x) is bounded, i.e. |f(x)| ≤ K, then
the means Vn(λ, f ;x) satisfy the inequality

|Vn(λ, f ;x)| ≤ K
(

3 + log
2n− λn
λn

)
.

Theorem 2 ([17]). If the sequence (λn) tends to infinity and conditions

ˆ 1/λn

1/n

|ϕx(t)|
t

dt = o(1), nΦx

(
1

n

)
= o(1), (n→∞)

are satisfied, then Vn(λ, f ;x) converge to f(x).

Denote En := En(f) the degree of the best approximation of f(x) in the
space C(0, 2π) of all continuous functions in (0, 2π) by trigonometric polynomi-
als Tn(x) of order not exceeding n, i.e.,

En := En(f) = inf
Tn

{
max

0<x<2π
|f(x)− Tn(x)|

}
.
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Theorem 3 ([17]). If the function f(x) is continuous, then the estimate

|Vn(λ, f ;x)− f(x)| ≤
(

4 + log
2n− λn
λn

)
En−λn

holds true uniformly in all x.

The modulus of continuity of f(x), for a given real number δ > 0, is defined
as follows

ω(f ; δ) := sup
|x−y|≤δ

|f(x)− f(y)|,

where x, y ∈ [0, 2π].
If f(x) ∈ C(0, 2π) and ω(f ; δ) = O(δα), (0 < α ≤ 1), then it is said that

f ∈ Lipα.

Theorem 4 ([17]). If f ∈ Lipα, then

|Vn(λ, f ;x)− f(x)| =

O
(

1
λαn

)
, α < 1;

O
(

1+log λn
λn

)
, α = 1.

holds true uniformly in all x.

The homologous of these theorems are reported in [12] using the so-called
the repeated de la Vallée Poussin sums. Some other results on the topic, treated
in the present paper, can be found in [13]–[15]. For example, in [12] are employed
the following repeated sums. Let p1 and p2 be two positive integers, and n ∈ N
with condition

p1 + p2 < n.

The repeated de la Vallée Poussin sums of sm(f ;x), i.e.

Vp1,p2
n (f ;x) :=

1

p1p2

n−1∑
k=n−p1

k∑
m=k−p2+1

sm(f ;x).

have been introduced in [23]. More details on these repeated de la Vallée Poussin
sums the interested reader could consults the article [25]. For p1 = 1 or p2 =
1 the sums V1,p2

n (f ;x) and Vp1,1
n (f ;x) are indeed the ordinary de la Vallée

Poussin sums. Also, for p1 = p2 = 1 these sums become the Fourier sums
V1,1
n (f ;x) ≡ sn(f ;x). In addition, for p1 = n and p2 = 1 we obtain the Fejér

sums Vn,1n (f ;x) ≡ σn(f ;x).
In the sequel let m ∈ {1, 2, . . . }. As we know the ordinary (first) de la Vallée

Poussin sums of sm(f ;x) are

1Vn,m(f ;x) =
1

n

m+n−1∑
k=m

sk(f ;x),
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while the ordinary second repeated de la Vallée Poussin sums are

2Vn,m(f ;x) =
1

n

m+n−1∑
k=m

1Vn,k(f ;x).

In general, for r ≥ 2, the ordinary r-repeated de la Vallée Poussin sums are

rVn,m(f ;x) =
1

n

m+n−1∑
k=m

r−1Vn,k(f ;x)

see [26].
It worth to emphasize here that the particular cases of these sums are the

following: for r = 1 and n = 1 we obtain 1V1,m(f ;x) = sm(f ;x), while for r = 1
and m = 1 we have 1Vn,1(f ;x) = σn(f ;x).

Provoked by these sums, we are going to use them to prove the homologous
of Theorems 1-4 which is the main objective of this paper. In order to do this,
we need two Lemmas given in next section.

2 Helpful Lemmas

The following integral representation (see also [26]) of rVn,m(f ;x),

rVn,m(f ;x) =
1

π

ˆ π

0
[f(x+ t) + f(x− t)]rWn,m(t)dt, (2.4)

holds true, where

rWn,m(t) :=
sinr(nt/2) sin((2m+ r(n− 1) + 1)t/2)

nr sinr+1(t/2)
.

Lemma 1. Let r ∈ {1, 2, . . . }. Then,

2

π

ˆ π

0
rWn,m(t)dt = 1.

Proof. First of all we have

1Wn,m(t) =
1

n

m+n−1∑
k=m

Dk(t)

where

D`(t) =
sin (2`+ 1) t

2

2 sin t
2

.
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Taking into account that (see [5], page 135)

ˆ π

0
D`(t)dt =

π

2
, ` ∈ {0, 1, 2, . . . },

we obtain ˆ π

0
1Wn,m(t)dt =

π

2
. (2.5)

Now, from

2Wn,m(t) =
1

n

m+n−1∑
k=m

1Wn,k(t)

and (2.5) we also get ˆ π

0
2Wn,m(t)dt =

π

2
.

Repeating this process r-times, we arrive at

ˆ π

0
rWn,m(t)dt =

π

2
.

With this we have finished the proof. QED

The next Lemma gives the upper estimates of absolute value of the ”r-
repeated kernel” rWn,m(t).

Lemma 2. Let r,m, n ∈ {1, 2, 3, . . . } and 0 < t ≤ π. Then,

(i)

|rWn,m(t)| = O((2m+ r(n− 1) + 1))

(ii)

|rWn,m(t)| = O
(

1

t

)
(iii)

|rWn,m(t)| = O
(

1

nrtr+1

)
.

Proof. The use of elementary inequality | sin(t)| ≤ |t| and the Jordan’s inequal-
ity π| sin(t)| ≥ 2t, for t ∈ [0, π/2], imply:
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(i)

|rWn,m(t)| = |sin
r(nt/2) sin((2m+ r(n− 1) + 1)t/2)|

nr
∣∣sinr+1(t/2)

∣∣
≤ (nt/2)r ((2m+ r(n− 1) + 1)t/2)

nr
(
t
π

)r+1

=
(π

2

)r+1
(2m+ r(n− 1) + 1),

(ii)

|rWn,m(t)| ≤ (nt/2)r

nr
(
t
π

)r+1 =
(π

2

)r π
t
,

and

(iii)

|rWn,m(t)| = |sin
r(nt/2)|| sin((2m+ r(n− 1) + 1)t/2)|

nr
∣∣sinr+1(t/2)

∣∣
≤ 1

nr
(
t
π

)r+1 =
1

nr

(π
t

)r+1
.

The proof is completed. QED

3 Main Results

First main result is the following.

Theorem 1. Let r, n,m be any natural numbers. If the function f(x) is
bounded, i.e. |f(x)| ≤ K for 0 < K <∞, then the means rVn,m(f ;x) satisfy

|rVn,m(f ;x)| = O
(

1 + ln

(
r(n− 1) + 2m+ 1

n

))
. (3.6)

Proof. Using the ordinary r-repeated de la Vallée Poussin sums of sm(f ;x), i.e.

rVn,m(f ;x) =
1

n

m+n−1∑
k=m

r−1Vn,k(f ;x)

with agreement 0Vn,k(f ;x) := sk(f ;x), we get

rVn,m(f ;x) =
1

π

ˆ π

0
φx(t)rWn,m(t)dt,
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where φx(t) := f(x+ t) + f(x− t).
Let

η1(n) := min

(
1

π (r(n− 1) + 2m+ 1)
, µ

)
, η2(n) := min

(
1

πn
, µ

)
,

and µ ∈ (0, π]. Then

|rVn,m(f ;x)| ≤ 1

π

(ˆ η1(n)

0
|φx(t)||rWn,m(t)|dt︸ ︷︷ ︸

:=I1

+

ˆ η2(n)

η1(n)
|φx(t)||rWn,m(t)|dt︸ ︷︷ ︸

:=I2

+

ˆ µ

η2(n)
|φx(t)||rWn,m(t)|dt︸ ︷︷ ︸

:=I3

+

ˆ π

µ
|φx(t)||rWn,m(t)|dt︸ ︷︷ ︸

:=I4

)
. (3.7)

The use of Lemma 2 (i), implies

I1 = O(1)

ˆ η1(n)

0
((2m+ r(n− 1) + 1)dt = O(1). (3.8)

Similarly, but this time using Lemma 2 (ii), we get

I2 = O(1)

ˆ η2(n)

η1(n)

dt

t
= O(1) ln

(
r(n− 1) + 2m+ 1

n

)
. (3.9)

Applying Lemma 2 (iii), we have that

I3 = O(n−r)

ˆ µ

η2(n)

dt

tr+1
= O(1). (3.10)

Finally, we also can write

I4 = O(1)

ˆ π

µ

|φx(t)|
nrtr+1

dt. (3.11)

Combining (3.7), (3.8), (3.9), (3.10), and (3.11) with µ = π we obtain (3.6).
The proof is completed.

QED

Theorem 2. Let r, n,m be any natural numbers and m = O(n). If the
function f(x) is continuous, then the estimate

|rVn,m(f ;x)− f(x)| = O
(

2 + ln

(
r(n− 1) + 2m+ 1

n

))
En+r−2m+1

holds true uniformly in all x.
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Proof. Let τ∗m(x) denote the trigonometric polynomial of best approximation of
f(x) whose degree is not higher then m. It is clear, by definition of sn(f ;x) and

rVn,m(f ;x), that

rVn,m(f − τ∗m;x) = rVn,m(f ;x)− τ∗m(x),

whenever n+ r − 2m+ 1 ≥ m.
Whence, it holds

|rVn,m(f ;x)− f(x)| ≤|rVn,m(f ;x)− t∗n+r−2m+1(x)|+ |t∗n+r−2m+1(x)− f(x)|
≤|rVn,m(f ;x)− t∗n+r−2m+1(x)|+ En+r−2m+1. (3.12)

Also, by the definition of r-repeated de la Vallée Poussin means rVn,m(f ;x),
we have

|rVn,m(f ;x)− t∗n+r−2m+1(x)| ≤ 2En+r−2m+1

π

ˆ π

0
|rWn,m(t)|dt.

The remaining estimate which has been obtained, with same reasoning as
in the proof of Theorem 1 for µ = π, is

|rVn,m(f ;x)− t∗n+r−2m+1(x)|

= O
(

1 + ln

(
r(n− 1) + 2m+ 1

n

))
En+r−2m+1, (3.13)

in which we have used the constant function h(t) := En+r−2m+1 instead of f(x).
Subsequently, relations (3.12) and (3.13) imply the required inequality.

The proof is completed. QED

Theorem 3. Let r, n,m ∈ N be natural numbers. If f ∈ Lipα and m =
O(n), then

|rVn,m(f ;x)− f(x)| =

O
(

1
(r(n−1)+2m+1)α

)
, for 0 < α < 1

O
(

ln(r(n−1)+2m+1)
n

)
, for α = r = 1,

holds true uniformly in all x.

Proof. Since f ∈ Lipα, then using the equality (2.4), we get

|rVn,m(f ;x)− f(x)| = O(1)

ˆ π

0
tα|rWn,m(t)|dt

= O(1)

(ˆ 1
r(n−1)+2m+2

0
(·)dt︸ ︷︷ ︸

:=P1

+

ˆ π
r(n−1)+2m+1

1
r(n−1)+2m+2

(·)dt︸ ︷︷ ︸
:=P2

+

ˆ π

π
r(n−1)+2m+1

(·)dt︸ ︷︷ ︸
:=P3

)
. (3.14)
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For 0 < α ≤ 1, we apply Lemma 2 (i) to obtain

P1 =O((2m+ r(n− 1) + 1))

ˆ 1
r(n−1)+2m+2

0
tαdt

=
O(1)

(2m+ r(n− 1) + 1)α
. (3.15)

Likewise, we use Lemma 2 (ii) to get

P2 = O(1)

ˆ π
r(n−1)+2m+1

1
r(n−1)+2m+2

tα−1dt =
O(1)

(r(n− 1) + 2m+ 1)α
. (3.16)

Finally, we need to estimate P3 in the case when 0 < α < 1 and after that
in the case when α = r = 1. Indeed, taking into account Lemma 2 (iii) and
0 < α < 1, we get

P3 =O
(

1

nr

)ˆ π

π
r(n−1)+2m+1

tα−r−1dt

=O
(

1

nr

)(
πα−r

r − α
1

(r(n− 1) + 2m+ 1)α−r
− πα−r

r − α

)
=

O (1)

(r(n− 1) + 2m+ 1)α
. (3.17)

For α = 1 and r = 1, we have

P3 = O
(

1

n

)ˆ π

π
r(n−1)+2m+1

t−1dt = O
(

ln(r(n− 1) + 2m+ 1)

n

)
. (3.18)

Therefore, our conclusion follows from (3.14), (3.15), (3.16), (3.17), and
(3.18).

The proof is completed. QED

Remark 1. The same results, as Theorems 1–3, hold true for conjugate
functions as well.

4 Conclusions

In this paper we have increased the utilization rate of the r-repeated de la
Vallée-Poussin sums. Using these sums, several results on their upper bound,
their convergence, and the degree of approximation of continuous and 2π-periodic
functions and those belonging to Lipschitz class, has been proved. The results
has opened the path for defining and applying the other repeated sums in prob-
lems treated here and in other papers.
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