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Abstract. Let c{; , ,)(n) be the generalization of the cubic partition function ¢(n). In this
paper, we prove some new congruences modulo odd prime p by taking » = 3,4,5,7,11 and 13
using g-series identities. We study congruence properties of generalization of cubic partition
function for different values of a and give some particular cases as examples.
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1 Introduction

In a paper [1], Chan started the study of cubic partitions by exhibiting a close
relation between a certain type of partition function and Ramanujan’s cubic
continued fraction. For example, there are four cubic partitions of 3, namely
3,21 +1,23+1 and 14+ 1+ 1, where the subscripts 1 and 2 denote the colours.
Cubic partition function ¢(n) is defined by

L] (P S —— (L)
= (@ 0)(d% ¢%)s  E(@)E(¢?)’ '
where E(q) is Euler’s product,
E(g)=(g9)s = [J(1—=¢"), lql<1.
n=1

The function c(n) satisfies many Ramanujan type congruences, for example
c¢(B3n+2) = 0 ( mod 3), V n > 0. Motivated by his works in [2, 3], many
partition congruences for analogous partition functions have been investigated.
For example, Chen and Lin [4] found four new congruences modulo 7 by using
modular forms, whereas Xiong [11] established sets of congruences modulo pow-
ers of 5. In [6], Chern and Dastidar have presented two new congruences modulo
11 for ¢(n). Furthermore, they have established a recursion for ¢(n), which is
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a special case of a broader class of recursions. Recently Hirschhorn [8] gave an
elementary proof of

c(5°n +84)= 0 (mod 5/2)]),

where o > 2, n > 0 and d,, is the reciprocal of 8 modulo 5%.
Zhao and Zhang [12] explored congruences for the following function:

1 1
ZCp (40)% (% ?)% — E*@)E* (@) (12)

and proved that ep(bn +4) = 0 ( mod 5), V n > 0. Since ¢p(n) counts a pair
of cubic partitions, it is the number of cubic partition pairs. We can interpret
cp(n) as the number of 4-colour partitions of n with colours r,y, 0 and b subject
to the restriction that the colours o and b appear only in even parts. Recently
Lin [9] studied the arithmetic properties of ¢p(n) modulo 27 and conjectured
the following four congruences:

ep(49n +37) = 0 (mod 49),

cp(8ln+61)= 0 (mod 243),

0 2. 2 3. ,3)2

6. 4,6
n=0 q )oo
o
36(q: 6. ,6)2
3" ep(8ln + 34)g" = (q’ql“(gq ) (10d 81)
= (4% %)oo

In two recent papers, Chern [5] and Lin, Wang and Xia [10] independently
proved all the above four congruences.

Let ¢fy ;.0 (n) be defined by

(e 9]

1
2 ™" = (E BT 43

where a,r > 1 are positive integers. C?l,r,a) (n) is the generalization of the cubic
partition function c(n).

In this paper, we prove some quite interesting congruences modulo odd prime
p by taking r = 3,4,5,7,11 and 13 using g—series identities. We study congru-
ence properties of generalization of cubic partition function for different values
of a and give some particular cases as examples.In particular, some of them
involve higher powers of the Euler function.
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2 New congruences for ¢, ,(n)

In this section, we prove six new congruence modulo an odd prime p. To
prove our congruences, we employ the following g-series identity from [7, equa-
tion (0.46)]:

oo

E¥q)= Y (4n+ 1)glUnt=1l/s, (2.4)

n=—oo

We also require the following congruence which follows from the binomial the-
orem: For prime p and integer ¢ > 1,

E} = Ey (mod p). (2.5)

Theorem 1. Suppose p is an odd prime divisor of a+ 3 and r is an integer

with 0 < r < p. Suppose p and r satisfy the condition: 2r +1 = 0 ( mod p )
andp = 5 or 11 ( mod 12 ). Then, ¥Yn >0

Cigaen+r) = 0 (mod p). (2.6)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 3 in (1.3), we find that

S o n_ [B@BE@)
2 s (" = TR B 21)
Employing (2.5) in (2.7), we obtain
=, BB
P 29

Using (2.4), we observe that

[E(q)E(¢) = f i (4n + 1) (dm + 1)glUn+D*+30m 2 =41/8 (9 g)

m=—o0 nN=—0o0

We note that
N = [(4n+1)% + 3(4m + 1)* — 4]/8,

which is equivalent to

SN +4 = (4n +1)? + 3(4m + 1)%.
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Ifp = 50r 11 (mod 12), then the Legendre symbol <_73) = —1. Therefore,
it follows that
8N +4 = 0 (mod p)

or
2N+1 = 0 (mod p)

if and only if 4n+1 = 0 (mod p) and 4m+1 = 0 (mod p). Hence, the
congruences (2.6) now follows by employing (2.9) in (2.8) and then comparing
the coefficients of ¢P™*".

Corollary 1. We have

C132Bn+2) = 0 (mod 5), (2.10)
131491 +8) = 0 (mod 17), (2.11)
¢hag(1n+5) = 0 (mod 11), (2.12)
Cl1,320)(23n+11) = 0 (mod 23). (2.13)

Proof. Take p =5 and a = 2. Then, p is an odd prime, p = 5 (mod 12) and
p divides a + 3.Therefore, using these in(2.6) we obtain (2.10). Similarly, taking
p =17 and a = 14 in (2.6) we obtain (2.11), taking p = 11 and a = 8 in (2.6) we
obtain (2.12) and taking p = 23 and a = 20 in (2.6) we obtain (2.13).

Theorem 2. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 < r < p. Suppose p and r satisfy the condition: 8 +5 = 0 (mod p)
andp = 3 (mod 4). Then, Vn >0,

Ciaqpn+r) = 0 (mod p). (2.14)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting » = 4 in (1.3), we find that

™ n_ [E@EB@)

Tg’)cm’a)(n)q  [B@EB(H)™ (2.15)
Employing (2.5) in (2.15), we obtain

- * n E(q)E(¢" ’

> (0" = e (216)

n=0
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Using (2.4), we observe that

[E(Q)E(¢Y)? = i i (4n + 1)(dm + 1)gl4n D> +4Um+12=51/8 (9 17)

m=—00 N=—00

We note that
N = [(4n + 1)? + 4(4m + 1)? — 5]/8,

which is equivalent to
8N +5 = (4n +1)* + 4(4m + 1)%

If p = 3 (mod 4), then the Legendre symbol (_74) = —1. Therefore, it follows

that
8N+5 =0 (mod p)

ifand only if4n+1 = 0 (mod p) and 4m+1 = 0 (mod p). Hence, the con-
gruences (2.14) now follows by employing (2.17) in (2.16) and then comparing
the coefficients of ¢gP"*".

Corollary 2. We have

14,0 (Tn+2) 0 (mod 7), (2.18)
C1asln+9) = 0 (mod 11). (2.19)

Proof. Taking p = 7 and a = 4 in (2.14) we obtain (2.18) and taking p = 11
and a = 8 in (2.14) we obtain (2.19). QED

Theorem 3. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 < r < p. Suppose p and r satisfy any of the following two conditions:

(1) 4r+3 = 0 (modp),p = 20r3 (mod5)andp = 1 (mod 4)

(2) 4r+3 = 0 (modp),p = 1lor4d (mod5)andp = 3 (mod 4)

Then, ¥n > 0,
0?1,5,(1) (pn+7) = 0 (mod p). (2.20)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 5 in (1.3), we find that

o . BB
7lz:;]c(l,ks,a)(”)q ~EQE@)P™ (2.21)
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Employing (2.5) in (2.21), we obtain

N n BB
2 G 0" = g Bl 222

Using (2.4), we observe that

[E(Q)E(®))® = i i (4n + 1)(dm + 1)glntD*+5(4m+1)2-6]/8 (9 93)

m=—00 N=—00

We note that
N = [(4n + 1)* + 5(4m + 1)* — 6]/8,

which is equivalent to
SN +6 = (4n + 1)% + 5(4m + 1)°.

If
p=2o0r3 (modb5)&p =1 (mod4)

or
p=1lord (modb)&p =3 (mod4),

then the Legendre symbol (_75) = —1. Therefore, it follows that

8N+6 = 0 (mod p)

or
AN +3 = 0 (mod p)

if and only if 4n+1 = 0 (mod p) and 4m+1 = 0 (mod p). Hence, the con-
gruences (2.20) now follows by employing (2.23) in (2.22) and then comparing
the coefficients of ¢P"*".

Corollary 3. We have

1514y (1T +12) = 0 (mod 17), (2.24)
151013 +9) = 0 (mod 13), (2.25)
158 (1ln+2) = 0 (mod 11), (2.26)
6?1,5,16)(1977’ +4) = 0 (mod 19). (2.27)

Proof. Setting p = 17 and a = 14 in (2.20) implies (2.24). For (2.25), we set
p = 13 and a = 10 in (2.20). For (2.26), we put p = 11 and a = 8 in (2.20).
Finally, by setting p = 19 and a = 16 in (2.20) we obtain (2.27).
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Theorem 4. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 < r < p. Suppose p and r satisfy any of the following two conditions:

(1) r+1 = 0 (modp),p = 3or5o0r6 (mod7) andp = 1 (mod 4)
(2) r+1 = 0 (modp),p = 3or50r6 mod7andp = 3 (mod 4)

Then, VYn > 0,
7aPn+r) = 0 (mod p). (2.28)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 7 in (1.3), we find that

e w_ [E@E@)”
nZO C(l,7,a) (n)q - [E(Q)E(q7)]pm . (229)
Employing (2.5) in (2.29), we obtain
> w_ (BB
7;) €(1,7,a) <n)q - [E(qp)E(q7p)]m . (230)

Using (2.4), we observe that

B@EG@P = 3 Y (n+ Ddm + 1)gldnt+7amsii=ss. (331)

m=—0o0 N=—00

We note that
N = [(4n 4+ 1)? + 7(4m + 1)* — 8]/8,

which is equivalent to
8N +8 = (4n + 1)% + 7(4m + 1)

If

p=3o0orbor6 (mod7)&p =1 (mod4)
or

p=3or5or6 (mod7)&p =3 (mod4)
then the Legendre symbol (‘77) = —1. Therefore, it follows that

8N +8 = 0 (mod p)

or
N+1 =0 (modp)

if and only if 4n +1 = 0 (mod p) and 4m+1 = 0 (mod p). Hence, the con-
gruences (2.28) now follows by employing (2.31) in (2.30) and then comparing
the coefficients of ¢’ .
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Corollary 4. We have

71017 +16) = 0 (mod 17), (2.32)

CrBn+4) = 0 (mod5), (2.33)
0?1,7,10)(13’” +12) = 0 (mod 13), (2.34)
C(1,7,28)(3In+30) = 0 (mod 31), (2.35)
cf177716)(19n +18) = 0 (mod 19). (2.36)

Proof. Setting p = 17 and a = 14 in (2.28) we obtain (2.32). For (2.33), we set
p=>5and a = 2 in (2.28).For (2.34), we set p = 13 and ¢ = 10 in (2.28). For
(2.35), we set p = 31 and a = 28 in (2.28). Finally, by setting p = 19 and a = 16
in (2.28) we obtain (2.36). QED

Theorem 5. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 < r < p. Suppose p and r satisfy any of the following two conditions:

(1) 2r4+3 = 0 (mod p),p = 20r6or 7or8or 10 (mod 11) andp = 1
(mod 4)

(2) 2r+3 = 0 (mod p),p = 20r 6or7or8or 10 (mod11) andp = 3
(mod 4)

Then, Yn > 0,
Cfl,ll,a)(p”‘*‘r) = 0 (mod p). (2.37)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting = 11 in (1.3), we find that

= . . E@E@W)

2 Gt 0" = [y Fg P 2%
Employing (2.5) in (2.38), we obtain

= . . [B@E@Y?

2l (9" = i g (2:39)

Using (2.4), we observe that

[E(q)E(qll)]3 _ Z Z (4n_|_1)(4m+1)q[(4n+1)2+11(4m+1)2712]/8' (2'40)

m=—0o0 nN=—0o0
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We note that
N = [(4n +1)2 + 11(4m + 1)% — 12]/8,

which is equivalent to
8N +12 = (4n + 1)% + 11(4m + 1)

If
p =2or6or7or8orl0 (modl1ll)&p = 1 (mod4)

or
p =2o0r6or7or8orl0 (modll)&p = 3 (mod4)

then the Legendre symbol <_711> = —1. Therefore, it follows that

8N +12 = 0 (mod p)

or
2N +3 = 0 (mod p)

if and only if 4n +1 = 0 (mod p) and 4m+1 = 0 (mod p). Hence, the con-
gruences (2.37) now follows by employing (2.40) in (2.39) and then comparing
the coefficients of ¢P™'".

Corollary 5. We have

¢(111,10)(13n+5) = 0 (mod 13), (2.41)
111141 +7) = 0 (mod 17), (2.42)
(111,26 (29n +13) = 0 (mod 29), (2.43)
(111,76 (797 +38) = 0 (mod 79). (2.44)

Proof. Setting p = 13 and a = 10 in (2.37) we obtain (2.41). For (2.42), we set
p =17 and a = 14 in (2.37). For (2.43), we set p = 29 and a = 26 in (2.37).
Finally, by setting p = 79 and a = 76 in (2.37) we obtain (2.44).

Theorem 6. Suppose p is an odd prime divisor of a+ 3 and r is an integer
with 0 < r < p. Suppose p and r satisfy any of the following two conditions:

(1) 4r+7 = 0 (modp), p = 20r 5o0r 6 or 7 or 8 or 11 (mod 13) and

p = 7 (mod 4)
(2) 4r+7 = 0 (mod p),p = 1or 3or4dor9orl0or 12 (mod 13) and
p = 3 (mod 4)
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Then, ¥Yn > 0,
130 Pn+7) = 0 (mod p). (2.45)

Proof. Since p divides a + 3, we can write a + 3 = pm, for some integer m.
Setting r = 13 in (1.3), we find that

= . n_ [E@E@G)

2 ™" = g B mp 240
Employing (2.5) in (2.46), we obtain

S n_ [E@E@@™)

2 s V"= [ (g 240

Using (2.4), we observe that

[E(q)E(qlS)]S _ Z Z (4n+1)(4m+1)q[(4n+1)2+13(4m+1)2_14]/8' (2.48)

m=—0o0 N=—00

We note that
N = [(4n +1)% +13(4m + 1) — 14]/8,

which is equivalent to
8N + 14 = (4n +1)* + 13(dm + 1)*.

If
p =2or50r6orT7or8orll (modl13)&p = 7 (mod4)

or
p=1lor3ordor9orl10or12 (mod13) & p = 3 (mod 4)

then the Legendre symbol (7713) = —1. Therefore, it follows that

8N +14 = 0 (mod p)

or

AN +7 = 0 (mod p)

if and only if 4n +1 = 0 (mod p) and 4m+1 = 0 (mod p). Hence, the con-
gruences (2.45) now follows by employing (2.48) in (2.47) and then comparing
the coefficients of ¢P"*".
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Corollary 6. We have

(113,38 (41n+29) = 0 (mod 41), (2.49)
€(1,13,106) (1097 +80) = 0 (mod 109), (2.50)
¢113125) (1310 +31) = 0 (mod 131). (2.51)

Proof. Setting p = 41 and a = 38 in (2.45) we obtain (2.49). For (2.50), we set
p =109 and a = 106 in (2.45). Finally, by setting p = 131 and a = 128 in (2.45)
we obtain (2.51).
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