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Abstract. In this paper, we introduce the concept of quasi statistical supremum, quasi
statistical infimum of a real-valued sequence x = (xk), and study some properties of the
newly introduced notion. We also introduce the concept of quasi statistical monotonicity and
establish the condition under which a quasi statistical monotonic sequence is quasi statistical
convergent. We end up by giving a necessary and sufficient condition for the quasi statistical
convergence of a real-valued sequence x = (xk).
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1 Introduction and background

The convergence of sequences plays a crucial role in various branches of
mathematics and has many generalizations with the goal of providing deeper
insights into summability theory. In 1951 Fast [5] and Steinhaus [20] introduced
the idea of statistical convergence independently using the notion of natural
density. Later on, it was further investigated from the sequence space point of
view by Fridy [7, 8], Šalát [17], and many mathematicians across the globe. Fol-
lowing their work, several investigations and generalizations have been made by
Altinok and Küçükaslan [1, 2], Hazarika and Esi [10], Mursaleen [14], and many
others [3, 4, 11, 12, 18, 19, 21, 23]. Statistical convergence has become one of the
most active areas of research due to its wide applicability in various branches of
mathematics such as number theory, mathematical analysis, probability theory,
etc.

In an attempt to generalize the notion of statistical convergence, in 2012
Ozguc and Yurdakadim [16] introduced the concept of quasi-statistical conver-
gence in terms of quasi-density. They investigated the relationship of the newly
introduced notion with statistical convergence. Very recently Ozguc [15] has in-
troduced the notion of quasi statistical limit and cluster points and investigated
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a few properties. When studying some new notion of convergence of sequences,
several closely related concepts occur quite naturally, such as supremum, in-
fimum, monotonicity, etc. In this paper, we aim to introduce quasi statistical
analogue of the above concepts and investigate a few fundamental properties
along with some implication relations.

2 Definitions and main results

Let E be a subset of the set of all natural numbers N and suppose En denotes
the set

En = {k ∈ E : k ≤ n} .

The natural density [6] of E is denoted and defined by

δ(E) = lim
n→∞

card(En)

n
,

provided that the limit exists. Here, card(En) represents the cardinal number
of the set En. Clearly, if card(E) <∞, then δ(E) = 0 and δ(N \E) = 1− δ(E),
whenever the either sides exists.

A real-valued sequence x = (xk) is said to be statistically convergent [7] to
x0 if for each ε > 0,

δ({k ∈ N : |xk − x0| ≥ ε}) = 0.

In this case, x0 is called the statistical limit of the sequence x and symbolically

it is expressed as xk
st−→ x0.

In [9], Fridy and Orhan defined the statistical boundedness of a real-valued
sequence x = (xk) as follows:

A sequence x = (xk) is said to be statistically bounded [9] if there exists
B > 0 such that

δ({k ∈ N : |xk| > B}) = 0.

In [22], the notion of statistical monotonicity was defined and a decompo-
sition theorem was established. Further, a necessary and sufficient condition
was given under which a statistically monotonic sequence becomes statistical
convergent.

A real-valued sequence x = (xk) is said to be statistically monotonic increas-
ing (decreasing) if there exists a set M = {m1 < m2 < · · · < mj < · · · } ⊆ N
such that δ(M) = 1 and the subsequence (xmj ) is monotonic increasing (de-
creasing).
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In [16], the notion of natural density was extended to quasi density by in-
volving a sequence c = (cn) satisfying the following properties:

cn > 0 ∀n ∈ N, lim
n→∞

cn = ∞ and lim sup
n

cn
n
<∞. (2.1)

The quasi-density of a set E ⊆ N is defined by δc(E) = lim
n→∞

|En|
cn

, provided the

limit exists. It should be noted that if cn = n, then the above definition turns
to the definition of natural density. Throughout the paper, we will use c = (cn)
to denote sequences that satisfy (2.1).

In [16], Ozguc and Yurdakadim introduced the notion of quasi statistical
convergence of real-valued sequences as follows:

A sequence (xk) is said to be quasi statistical convergent to x0 if for each
ε > 0,

δc({k ∈ N : |xk − x0| ≥ ε}) = 0.

In this case, x0 is called the quasi statistical limit of the sequence (xk) and

symbolically it is expressed as xk
stq−−→ x0. They mainly studied the relationship

of quasi statistical convergence and statistical convergence and show that the
condition inf

n

cn
n > 0 along with (2.1), plays a significant role for the equivalence

of the concepts. Recently, in [15], Ozguc introduced the notion of quasi statistical
boundedness of a real-valued sequence as follows:

A real-valued sequence (xk) is said to be quasi statistical bounded if there
exists B > 0 such that

δc({k ∈ N : |xk| > B}) = 0.

It should be noted that, if we choose cn = n, ∀n ∈ N, then the definition
of quasi statistical convergence and quasi statistical boundedness turns to the
definition of statistical convergence and statistical boundedness respectively.

Now we are ready to present some new definitions and the main results of
the paper.

Definition 1. Let x = (xk) be a real-valued sequence.
(i) The real number l is said to be a quasi statistical lower bound of x, if

δc({k ∈ N : xk < l}) = 0 (or δc({k ∈ N : xk ≥ l}) = δc(N)).

(ii) The real number u is said to be a quasi statistical upper bound of x, if

δc({k ∈ N : xk > u}) = 0 (or δc({k ∈ N : xk ≤ u}) = δc(N)).

The set of all quasi statistical lower and upper bounds of the sequence x =
(xk) is denoted by Lq(x) and Uq(x), respectively.
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Definition 2. Let x = (xk) be a real-valued sequence.
(i) The real number i is said to be the quasi statistical infimum of the sequence
x = (xk) if i is the supremum of the set Lq(x). In other words,

stq − inf x = supLq(x).

(ii) The real number s is said to be the quasi statistical supremum of the se-
quence x = (xk) if s is the infimum of the set Uq(x). In other words,

stq − supx = inf Uq(x).

If we take cn = n, n ∈ N, then Definition 1 and Definition 2 coincides with
Definitions given in [13] for natural density.

Theorem 1. (i) If L(x) denotes the set of all usual lower bounds of a
sequence x = (xk), then

L(x) ⊂ Lq(x);

(ii) If U(x) denotes the set of all upper lower bounds of a sequence x = (xk),
then

U(x) ⊂ Uq(x)

and both inclusions can be strict.

Proof. (i) Let l ∈ L(x). Then, we have {k ∈ N : xk ≥ l} = N and consequently,

δc({k ∈ N : xk ≥ l}) = δc(N).

Hence, l ∈ Lq(x), proving that L(x) ⊆ Lq(x). To prove that the inclusion can
be strict we construct a counterexample. Let A be a set such that δc(A) = 0.
Define a sequence x = (xk) as follows:

xk =

{
1, k /∈ A

(−1)kk, otherwise
.

Then, 1 ∈ Lq(x) but 1 /∈ L(x).
(ii) The proof is similar to that of (i), so omitted. QED

Theorem 2. Let x = (xk) be a real-valued sequence. Then,
(i) If l ∈ Lq(x), then all real numbers smaller than l are quasi statistical lower
bound of x.
(ii) If u ∈ Uq(x), then all real numbers bigger than u are quasi statistical upper
bound of x.
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Proof. (i) Let l ∈ Lq(x) and l
′ < l. Then, by definition

δc({k ∈ N : xk ≥ l}) = δc(N).

Since, l′ < l, so the inclusion

{k ∈ N : xk ≥ l} ⊆ {k ∈ N : xk ≥ l′}

holds and consequently δc({k ∈ N : xk ≥ l′}) = δc(N). Hence, l′ ∈ Lq(x).
(ii) The proof is similar to that of (i), so omitted. QED

Remark 1. From Theorem 2, it is clear that for a real-valued sequence if
Lq(x) ̸= ∅ and Uq(x) ̸= ∅, then

card(Lq(x)) = card(Uq(x)) = card(R).

Theorem 3. For any real-valued sequence x = (xk), following inequation

inf x ≤ stq − inf x ≤ stq − supx ≤ supx

holds.

Proof. From the definition of usual infimum we have

δc({k ∈ N : xk ≥ inf x}) = δc(N).

Therefore, inf x ∈ Lq(x) and consequently,

inf x ≤ stq − inf x. (2.2)

In a similar way, one can prove that

supx ≥ stq − supx. (2.3)

Now we will show that stq − inf x ≤ stq − supx. To prove this, it is sufficient to
prove that l ≤ u for any l ∈ Lq(x) and u ∈ Uq(x).

If possible suppose there exists l′ ∈ Lq(x) and u
′ ∈ Uq(x) such that l′ > u′.

Then, since l′ ∈ Lq(x), so by Theorem 2, u′ ∈ Lq(x), which is a contradiction
on the assumption of u′. Hence, we must have l ≤ u for any l ∈ Lq(x) and
u ∈ Uq(x). In other words,

stq − inf x ≤ stq − supx. (2.4)

Combining (2.2), (2.3), and (2.4) we obtain the desired result. QED
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Theorem 4. For any real-valued sequence x = (xk), xk
stq−−→ x0 if and only

if stq − inf x = stq − supx = x0.

Proof. Firstly we assume that xk
stq−−→ x0 holds. Then, by definition of quasi

statistical convergence for any ε > 0,

δc({k ∈ N : |xk − x0| ≥ ε}) = 0. (2.5)

This implies that, for any ε > 0,

δc({k ∈ N : xk ≥ x0 + ε}) = 0 and δc({k ∈ N : xk < x0 + ε}) = δc(N) (2.6)

and

δc({k ∈ N : xk ≤ x0 − ε}) = 0 and δc({k ∈ N : xk > x0 − ε}) = δc(N). (2.7)

Now from (2.6) and (2.7), we obtain x0 + ε ∈ Uq(x) and x0 − ε ∈ Lq(x).
Eventually, Uq(x) = (x0,∞) and Lq(x) = (−∞, x0) holds and we have stq −
inf x = stq − supx = x0.

To prove the converse part, let stq− inf x = stq−supx = x0 i.e., supLq(x) =
inf Uq(x) = x0. Then, by definition of supremum and infimum, there exists at
least one l′ ∈ Lq(x) and atleast one l′′ ∈ Uq(x) such that for any ε > 0, x0−ε < l′

and x0 + ε > l′′ holds. Consequently,

{k ∈ N : xk ≥ x0 + ε} ⊂ {k ∈ N : xk ≥ l′}

and
{k ∈ N : xk ≤ x0 + ε} ⊂ {k ∈ N : xk ≤ l′′}.

Now since, l′ ∈ Lq(x) and l′′ ∈ Uq(x), so from the above inclusions we obtain
δc({k ∈ N : xk ≥ x0 + ε}) = 0 and δc({k ∈ N : xk ≤ x0 − ε}) = 0 which
altogether implies (2.5) and this completes the proof. QED

Corollary 1. Let x = (xk) be a real-valued sequence. If stq − inf x ̸= stq −
supx, then x is neither convergent nor quasi statistical convergent.

Theorem 5. Let x = (xk) and y = (yk) be two real-valued sequences such
that x− y = (xk − yk) is quasi statistical convergent to zero. Then,

stq − inf x = stq − inf y and stq − supx = stq − sup y.

Proof. We only prove the first part i.e., stq − inf x = stq − inf y. The proof of
the second part can be obtained by applying a similar technique.

Let the given conditions hold and suppose l ∈ Lq(x) be arbitrary. Then, by
definition



Further aspects of quasi statistical convergence of sequences 61

δc({k ∈ N : xk < l}) = 0.

Consequently,

{k ∈ N : yk < l} = {k ∈ N : xk − yk ̸= 0, yk < l} ∪ {k ∈ N : xk − yk = 0, yk < l}
⊆ {k ∈ N : xk − yk ̸= 0} ∪ {k ∈ N : xk < l}.

From the above inclusion, it is clear that δc({k ∈ N : yk < l}) = 0 which implies
l ∈ Lq(y). This proves that

Lq(x) ⊆ Lq(y).

Similarly, one can establish Lq(y) ⊆ Lq(x). Hence, Lq(x) = Lq(y) holds and
eventually supLq(x) = supLq(y) i.e., stq − inf x = stq − inf y. QED

Remark 2. The converse of the above theorem is not necessarily true. Let
cn = n, n ∈ N. Consider the sequences x = (xk) and y = (yk) defined by
xk = (−1)k and yk = (−1)k+1. Then, it is easy to verify that stq − inf x =
stq − inf y = 1. But δc({k ∈ N : xk − yk ̸= 0}) = δc(N) ̸= 0, i.e., x − y is not
quasi statistical convergent to zero.

Theorem 6. Let x = (xk) be a real-valued sequence such that xk
stq−−→ x0.

Then, x0 is uniquely determined.

Proof. The proof is easy, so omitted. QED

Theorem 7. Let x = (xk) and y = (yk) be two real-valued sequences such

that xk
stq−−→ x0 and yk

stq−−→ y0. Then,

(i) xk + yk
stq−−→ x0 + y0 and (ii) λxk

stq−−→ λx0, for λ ∈ R.

Proof. The proof is easy, so omitted. QED

Definition 3. A real-valued sequence x = (xk) is said to be quasi sta-
tistically monotonic increasing (decreasing) if there exists a set M = {m1 <
m2 < · · · < mj < · · · } ⊆ N such that δc(M) = δc(N) exists finitely and the
subsequence (xmj ) is monotonic increasing (decreasing).

If we take cn = n, then Definition 3 coincides with the definition of statisti-
cally monotonic increasing (decreasing) sequence in [22].

Theorem 8. Let x = (xk) be a real-valued sequence. Then,
(i) x is quasi statistically monotonic increasing if and only if there exists two
sequences y = (yk) and z = (zk) such that x = y + z and (yk) is monotonic
increasing and δc({k ∈ N : zk ̸= 0}) = 0;
(ii) x is quasi statistically monotonic decreasing if and only if there exists two
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sequences y = (yk) and z = (zk) such that x = y + z and (yk) is monotonic
decreasing and δc({k ∈ N : zk ̸= 0}) = 0.

Proof. (i) Let x is quasi statistically monotonic increasing. Then by definition,
there exists a set M = {m1 < m2 < · · · < mj < · · · } ⊆ N such that δc(M) =
δc(N) exists finitely and the subsequence (xmj ) is monotonic increasing. In other
words, xmj ≤ xmj+1 for any j ∈ N. Let nk = max{m ∈ M : m ≤ k}. Construct
the sequences y = (yk) and z = (zk) defined by

yk =

{
0, if k < m1

xnk
, otherwise

(2.8)

and

zk =

{
xk − yk, if k /∈M

0, if k ∈M
. (2.9)

Then, it is clear from the construction that x = y+z, the sequence y is increasing
and δc({k ∈ N : zk ̸= 0}) ≤ δc(N \M) = 0.

The converse part is obvious, so omitted.
(ii) The proof is similar to that of (i), so omitted. QED

Theorem 9. Let x = (xk) be a real-valued sequence. If x is quasi statistical
bounded then it is statistical bounded.

Proof. The proof is easy, so it is omitted. QED

The converse of the above theorem is not necessarily true. Following example
illustrates the fact.

Example 1. Let (cn) be a sequence satisfying lim
n→∞

cn = ∞ and lim
n→∞

3√n
cn

=

∞. We can choose a subsequence (cnp) such that cnp > 1 for all p ∈ N. Consider
the sequence x = (xk) defined by

xk =


ck, if k is a perfect cube and ck ∈ {cnp : p ∈ N}
k, if k is a perfect cube and ck /∈ {cnp : p ∈ N}
0 otherwise

.

Then, it is easy to verify that x is statistical bounded but not quasi statistical
bounded.

The following theorem gives a condition under which a statistical bounded
sequence is also quasi statistical bounded.

Theorem 10. Let x = (xk) be a real-valued statistical bounded sequence.
Then x is quasi statistical bounded if inf

n

cn
n > 0.
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Proof. Since x is statistical bounded, so there exists B > 0 such that

δ({k ∈ N : |xk| > B}) = 0 i.e., lim
n−→∞

1
n |{k ∈ N : |xk| > B}| = 0.

Now since the inequation

1

n
|{k ∈ N : |xk| > B}| ≥

(
inf
n

cn
n

)
· 1

cn
|{k ∈ N : |xk| > B}|

holds, so we must have

lim
n−→∞

1
cn
|{k ∈ N : |xk| > B}| = 0

i.e., x is quasi statistical bounded. QED

Theorem 11. Let x = (xk) be a real-valued sequence. Then, x is quasi
statistical bounded if and only if there exists a bounded sequence y = (yk) such
that δc({k ∈ N : xk ̸= yk}) = 0.

Proof. Firstly, let x is quasi statistical bounded. Then, by definition there exists
B > 0 such that δc(A) = 0, where A = {k ∈ N : |xk| > B}. Consider the seqence
y = (yk) defined by

yk =

{
xk, k ∈ N \A
0, otherwise

.

Then, clearly y is bounded and δc({k ∈ N : xk ̸= yk}) = 0 because {k ∈ N :
xk ̸= yk} ⊆ A.

For the converse part, let δc({k ∈ N : xk ̸= yk}) = 0. Since y is bounded, so
there exists some B > 0 such that |yk| ≤ B for all k ∈ N. Then, the inclusion

{k ∈ N : xk ̸= yk} ⊇ {k ∈ N : |xk| > B}

holds and consequently, δc({k ∈ N : |xk| > B}) = 0. Hence, x is quasi statistical
bounded. QED

Theorem 12. Let x = (xk) be a real-valued sequence. Then,
(i) If x is quasi statistical monotonic increasing sequence then x is quasi statis-
tical convergent if and only if it is quasi statistical bounded;
(ii) If x is quasi statistical monotonic decreasing sequence then x is quasi sta-
tistical convergent if and only if it is quasi statistical bounded.



64 C. Choudhury

Proof. (i) Let x be quasi statistical monotonic increasing and xk
stq−−→ x0. Then

by Theorem 8 (i), there exists two sequences y = (yk) and z = (zk) such that

x = y + z, where δc({k ∈ N : zk ̸= 0}) = 0 i.e., zk
stq−−→ 0 and (yk) is monotonic

increasing. Consequently, y = x − z and by Theorem 7, yk
stq−−→ x0. Now the

monotonicity of y implies that y is usual convergent and eventually bounded.
Hence, x is quasi statistical bounded.

Conversly, suppose x is quasi statistical bounded. Then, there exists some
B > 0 such that δc(N) = δc(N), where N = {k ∈ N : |xk| ≤ B}. Now we
construct the decomposition x = y + z in such a way that y is bounded. Let
M = {m1 < m2 < · · · < mj < · · · } ⊆ N be such that δc(M) = δc(N) and
xmj ≤ xmj+1 for any j ∈ N. Let nk = max{m ∈M ∩N : m ≤ k} and define the
sequences y = (yk) and z = (zk) by (2.8) and (2.9). Then, the rest of the proof
can be easily obtained from Theorem 8.
(ii) The proof is similar to that of (i), so omitted. QED

Theorem 13. Let x = (xk), y = (yk) and z = (zk) be three sequences such
that xk ≤ yk ≤ zk for all k ∈ M for some M ⊆ N with δc(M) = δc(N). If

xk
stq−−→ x0 and zk

stq−−→ x0, then yk
stq−−→ x0.

Proof. Let ε > 0 be given. Then the proof follows directly from the following
inclusion:

{k ∈ N : |yk−x0| ≥ ε} ⊆ {k ∈ N : |xk−x0| ≥ ε}∪{k ∈ N : |zk−x0| ≥ ε}∪(N\M).

QED

Theorem 14. A real-valued sequence x = (xk) is quasi statistical conver-
gent if and only if for any ε > 0, there exists Nε ∈ N such that δc({k ∈ N :
|xk − xNε | < ε}) = δc(N).

Proof. Let xk
stq−−→ x0. Then for any ε > 0, δc(Bε) = δc(N), where

Bε = {k ∈ N : |xk − x0| < ε
2}.

Fix Nε ∈ Bε. Then, for any k ∈ Bε,

|xk − xNε | = |xk − x0 + x0 − xNε | ≤ |xk − x0|+ |xNε − x0| <
ε

2
+
ε

2
= ε.

This implies that, Bε ⊆ {k ∈ N : |xk − xNε | < ε} and consequently,

δc({k ∈ N : |xk − xNε | < ε}) = δc(N).

Conversely, suppose that for any ε > 0, there exists Nε ∈ N such that
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δc({k ∈ N : |xk − xNε | < ε}) = δc(N).

Then, for any ε > 0, δc(Cε) = δc(N), where Cε = {k ∈ N : xk ∈ [xNε−ε, xNε+ε]}.
Denote the interval [xNε − ε, xNε + ε] by Iε. Fix an ε > 0. Then, δc(Cε) = δc(N)
and δc(C ε

2
) = δc(N) holds and consequently we have, δc(Cε ∩ C ε

2
) = δc(N). But

this implies that

I = Iε ∩ I ε
2
̸= ∅, δc({k ∈ N : xk ∈ I}) = δc(N), diam I ≤ 1

2
diam Iε,

where diam I denote the length of the interval I. In this way, by induction, we
can construct a sequence of closed intervals

Iε = J0 ⊇ J1 ⊇ · · · Jn ⊇ · · ·

such that

diam Jn ≤ 1
2 diam Jn−1 for n = 2, 3, · · · and δc({k ∈ N : xk ∈ Jn}) = δc(N).

Then, there exists a η ∈
⋂
n∈N

Jn and it is routine work to verify that xk
stq−−→

η. QED

Conclusion

In this paper, by defining the notion of quasi statistical lower and upper
bound, we investigated how the notion of quasi statistical supremum, infimum
are closely connected to the quasi statistical convergence of a real-valued se-
quence. Theorem 12 gives the essence of the quasi statistical boundedness for
a quasi statistical monotonic sequence to become quasi statistical convergent.
Theorem 14 gives the Cauchy condition for the quasi statistical convergence.

As a continuation of this work, one may investigate various properties of the
space of all quasi statistical bounded sequence space:

l
stq
∞ = {x = (xk) : there existsB > 0 such that δc({k ∈ N : |xk| > B}) = 0}.
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