An interesting table related to Fibonacci numbers

Nese Omur
Department of Mathematics,
University of Kocaeli, Kocaeli - TURKEY
neseomur@kou.edu.tr
Yucel Turker Ulutas
Department of Mathematics,
University of Kocaeli, Kocaeli - TURKEY
turkery@kou.edu.tr

Received: 6/10/2005; accepted: 19/12/2005.

Abstract

In this paper, we show that sum of the row elements on the table formed by a given recurrence relation, and each element on this table can be obtained using two different Fibonacci numbers.

Keywords: Matrices, Fibonacci numbers, recurrence relation.
MSC 2000 classification: 11B37, 11B39, 11B20

1 Introduction

There are interesting recurrence relations in [2] and then, we take an infinitedimensional matrix $A=\left(a_{i, j}\right)$ formed by the following recurrence relation.

$$
\begin{align*}
& a_{1, j}=F_{j}+(-1)^{j} F_{1} \\
& a_{2, j}=F_{j+1}+(-1)^{j} F_{2} \tag{1}\\
& a_{i, j}+a_{i+1, j}=a_{i+2, j}, \quad i>1
\end{align*}
$$

2 Results on the table

Using the recurrence relation (1), we have the following results.

1 Theorem.

$$
a_{i, j}=F_{i+j-1}+(-1)^{j} F_{i}, \quad i \geq 1
$$

Proof. By the recurrence relation (1), the result is true for $i=1,2$.
We now assume that it is true for all integer less than n, where $n>2$:

$$
a_{n-1, j}=F_{n+j-2}+(-1)^{j} F_{n-1} .
$$

We then get

$$
\begin{aligned}
a_{n, j}=a_{n-2, j}+a_{n-1, j} & =F_{n+j-3}+(-1)^{j} F_{n-2}+F_{n+j-2}+(-1)^{j} F_{n-1} \\
& =F_{n+j-1}+(-1)^{j} F_{n}
\end{aligned}
$$

Thus, the result is true for all $n \geq 2$.
QED

TABLE

i / j	1	2	3	4	5	6	7	8	9	10	\ldots
1	0	2	1	4	4	9	12	22	33	56	
2	0	3	2	6	7	14	20	35	54	90	
3	0	5	3	10	11	23	32	57	87	146	
4	0	8	5	16	18	37	52	92	141	236	
5	0	13	8	26	29	60	84	149	228	382	
6	0	21	13	42	47	97	136	241	369	618	
7	0	34	21	68	76	157	220	390	597	1000	
8	0	55	34	110	123	254	356	631	966	1618	
9	0	89	55	178	199	411	576	1021	1563	2618	
10	0	144	89	288	322	665	932	1652	2529	4236	
\vdots											

2 Corollary.

$$
a_{i, j}+a_{i, j+1}=F_{i+j+1}, \quad i, j \geq 1
$$

Proof. Since $a_{i, j}=F_{i+j-1}+(-1)^{j} F_{i}$, by Theorem 1 ,

$$
\begin{aligned}
a_{i, j}+a_{i, j+1} & =F_{i+j-1}+(-1)^{j} F_{i}+F_{i+j}+(-1)^{j+1} F_{i} \\
& =F_{i+j-1}+F_{i+j}=F_{i+j+1}
\end{aligned}
$$

We now examine the sum of the first n elements on any row:

$$
\begin{gathered}
a_{i, 1}=F_{i}+(-1)^{1} F_{i}=F_{i}-F_{i} \\
a_{i, 2}=F_{i+1}+(-1)^{2} F_{i}=F_{i+1}+F_{i} \\
a_{i, 3}=F_{i+2}+(-1)^{3} F_{i}=F_{i+2}-F_{i} \\
\vdots \\
a_{i, n}=F_{i+n-1}+(-1)^{n} F_{i}
\end{gathered}
$$

Here, it is important that n is even or odd in these equations. Therefore, we first assume that n is even. Adding these equations, we get

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i, j}=F_{i+1}+F_{i+2}+\cdots+F_{i+n-1}+F_{i} \\
= & \sum_{k=0}^{n-1} F_{i+k}=\sum_{r=1}^{i+n-1} F_{r}-\sum_{r=1}^{i-1} F_{r}=F_{i+n+1}-F_{i+1} .
\end{aligned}
$$

Now let n be odd. Then, we get

$$
\begin{gathered}
\sum_{j=1}^{n} a_{i, j}=F_{i+1}+F_{i+2}+\cdots+F_{i+n-1} \\
=\sum_{k=1}^{n-1} F_{i+k}=\sum_{r=1}^{i+n-1} F_{r}-\sum_{r=1}^{i} F_{r}=F_{i+n+1}-F_{i+2} .
\end{gathered}
$$

Thus,

3 Theorem.

$$
\sum_{j=1}^{n} a_{i, j}= \begin{cases}F_{i+n+1}-F_{i+2} & \text { if } n \text { is odd }, \\ F_{i+n+1}-F_{i+1} & \text { if } n \text { is even. }\end{cases}
$$

We now examine a determinant of a special matrix $A=\left(a_{i, j}\right)_{2 \times 2}$ taken from the above table. We now take the matrix

$$
A=\left[\begin{array}{cc}
a_{i, j} & a_{i, j+1} \\
a_{i+1, j} & a_{i+1, j+1}
\end{array}\right]
$$

and calculate the determinant of this matrix as follows.
4 Theorem.

$$
\left|\begin{array}{cc}
a_{i, j} & a_{i, j+1} \\
a_{i+1, j} & a_{i+1, j+1}
\end{array}\right|=(-1)^{i+j+1}\left[F_{j+1}-1\right], \quad i, j \geq 1 .
$$

Proof. Using the Theorem 1, we get

$$
\begin{aligned}
& \left|\begin{array}{cc}
a_{i, j} & a_{i, j+1} \\
a_{i+1, j} & a_{i+1, j+1}
\end{array}\right|=F_{i+j-1} F_{i+j+1}+(-1)^{j+1} F_{i+j-1} F_{i+1}+ \\
& (-1)^{j} F_{i+j+1} F_{i}-F_{i+j}^{2}-(-1)^{j} F_{i+j} F_{i+1}-(-1)^{j+1} F_{i+j} F_{i} \\
& =F_{i+j-1} F_{i+j+1}-F_{i+j}^{2}+(-1)^{j+1}\left(F_{i+j-1} F_{i+1}-F_{i+j} F_{i}\right)+ \\
& (-1)^{j}\left(F_{i+j+1} F_{i}-F_{i+j} F_{i+1}\right) .
\end{aligned}
$$

By the well-known identities about the Fibonacci numbers [2, p.74, 87]

$$
F_{r-1} F_{r+1}-F_{r}^{2}=(-1)^{r}, F_{m} F_{n}-F_{m+k} F_{n-k}=(-1)^{r} F_{m+k-n} F_{k}
$$

we obtain

$$
\begin{aligned}
\left|\begin{array}{cc}
a_{i, j} & a_{i, j+1} \\
a_{i+1, j} & a_{i+1, j+1}
\end{array}\right| & =(-1)^{j+i}+(-1)^{i+j+1} F_{j-1}+(-1)^{i+2 j} F_{1-j} \\
& =(-1)^{j+i}+(-1)^{i+j+1} F_{j-1}+(-1)^{i+3 j+1} F_{j} \\
& =(-1)^{i+j+1}\left[F_{j-1}+F_{j}-1\right]=(-1)^{i+j+1}\left[F_{j+1}-1\right]
\end{aligned}
$$

QED
We can generalize Theorem 4, as the next theorem shows.

5 Theorem.

$$
\left|\begin{array}{cc}
a_{i, j} & a_{i, k} \\
a_{i+1, j+1} & a_{i+1, k}
\end{array}\right|=(-1)^{i+j+1} F_{k-j}+(-1)^{i+j+k}\left[F_{1-j}-F_{1-k}\right], \quad i, j \geq 1, k>j
$$

Proof. From the definition of determinant of a matrix, we obtain

$$
\begin{aligned}
& \left|\begin{array}{cc}
a_{i, j} & a_{i, k} \\
a_{i+1, j+1} & a_{i+1, k}
\end{array}\right|=a_{i, j} a_{i+1, k}-a_{i, k} a_{i+1, j+1} \\
& =\left(F_{i+j-1}+(-1)^{j} F_{i}\right)\left(F_{i+k}+(-1)^{k} F_{i+1}\right)-\left(F_{i+k-1}+(-1)^{k} F_{i}\right)\left(F_{i+j}+(-1)^{j} F_{i+1}\right) \\
& =F_{i+j-1} F_{i+k}+(-1)^{k} F_{i+j-1} F_{i+1}+(-1)^{j} F_{i} F_{i+k}+(-1)^{j+k} F_{i} F_{i+1} \\
& \quad \quad-F_{i+j} F_{i+k-1}-(-1)^{k} F_{i+j} F_{i}-(-1)^{j} F_{i+1} F_{i+k-1}-(-1)^{j+k} F_{i+1} F_{i} \\
& =F_{i+j-1} F_{i+k}+(-1)^{k}\left(F_{i+j-1} F_{i+1}-F_{i+j} F_{i}\right)+(-1)^{j}\left(F_{i} F_{i+k}-F_{i+1} F_{i+k-1}\right)
\end{aligned}
$$

Since by [1]

$$
F_{n+h} F_{n+k}-F_{n} F_{n+h+k}=(-1)^{n} F_{h} F_{k}
$$

we get

$$
\begin{aligned}
\left|\begin{array}{cc}
a_{i, j} & a_{i, k} \\
a_{i+1, j+1} & a_{i+1, k}
\end{array}\right| & =(-1)^{i+j} F_{k-j}+(-1)^{k}(-1)^{i+j} F_{1-j}+(-1)^{j}(-1)^{i+k} F_{1-k} \\
& =(-1)^{i+j} F_{k-j}+(-1)^{i+j+k}\left(F_{1-j}+F_{1-k}\right)
\end{aligned}
$$

as desired.

References

[1] Everman et al: Problem E 1396, The American Mathematical Monthly, 67, (1960), 697.
[2] T. Koshy: Fibonacci and Lucas Numbers in Applications, A Wiley-Interscience Publication, New York, 2001.

