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Abstract. Suppose that N is a near-ring and P is a 3-prime ideal of A/. In this paper we
introduce the notion of (a,7)-P derivation in near-rings, we also study the structure of the
quotient near-ring N'/P which satisfies certain algebraic identities involving (o, 7)-P deriva-
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1 Introduction

Throughout this paper, N will denote a left near-ring with multiplicative
center Z(N) and additive center C(N). A near-ring N is said to be zero-
symmetric if Ox = 0 for all x € N (recall that a left distributivity in N yields
that 20 = 0). Also, N is said to be 2-torsion free if 2z = 0 implies x = 0 for all
x € N. Recall that NV is called a 3-prime near-ring, if for z,y € N, 2Ny = {0}
implies z =0 or y = 0. For all z,y € N, [z,y] =2y —yzr and z oy = zy + yx
shall denote the Lie product and the Jordan products, respectively. The symbol
(x,y) will denote the additive-group commutator x +y — x — y. A normal sub-
group P of (N, +) is called a left ideal (resp. a right ideal) if PN" C N (resp.
(x+p)y —ay € P for all z,y € N and p € P), and if P is both a left ideal
and a right ideal, then P is said to be an ideal of N/. According to Groenewald
[6], an ideal P is a 3-prime if for a,b € N, aNb C P = a € Por b€ P. An
additive mapping d : N’ — N is a («, 7)-derivation if there exist automorphisms
a,7: N — N such that d(zy) = 7(x)d(y) + d(z)a(y) for all z,y € N, or equiv-
alently, as noted in [1], such that d(xy) = d(x)a(y) + 7(x)d(y) for all x,y € N.
A mapping d : N — N is said to be P-additive if d(z +y) — (d(z) + d(y)) € P
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for all x,y € N. A mapping d : N' — N is P-trivial if d(N) C P. Element x
of NV for which d(z) € P is called P constant. A mapping d : N' — N is called
(a, 7) — P-commuting if [d(z),z]q, € P for all z € N.

Many results in the literature show how the global structure of a near-
ring A is often closely related to the behavior of derivations defined on N.
Recently, a number of more general notions of derivations on near-rings have
been introduced and studied (see for example [3], [4], [5], [7], [8] and [9]). In
the following, we define the notion of («, 7)-P-derivation in near rings, which
generalizes the notion of («, 7)-derivation, and we enrich this definition with an
example that justifies the existence of this type of application:

Definition 1. Let A/ be a near-ring and P be a subgroup of (N, +). An
P-additive mapping d : N' — N is called a («, 7)-P-derivation of A/, if there
exist maps a, 7 : NV — N such that d(zy) — (7(z)d(y) + d(z)a(y)) € P for all
z,y € N.

Definition 2. Let AN be a near-ring and P be a subgroup of (AN, +). An
P-additive mapping d : N' — N is called a (a, 7)-PT-derivation of NV, if d is a
(a, T)-P-derivation such that

(a) d(d(zy) — (t(z)d(y) + d(z)a(y))) € P for all z,y € N,
(b) d(d(zy) — (d(z)a(y) + 7(z)d(y))) € P for all z,y € N.

In the case of a = 7 = I\ we define the following notions:

Definition 3. Let A/ be a near-ring and P be a subset of A'. An P-additive
mapping d : N — N is called a P-derivation if d(zy) — (zd(y) + d(z)y) € P for
all z,y € N.

Definition 4. Let N be a near-ring and P be a subset of N'. A map d :
N — N is a Pt-derivation if d is a P-derivation such that

(a) d*(zy) — d(zd(y) + d(z)y) € P for all z,y € N,
(b) d*(zy) — d(d(z)y + xd(y)) € P for all z,y € N.

Definition 5. Let N be a near-ring. A normal subgroup P of (N,+) is
called a symmetric ideal if

(a) P is an ideal of NV,
(b) PN C P.

If P = {0} is a symmetric ideal of a near-ring N, we get the concept of a
zero-symmetric near-ring N.
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Definition 6. A near-ring N is said to be symmetric if every ideal of N is
symmetric.

It is easy to see that every («, 7) derivation on N is a («, 7)-P derivation on
N. The following example justifies the existence of a («, 7)-P derivation that is
not a (a, 7) derivation:

Example 1. Let S be a left near-ring. Define N/, P by:

0 a b 0w O
N={lo000]|abeoess, P={[0 0 0]]|0uecs
0 ¢ O 0 0 O
then N is a left near-ring, and P is an ideal of N/
Let us define d, o, and 7 : N' — N as follow:
0 a b 0 a O 0 a b 0 a O
dl 000]=100T50 T ],xf 0O0O0]=(00020
0 ¢ O 0 00 0 ¢ O 0 ¢ O
0 a b 0 a b
and7[ 0 0 O ] =10 0 O
0 ¢c O 0 00
It’s clear to see that d is a («, 7)-PT-derivation, but not a («, 7)-derivation on

N.
Example 2. Let S be a left near-ring. Define N/, P by:

0 a b 0 v O
N = 0 0 O | a,b,c,0€ S 3, P = 0 0 0 luesS
0 ¢c O 0 0 0

then A is a left near-ring, and P is a symmetric ideal of N.
The map d : N — N given by:

0
d|l O
0

o O R

b 0 0 b
0O l=1000
0 000

is a PT-derivation, but not a derivation on N.

With these definitions, by using P derivations, where P is an ideal of a
near-ring A, we will study properties of the near-ring A//P. The originality
of this work is that we use a P-derivation on N (and not on N/P), which
satisfies some algebraic identities on A and on P, without the primeness (semi-
primeness) assumption on the considered near-ring.
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2 Some preliminaries

Lemma 1. Let N be a near-ring and P be an ideal of N.
a. If P is 3-prime, then N'/P is a 3-prime near-ring.
b. If P is symmetric, then N'/P is a zero-symmetric near-ring.
Proof. Due to the ease of proof, we leave it to readers to enjoy. QED

Theorem 1. Let N be a near-ring and P be an ideal of N'. If d : N' — N is
a P-derivation of N preserving P, then the mapping d : N/P — N /P defined
by d(z) = d(z) is a derivation on N'/P.

Proof. d is well defined, indeed let y € T, then y — 2z = p for some p € P, so
A(y) — (d(x) + d(p)) € P, 50 d(7) = d(y) = d(z) = d(z).

Now let 7,y € N /P, we have d(Z.y) = d(zy) = d(zy) = (vd(y) +d(x)y) =
Zd(y) + d(x)y = Zd(y) 4 d(Z)y. Also, we have d(ZT +7) = d(z +y) = d(z +y) =
(d(z) +d(y)) = d(x) + d(y) = d(ZT) + d(y), which completes the proof of our

theorem. QED

Theorem 2. Let N be a near-ring and P be an ideal of N'. An P-additive
map d on a near-ring N is a P-derivation if and only if d(zy)—(d(x)y + xd(y)) €
P for all z,y € N.

Proof. Suppose that d is a P-derivation. Since z(y + y) = xy + zy, it follows
that

d(z(y+y)) = Tdly+y)+d=)([y+7)
= Zd(y) + zTd(y) + d(x)y + d(x)y for all z,y e N. (2.1)

Now

dzy +xy) = d(zy) +d(zy)
= Zd(y) +d(x)y + Td(y) + d(z)y for all z,y e N. (2.2)

By (2.1) and (2.2), we get xd(y) + d(x)y = d(z)y + zd(y), for all z,y € N.
Hence, d(zy) — (d(z)y + zd(y)) € P, for all z,y € N.

For the converse, assume that d(zy) — (d(z)y + zd(y)) € P for all z,y € N.
Since z(y +y) = 7y + 7y for all x,y € N, we get

d(z(y +y)) = d(@)(y+7) +7Td(y +y)
d(z)y + d(x)y + zd(y) + Td(y) for all z,y € N. (2.3)
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Also

d(zy +xy) = d(zy) +d(ry)
= d(x)y+zd(y) + d(z)y + Td(y), for all z,y e N. (2.4)

In view of (2.3) and (2.4), we obtain d(x)y + ZTd(y) = Td(y) + d(x)y for all
z,y € N, which gives d(zy) — (zd(y) + d(x)y) € P for all z,y € N. So, d is a

P-derivation. QED

If NV is a 3-prime near-ring in the previous theorem, then P = {0} is a
3-prime ideal of NV, in which case we get the following result:

Corollary 1 ([10] Proposition 1). Let N be a 3-prime near-ring. An additive
endomorphism d on a near-ring N is a derivation if and only if d(zy) = d(z)y+
xd(y) for all z,y € N.

Theorem 3. Let N be a near-ring and P be an ideal of N and d an arbi-
trary P-derivation of a near-ring N'. Then N/ P satisfies the following partial
distributive laws.

a. (Zd(y) + d(z)y)z = zd(y)z + d(x)yz for all z,y,z € N.

b. (d(z)y +zd(y))z = d(z)yz + zd(y)Z for all z,y,z € N.

Proof. a. It is clear that d(xy) = Zd(y) + d(x)y, for all z,y € N'. Then

d((zy)z) = zyd(z) + d(zy)z
= 7yd(z) + (@d(y) + d(2)7)Z. (2.5)

Also,

d(z(yz)) = wd(yz) +d(z)yz
= T(gd(z) + d(y)z) + d(2)7z. (2.6)

It is clear that in a near-ring A the associative law holds, then d((xy)z) =

d(z(yz)), for all z,y,z € N. From (2.5) and (2.6), we get Tyd(z) + (Td(y) +

d(z)y)z = Tyd(z) + Td(y)z + d(z)yz, for all x,y,z € N, which forces that

(Td(y) + d(x)y)z = Td(y)Z + d(x)yz for all z,y,z € N.

b. We know that d(zy) = d(z)y + Td(y), for all z,y € N. Then

d(z(yz)) = d(x)yz
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Also,

d((zy)z) = d(zy)z+
= (d(z)y+7d(y))z + Tyd(z). (2.8)

This implies that d(z(yz)) = d((xy)z) for all x,y,z € N. Applying (2.7) and
(2.8) give d(2)yz+Td(y)z+Tyd(z) = (d(x)y+Zd(y))z+Tyd(z) for all z,y, z € N,
which ensures that (d(x)y+zd(y))z = d(x)yz+xd(y)z for all z, y, 2 € N.

Using the same reasoning as above, we get the following result:

Corollary 2 ([10] Lemma 1). Let N be a near-ring and d be an arbitrary
P-derivation of N. Then N satisfies the following partial distributive laws.

a. (zd(y) +d(z)y)z = zd(y)z + d(z)yz for all x,y,z € N.

b. (d(z)y + zd(y))z = d(z)yz + zd(y)z for all x,y,z € N.
Lemma 2. Let N be a near-ring and P be a 3-prime ideal of N.

a. Ifz € Z(N'/P) ~ {0}, then z is not a zero divisor.

b. If Z(N'/P) contains a nonzero element z for whichz+z € Z(N'/P), then
(N/P,+) is abelian.

c. Ifz € Z(N/P)~ {0} and T € N/P such that Tz € Z(N/P) or 2T €
Z(N/P), thenT € Z(N/P).

Proof. By hypothesis, we have P is a 3-prime ideal of N'. Thus N'/P is 3-prime
near-ring. Therefore, (a), (b) and (c) are consequences of [2, Lemmas 1.2(i),
1.2(iii) and 1.3(iii))].

Corollary 3 ([2] Lemmas 1.2(i), 1.2(iii) and 1.3(iii)). Let N be a 3-prime
near-ring.

a. If z € Z(N) ~ {0}, then z is not a zero divisor.

b. If Z(N') contains a nonzero element z for which z+z € Z(N'), then (N, +)
is abelian.

c. If 2€ ZIN) {0} and x € N such that xz € Z(N) or zx € Z(N), then
x € ZWN).

Lemma 3. Let N be a near-ring and P be a 3-prime ideal of N'. Let d
a non P-trwial P-derivation on N. Then Td(N) = {0}, implies T = 0, and

d(N)z = {0}, implies T = 0.
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Proof. Suppose that Zd(N) = {0}. Then 0 = Td(yz) = Td(y)z + Tyd(z) =
zyd(z) for all y, 2z € N, Wthh implies that N'd(z) C P. In light of 3-primeness
of P, we have 0 = Z or 0 = d(2) for all z € N. Since d(N') ¢ P, we conclude
that 0 = 7.

A similar argument works if d )T = {0} QED

Lemma 4. Let P be a symmetric 3-prime ideal of a near-ring N and d a
P*-derivation on N. If d*(N') C P, then d(N') € P or 2(N/P) = {0}.

Proof. By hypothesis, we have

0 = d*(zy)
= (()
- P

=2d(:r)(y)

= d(z)d(2y) for all z,y € N.

Replacing y by ny in the last equation we get mﬁm =0foralln,z,y e N,
which implies that d(z) (N/P) d(2y) = {0} for all 2,y € N. By primeness of
P, we find d(N') C P or d(2y) =0 for all y € N.

Suppose d(N) € P, so d(2y) =0 for all y € N, then

0 = d(2zy)

d(zy
y
9

~— | —

(y) +Zd(y) + d(z)y
(2y) +d(x)y
d($)@

for all z,y € N.

I

S
—~| | —~

8

8

d
d
= d(z)y

= d(z) (@ +

That is, d(N) (§+7) = {0} for all y € V. By Lemma 3, we get 2(N/P)
{0}.

Theorem 4. Let N be a near-ring, P be a symmetric 3-prime ideal of
N, and d be a P-derivation of N. If w is not left zero divisor on N'/P and
[u,d(u)] € P, then d((z,u)) =0 for all z € N.

Proof. From u(u+z) = u?+ux, we get ud(u + = )+d(u)(T +f) = ud(u)+d(u)
ud(z) + d(u)Z, which reduces to ud(z) + d(u)u = d(u)u + ud(z). Since d(u)
ud(u), this equation can be expressed as u(d(x) + d(u) — d(z) — d(u)) =

ud((x,u)). Thus, d((z,u)) = 0. QED

g
+

Sl g
I
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3 Commutativity of N//P

Theorem 5. Let N be a near-ring and P be a symmetric 3-prime ideal
of N'. Suppose that N'/P has no nonzero divisors of zero. If N' admits a non
P-trivial P-commuting P-derivation d, then (N'/P,+) is abelian.

Proof. Let ¢ be any additive commutator of A’/P. Then d(c) = 0 by Lemma
4. Moreover, for any w € N /P, wec is an additive commutator, so it is also a
P-constant. Thus, 0 = d(wec) = wd(c) + d(w)é and d(w)é = 0. Since d(w) # 0
for some w € N'/P, we conclude that ¢ = 0.

Theorem 6. Let P be a symmetric 3-prime ideal of a near-ring N'. If N ad-

mits a non P-trivial P-derivation d such that d(N') C Z(N'/P), then (N'/P,+)
is abelian. Moreover, if d*(N') € P, then N'/P is a commutative ring.

Proof. Suppose that 0 is the only P-constant. Since d is P-commuting, by
Lemma 4 we have T € C(N/P) for all T € N/ P, which are nonzero divisors. In
particular, for d(z) ¢ P, we have d(z) € C(N/P). Then for all j € N'/P we get
0=d(y) +d(z) — d(y) — d(z) = d((y,x)), so (7,Z) = 0; a contradiction.

Let ¢ # 0 be an arbitrary P constant, and Z be a non P constant. So d(zc) =
d(z)e¢ + zd(c) = d(x)c € Z(N/P). By lemma 2 (iii) we get ¢ € Z(N/P). Since
¢+ ¢is a P constant, we get ¢+ ¢ € Z(N/P). Thus, by lemma 2 (ii), (N/P, +)
is abelian.

Now supposing that d>(N) ¢ P, and proving that A//P is a commutative ring.

We have (d(m)ﬂ—&-f@)? = d(zy)z = zd(zy) = Z(d(w)?%—fd(y)) for all

x,y,z € N. That is d(x)yz + Td(y)z = zd(z)y + zzd(y) for all z,y, 2z € N. Thus
d(2)[7,%) = d(y)[,7] for all z,y,z € N. Replacing y by d(y) in last expression
and using it we get d2(y)[z,7] = 0 for all z,y,z € N. Since d?(y) € Z(N/P),
we obtain d?(y)(N/P)[z,z] = {0} for all z,y,z € N. The 3-primeness of N'/P

gives [z,7] = 0 for all z,z € N, therefore N'/P is a commutative ring.

Corollary 4. Let P be a symmetric 3-prime ideal of a near-ring N. If
N admits a non P-trivial PT-derivation d such that d(N') C Z(N/P), then
(N/P,+) is abelian. Moreover, if 2(N'/P) # {0}, then N'/P is a commutative

Ting.

Proof. In the light of Lemma 4 and Theorem 6 we get the proof. QED

Theorem 7. Let P be a symmetric 3-prime ideal of a near-ring N, d a
non P-trivial P-derivation and a € N. If d&*(N') € P and [d(x),a] € P for all
zeN, thenae Z(N/P).
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Proof. Let a € N. We set C(a) = {x € N'| [z,a] € P}. Next we claim that

d(C(a))N C C(a). (3.

Ne)

)

Indeed, let y € C(a) and = € N. By assumption, we have that d(yz),d(z) €
d(N) C C(a). Since y,d(z) € C(a), yd(z) € C(a) as well. Hence yd(z)a =

ayd(z). It follows from Theorem 3 (a) that

jd@)a+dyjza = (yd(e) + d(y)z)a
= d(yx)a
= ad(yr)
— a(yd(a) + dAW)P).

Which implies that yd(z)a + d(y)za = ayd(z) + ad(y)z.

Since yd(z)a = ayd(z), we see that d(y)Za = ad(y)T, which proves our claim.
Finally, by our assumption d?(N) ¢ P. Hence d%(z) # 0, for some z € N. Set
y = d(z) and pick an arbitrary x € N. Since y € d(N) C C(a),d(y)z € C(a) by
(3.9). In particular d(y)u, d(y)uv € C(a) for all u,v € N. Now it follows that
0 = [a, d(y)wv] = ad(y)uv — d(y)uwa = d(y)uav — d(y)uwa = d(y)u(av — va) or
d(y)ula,w] =0, for all u,v € N. Since N'/P is a 3-prime near-ring and d(y) # 0,
we conclude that [@,v] =0, for all v € N, which completes the proof.

Corollary 5. Let P be a symmetric 3-prime ideal of a near-ring N and d
be a non P-trivial P*-derivation. If 2(N'/P) # {0} and [d(z),a] € P for all
z €N, thena e Z(N/P).

Theorem 8. Let P be a symmetric 3-prime ideal of a near-ring N and
di, dy be non P-trivial P-deriations of N such that [di(z),d2(y)] € P for all
x,y € N, then one of the following assertions holds:

a. d2(N)C P.
b. d3(N) C P.
c. N/P is a commutative ring.

Proof. Assume that d3(N) € P, and d3(N) € P. It follows from Theorem
7, that di(N) € Z(N/P) and so [N/P,di(N)] = {0}. Again by Theorem 7,
we conclude that N//P C Z(N/P) and so N/P is a commutative near-ring.
In particular A//P is distributive. Let w, 7,57 € N/P. Then (u +u)(T +7) =
(u+a)T + (u+ )y = ux + ux + uy + uy, it follows that wy + uz = uz + uy
and w(y+7 — y|z) = 0 for all w,z,y € N/P. Since N'/P is 3-prime, we have
(y+T—7y—=) =0forall z,y € N/P, and so N/P is a commutative ring. The
proof is complete. QED
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Corollary 6. Let P be a symmetric 3-prime ideal of a near-ring N and dy,
do are P*-derivations of N. If [di(z),d2(y)] € P for all z,y € N, then one of
the following assertions holds:

a. 2(N/P) = {0}.

b. dy(N)C P.

c. dy(N)C P.

d. N'/P is a commutative ring.

Corollary 7. Let R be a ring, P be a prime ideal of R and dy, dy are
derivations of R such that [di(x),d2(y)] € P for all z,y € R, then we have one
of the following assertions:

a. Char(R/P) = 2.
b. di(R) C P.

o

. da(R) C P.
d. R/P is a commutative integral domain.

Theorem 9. Let P be a symmetric 3-prime ideal of a near-ring N'. If N
admits P-derivations di and dg such that dy(z)ds(y) + da(z)d1(y) € P, for all
x,y € N, then one of the following assertions holds:

a. dl(./\[) g P.
b. da(N) C P.
c. 2(N/P) = {0}

Proof. Suppose that di(N) € P and do(N) € P. By hypothesis, we have

0 = di(x)do(u+v)+da(x)di(u+v)
= di(x)[dy
= di(z)
(z)

(z)

—
= di(x)[da(u) + d2(v) — da(u) — do(v)] = di(z) do((u,v)).

Thus dy (N)da((u,v)) = {0} for all u,v € N. Using Lemma 3 gives da((u,v)) =0
for all u,v € N. Substituting wu and wv for v and v respectively, we have
0 = do((wu,wv)) = do(w(u,v)) = da(w)(w,v) for all u,v,w € N. That is




(a, T)-P-derivations on left near-rings 103

da(N).(w,v) = {0}. From Lemma 3, we get (u,v) =0, for all u,v,w € N. Thus
(N/P,+) is abelian.
Substituting « by wv in the hypothesis, we get

0 = [udi(v) + di(u)v]dz(y) + [Uda(v) + da(u)v]di(y)
= Tdy(v)da(y) + di(u)vda(y) + udy(v)di(y) + da(u)vdi(y)
= aldi(v)da(y) + da(v)di(y)] + di (w)vda(y) + da(u)vdi(y)
= dy(u)vds(y) + do(u)vd; (y) for all u,v,y € N. (3.10)

Taking yt instead of y in (3.10) to obtain
0 = di(u)vda(yt) + do(u)vds (yt)
= G |[B)+5d0)] + o | dy)E+ 50|
= di(u)vdz(y)t + di(w)vyda(t) + d2(w)vdy (y)t + d2(u)vydi(t)
- [dl (w)vda(y)t + d2<u)m2(yﬁ] + [dl (w)ogda(t) + d2<u)@d2(t)}
= dy(u)vds(y)t + dao(u)vdy (y)t for all u,v,t,y € N. (3.11)

Placing d; (t) instead of ¢, in (3.11), we get that
d1(uw)vda(y)dy () + do(u)vdy (y)di(t) = 0 for all u,v,t,y € N. (3.12)

Ju
Taking vd;(y) and ¢ instead of v and y respectively in (3.10), we find that
di(uw)vudy (y)da(t) + do(u)vdy (y)di(t) = 0 for all u,v,t,y € N. (3.13)
Subtraction of (3.13) from (3.12) yields that
d1(u)v[da(y)di(t) — di(y)dz(t)] = 0.
Using the hypothesis, we obtain d(u)v [dg(y)dl(t) +d2(y)d1(t)} = 0. Since
N) € P, it follows that dq(u) # 0 for some u € N. As

(@ P) | d()d (D) + da(y)di ()| = {0}
and N/P is 3-prime, we conclude that
do(y)dy(t) + da(y)di(t) =0 for all t,y € N. (3.14)
Recall that (NV/P,+) is abelian. Letting yu instead of y in (3.14), we obtain
0 = da(y)udi(t) +yda(u)di(t) + do(y)udi () + Yda(u)di(t)
= 7 |G D) + B)d0)] + |d)ad 0) + da(y)ud ()
= dy(y)udi(t) + da(y)udi () for all u,t,y € N. (3.15)
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Now substituting ut instead of ¢ in (3.14), we obtain

0 = dy(y)udi(t) + da(y)di(u)t + da(y)udi(t) + dz(y)di(u)t
= do(y)di(u)t + do(y)di(u)t for all u,t,y € N. (3.16)

Therefore, da(N)d; (u)(t+1t) = {0} for all u,t € N and so di(N)(t+1) = {0} for
all t € N by Lemma 3. Again applying Lemma 3, we conclude that 2(N/P) =
{0}. QED

Corollary 8. Let P be a prime ideal of a ring R. If R admits P-derivations
dy and dy such that di(x)da(y) + d2(x)di(y) € P, for all z,y € R, then one of
the following assertions holds:

b. d2(R) C P.
c. char(N/P) =2

Lemma 5. Let N be an arbitrary near-ring. Let S and T be nonempty
subsets of N such that st = —ts for alls € S andt € T. Ifa,be S andce T
for which —c € T, then (ab)c = c(ab).

Theorem 10. Let P be a symmetric 3-prime ideal of a near-ring N'. If dy

and dy are PT-derivations on N such that di(z) o da(y) € P for all x,y € N,
then one of the following assertions holds:

2(N/P) = {0}.
b. di(N) C P.
C. dQ(N) Q P.

Proof. Suppose that 2(N/P) # {0}. By Lemma 4, we may assume d3(N) ¢ P
and d3(N) € P. Let w € da(N) then —w € da(N). Therefore, by Lemma
5, if u,v € dy(N), then wv centralizes da(N'), hence uwv € Z(N/P) by The-
orem 7. It follows that di(x)%dy(y) = di(z)di(y)di(z) and dyi(x)%di(y)? =

(dl(x)dl (y))2 for all 2,y € N. Hence dy(z)d1 (y) <d1 (@)di(y) — di (y)dl(x)> =0
)

and di (y)d1(z) (dl(fﬁ)dl(y) - dl(y)d1($)> = 0. Since di(v)d1(y) and di1(y)di(z)
are central, Lemma 2 (i) shows that for any z,y € N, either di(z)di(y) =
d1(y)di(x) = 0 or dy(z)d1(y) = di(y)di(x). Then, [di(N),d1(N)] C P. By The-
orem 8, N is commutative. However, this fact with our hypothesis shows that

0 = 2d;y(z)ds(y) for all z,y € U.
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Suppose di(N) ¢ P and do(N) ¢ P. Using similar arguments as in the
proof of lemma 4, we get 2(N/P) = {0}; a contradiction. So d1(N) C P or
di(N) C P. QED

Corollary 9. Let P be a prime ideal of a ring R. If R admits P-derivations
dy and dg such that di(x)oda(y) € P for all x,y € R, then one of the following
assertions holds:

a. di(R) C P.
b. d2(R) C P.
c. Char(R/P) =2.

Theorem 11. Let P be a symmetric 3-prime ideal of a near-ring N, and let
dy and dy P-derivations such that dide(xy) — di (xda(y) + da(z)y) € P for all
xz,y € N. If dids is a P-derivation, then one of the following assertions holds:

b. dy(N) C P.
c. 2(N/P) = {0}.

Proof. Since dyds is a P-derivation, we have

dida(zy) = Tdrda(y) + drde(x)y, for all x,y € N.

On the other hand,

dide(zy) = di(xda(y) + da(z)y)
= fdldz(y) +d (l')dg(y) + dz(ﬂj)dl(y) + dydsy (:L')y

Comparing these two expressions, we obviously obtain

di(z)da(y) + da(x)di(y) =0, for all z,y € N.
Now, our assertion follows from Theorem 9. QED

Corollary 10. Let P be a symmetric 3-prime ideal of a near-ring N', and d
is a P*-derivation. If d* is a P-derivation, then one of the following assertions

holds:
a. d\N)CP.
b. 2(N/P) = {0}.
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4 Semiprime ideal and derivations

Theorem 12. Let P be a semiprime ideal of a symmetric near-ring N,
where N/ P is 2-torsion free. Let d be a derivation of N such that [d(x),d(y)] €
P for all x,y € N, then one of the following assertions holds:

a. There exists a prime ideal P, 2 P such that d(N') C P,.
b. N/P is a commutative ring.

Proof. Since P is semiprime, there exists a family P of 3-prime ideals P, such
that NP, = P. Therefore,

[d(x),d(y)] € P, for all z,y € R, P, € P. (4.17)

Since d is a derivation, we get d is P,-derivations on A for all P, € P. Using
(4.17) and the fact that 2(N/P,) # {0}, the corrolary 6 gives

d(N) C P, or N/P, is a commutative ring for all P, € P. (4.18)
Suppose that d(N) ¢ P, for all P, € P. Thus (4.18) implies that N'/P =
N/ N P, is commutative ring. QED

Theorem 13. Let P be a semiprime ideal of a symmetric near-ring N,
where N/ P is 2-torsion free. If d is a derivation on N such that 2d(z)d(y) € P
for all z,y € N, then d(N') C P.

Proof. Since P is semiprime, there exists a family P of 3-prime ideals P, such
that NP, = P. Therefore,

2d(x)d(y) € P, for all z,y € R, P, € P. (4.19)

Since d is a derivation, we get d is P,-derivation on N for all P, € P. Using
(4.19) with 2(N/P,) # {0}, then Theorem 10 gives d(N') C P, for all P, € P,
which forces that d(N) C P. QED

Theorem 14. Let P be a semiprime ideal of a symmetric near-ring N and
N /P is 2-torsion free. If d is a derivation on N such that d(z) o d(y) € P for
all v,y € N, then d(N') C P.

Proof. Since P is semiprime, there exists a family P of 3-prime ideals P, such
that NP, = P. Therefore,

d(x)od(y) € P, for all z,y € N, P, € P. (4.20)

Since d is a derivation, we obtain d is P,-derivations on N for all P, € P. By
(4.20) and 2(N/P,) # {0}, Theorem 10 gives d(N) C P, for all P, € P, which
implies that d(N) C P. QED
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Theorem 15. Let P be a semiprime ideal of a symmetric near-ring N, and
d be a derivation on N'. Then d? is a derivation if one of the following assertions

holds:
a. There exists a prime ideal P, D P such that d(N') C P,.
b. 2(N/P) = {0}.

Proof. Since P is semiprime, there exists a family P of 3-prime ideals P, such
that NP, = P. Therefore, since d is a derivation, d is also P;-derivation on N/
for all P, € P. Using the corollary 10, we get 2(N'/P,) = {0} or d(N') C P, for
all P, € P, which complete the proof of our theorem. QED
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