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Inequalities related to the S-Divergence
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Abstract. The S-Divergence is a distance like function on the convex cone of positive
definite matrices, which is motivated from convex optimization. In this paper, we will prove
some inequalities for Kubo-Ando means with respect to the square root of the S-Divergence.
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1 Introduction

Let H,, denote the set of all n x n Hermitian matrices. The set of all positive
definite (henceforth positive) matrices in H, is denoted by P,. The Frobenius
norm of a matrix A is ||A||p = /tr(A*A), while ||A|| denoted the operator
norm.

The set P, is a well-studied differentiable Riemannian manifold, with the
Riemannian metric given by the differential form ds = ||A~"/2dAA~/2||p. The
metric induces the Riemannian distance (for more information, one can see,
e.g., [2, Chapter 6]):

5r(A, B) := || log(B~'/2AB~/2)||p, VA,B>0. (1.1)
Motivated from convex optimization, one can define the S-Divergence:
A+B 1

6%(A, B) = log det(

) — 510g det(AB), VA, B > 0. (1.2)
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Sra exhibited several properties related to the Riemannian distance dr (see [20]).
Note that the S-divergence 6% is non-negative definite and symmetric, but not
a metric. Indeed, Sra prove that dg is a metric on PP, (see [20, Theorem 3.1]).

Note that the equality logdet A = Trlog A holds for all A € P,, by the
argument of [16, p.28], we have that

—1/23 4—1/2
6%2(A,B) = log det(A Bf21 + I) - %log det(A™Y2BATY/?)

A712BAT2 4 1
2

= Tr[log( ) —log(AY2BA~Y2)1/2 (1.3)

It follows that for any A > 0, we have that dg(AA, AB) = dg(A, B).

Many authors consider the inequalities related to the various means (see
[4, 9, 11, 12, 13]). In this paper, we will work on this problem and prove some
inequalities related to the geometric mean, spectral geometric mean and Wasser-
stein mean under the S-divergence.

2 Inequalities related to various means

In this section, we will prove some inequalities related to some Kubo-Ando
means. For positive matrices A and B, recall that the geometric mean AfB is
defined by

AttB — A1/2(A71/2BA71/2)1/2A1/2'

The geometric mean has a lot of attractive properties (see, e.g., [1, 14]). In the
following theorem, we list the properties of the S-divergence used in the paper
(see See [20, Theorem 4.1, Theorem 4.5 and Corollary 4.10]).

Theorem 1. &g has the following properties:
(i) AfB is the equidistant from A and B, that is,
(i1) If A, B are positive definite and t € [0, 1], we have that
6%(AY BY) < t6%(A, B).
(i5i) If X,Y are positive definite and A is positive semidefinite, B = Apnin(A),

then
A+ X, A+Y) <84BT+ X,BI+Y) < 5%(X,Y).
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Suppose that ¢ € [0, 1], then one can define the Wasserstein mean of A, B €
Py by

Ao B = (1—1)2A+?B+t(1—1t)[AV2(AYV2BAY2)/2471/2
+A71/2(Al/QBAl/Z)l/QAl/Q]
= (1-1)2A+t’B+1(1-1)[(AB)Y? + (BA)'/?
ATVP[(1 = t) A+ t(AV2BAY?) 2P AT,

Bhatia, Jain and Lim [3, p.180] proved that Ao, B is the natural parametrisation
of the geodesic joining A and B associated Riemannian distance

Rey;iz;i
Y, Z)4 = aA#j
e L R
where A = diag(ay, a9, -, ay) is a positive definite matrix.

Theorem 2. For any A, B € P,, and any t € (0,1), we have that
0%(A, Aoy B) > 264(I,(1 — t)I +tA™'B).
Proof. Let C = AY2BA'Y/2. By Theorem 1, we can derive that

6%(A, Aoy B)
63(A2,[(1 = A + (A2 BAY2)122)
25%‘(14, (1-t)A+ t(Al/QBAl/Q)l/Q)
205(1, (1 —t)I +tA '¢B).

Y

QED

Remark 1. For A and B, when put C = AY2BAY2 we just can prove
that

6%(B, Aoy B)
= §3(C,((1 —t)A+tC?)?)
262(CV2, (1 — ) A+ tCV/?).

Moreover, one can define the spectral geometric mean between positive ma-
trices A and B:

ApB = (A7'4B)"2A(A7'1B)'
(we refer [14] for more details). It is easy to see that 6%(A~'{B, AyB) = 6%4(1, A).
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Proposition 1. For any positive matrices A and B, we have that

0%(1, AyB) < ~6%(B,A™1).

N |

Proof. By the definition, one can derive that

03(1,A4B) = 05((A7'4B)™", A) = 03(A7'4B, A7)
S(AY2BAY)2, 1)
%6%(/1” 2BAY? 1)

IN

= SO(B.ATY.

QED

More generally, one can define weighted spectral geometric mean for 0 < ¢ <
1. See, e.g., [15]. Let A, B be positive matrices, the weighted spectral geometric
mean is defined by

Ay B = (A"'4B) A(A14B)".

By the definition, it is easy to prove the following properties:

Lemma 1. For any s,t € [0,1] and any positive matrices A, B, we have
that

5§(Ahst AhtB) = 5%(‘4’ AhtfsB)
When 1/2 <t < 1, we have

§%(A7'¢B, A B)
0%(I,(A™4B) 2 A(A~B) /2
= 5%(17Aht—1/2B)'

On the other hand, to give a universal estimate, we can prove the following
inequality.

Theorem 3. Ift # 1/2, for any positive matrices A, B, we have

11— 2t|
2

5%(A_1ﬁB,AhtB) < 5%(37 A(3—2t)/(1_2t)).
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Proof. When 0 < t < 1/2, it follows from the properties of S-divergence dg that

53(A'B, Ay B)
S3((A7B) %, A)

< (1 —2t)03(A7 B, AY/(1720)
= (1- 2t)5§((A1/2BA1/2)1/2’ AC=20)/(1-20))
< L- 52(141/23141/2 A1)/ (1=28)y

= 1 5 5S(B,A(3_2t)/(1_2t))-

When 1/2 < t < 1, by a similar argument, we have that

2t —1

03(A'4B, Ay B) < 5%(B, AB—20/(1-20)y
QED
Remark 2. We also can derive that

05(A™'4B, A B) = 6&((A™'4B)' ", A).

Remark 3. Note that AfB is the solution of the equation (A~'fB)! =
A~'X then we have that

4]
4]

(Aa AhtB)

A1/2AA1/2 A1/2(AhtB)A1/2)
(4, (A2 (AgB)AVZ)2)
(1, A™'¢(AbeB))

(Z,(A lﬁB) )-
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