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Inequalities related to the S-Divergence
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Abstract. The S-Divergence is a distance like function on the convex cone of positive
definite matrices, which is motivated from convex optimization. In this paper, we will prove
some inequalities for Kubo-Ando means with respect to the square root of the S-Divergence.
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1 Introduction

Let Hn denote the set of all n×n Hermitian matrices. The set of all positive
definite (henceforth positive) matrices in Hn is denoted by Pn. The Frobenius
norm of a matrix A is ‖A‖F =

√
tr(A∗A), while ‖A‖ denoted the operator

norm.
The set Pn is a well-studied differentiable Riemannian manifold, with the

Riemannian metric given by the differential form ds = ‖A−1/2dAA−1/2‖F . The
metric induces the Riemannian distance (for more information, one can see,
e.g., [2, Chapter 6]):

δR(A,B) := ‖ log(B−1/2AB−1/2)‖F , ∀A,B > 0. (1.1)

Motivated from convex optimization, one can define the S-Divergence:

δ2
S(A,B) = log det(

A+B

2
)− 1

2
log det(AB), ∀A,B > 0. (1.2)
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Sra exhibited several properties related to the Riemannian distance δR (see [20]).
Note that the S-divergence δ2

S is non-negative definite and symmetric, but not
a metric. Indeed, Sra prove that δS is a metric on Pn (see [20, Theorem 3.1]).

Note that the equality log detA = Tr logA holds for all A ∈ Pn, by the
argument of [16, p.28], we have that

δ2
S(A,B) = log det(

A−1/2BA−1/2 + I

2
)− 1

2
log det(A−1/2BA−1/2)

= Tr[log(
A−1/2BA−1/2 + I

2
)− log(A−1/2BA−1/2)1/2]. (1.3)

It follows that for any λ > 0, we have that δS(λA, λB) = δS(A,B).

Many authors consider the inequalities related to the various means (see
[4, 9, 11, 12, 13]). In this paper, we will work on this problem and prove some
inequalities related to the geometric mean, spectral geometric mean and Wasser-
stein mean under the S-divergence.

2 Inequalities related to various means

In this section, we will prove some inequalities related to some Kubo-Ando
means. For positive matrices A and B, recall that the geometric mean A]B is
defined by

A]B = A1/2(A−1/2BA−1/2)1/2A1/2.

The geometric mean has a lot of attractive properties (see, e.g., [1, 14]). In the
following theorem, we list the properties of the S-divergence used in the paper
(see See [20, Theorem 4.1, Theorem 4.5 and Corollary 4.10]).

Theorem 1. δS has the following properties:

(i) A]B is the equidistant from A and B, that is,

δS(A,A]B) = δS(B,A]B).

(ii) If A,B are positive definite and t ∈ [0, 1], we have that

δ2
S(At, Bt) ≤ tδ2

S(A,B).

(iii) If X,Y are positive definite and A is positive semidefinite, β = λmin(A),
then

δ2
S(A+X,A+ Y ) ≤ δ2

S(βI +X,βI + Y ) ≤ δ2
S(X,Y ).
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Suppose that t ∈ [0, 1], then one can define the Wasserstein mean of A,B ∈
Pn by

A �t B = (1− t)2A+ t2B + t(1− t)[A1/2(A1/2BA1/2)1/2A−1/2

+A−1/2(A1/2BA1/2)1/2A1/2]

= (1− t)2A+ t2B + t(1− t)[(AB)1/2 + (BA)1/2]

= A−1/2[(1− t)A+ t(A1/2BA1/2)1/2]2A−1/2.

Bhatia, Jain and Lim [3, p.180] proved that A�tB is the natural parametrisation
of the geodesic joining A and B associated Riemannian distance

〈Y, Z〉A =
∑
i,j

αi
Reyjizji

(αi + αj)2
,

where A = diag(α1, α2, · · · , αn) is a positive definite matrix.

Theorem 2. For any A,B ∈ Pn and any t ∈ (0, 1), we have that

δ2
S(A,A �t B) ≥ 2δ2

S(I, (1− t)I + tA−1]B).

Proof. Let C = A1/2BA1/2. By Theorem 1, we can derive that

δ2
S(A,A �t B)

= δ2
S(A2, [(1− t)A+ t(A1/2BA1/2)1/2]2)

≥ 2δ2
S(A, (1− t)A+ t(A1/2BA1/2)1/2)

= 2δ2
S(I, (1− t)I + tA−1]B).

QED

Remark 1. For A and B, when put C = A1/2BA1/2, we just can prove
that

δ2
S(B,A �t B)

= δ2
S(C, ((1− t)A+ tC1/2)2)

= 2δ2
S(C1/2, (1− t)A+ tC1/2).

Moreover, one can define the spectral geometric mean between positive ma-
trices A and B:

A\B = (A−1]B)1/2A(A−1]B)1/2

(we refer [14] for more details). It is easy to see that δ2
S(A−1]B,A\B) = δ2

S(I, A).
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Proposition 1. For any positive matrices A and B, we have that

δ2
S(I, A\B) ≤ 1

2
δ2
S(B,A−1).

Proof. By the definition, one can derive that

δ2
S(I, A\B) = δ2

S((A−1]B)−1, A) = δ2
S(A−1]B,A−1)

= δ2
S((A1/2BA1/2)1/2, I)

≤ 1

2
δ2
S(A1/2BA1/2, I)

=
1

2
δ2
S(B,A−1).

QED

More generally, one can define weighted spectral geometric mean for 0 ≤ t ≤
1. See, e.g., [15]. Let A,B be positive matrices, the weighted spectral geometric
mean is defined by

A\tB = (A−1]B)tA(A−1]B)t.

By the definition, it is easy to prove the following properties:

Lemma 1. For any s, t ∈ [0, 1] and any positive matrices A,B, we have
that

δ2
S(A\sB,A\tB) = δ2

S(A,A\t−sB).

When 1/2 < t < 1, we have

δ2
S(A−1]B,A\tB)

= δ2
S(I, (A−1]B)t−1/2A(A−1]B)t−1/2)

= δ2
S(I, A\t−1/2B).

On the other hand, to give a universal estimate, we can prove the following
inequality.

Theorem 3. If t 6= 1/2, for any positive matrices A,B, we have

δ2
S(A−1]B,A\tB) ≤ |1− 2t|

2
δ2
S(B,A(3−2t)/(1−2t)).
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Proof. When 0 < t < 1/2, it follows from the properties of S-divergence δS that

δ2
S(A−1]B,A\tB)

= δ2
S((A−1]B)1−2t, A)

≤ (1− 2t)δ2
S(A−1]B,A1/(1−2t))

= (1− 2t)δ2
S((A1/2BA1/2)1/2, A(2−2t)/(1−2t))

≤ 1− 2t

2
δ2
S(A1/2BA1/2, A(4−4t)/(1−2t))

=
1− 2t

2
δ2
S(B,A(3−2t)/(1−2t)).

When 1/2 < t < 1, by a similar argument, we have that

δ2
S(A−1]B,A\tB) ≤ 2t− 1

2
δ2
S(B,A(3−2t)/(1−2t)).

QED

Remark 2. We also can derive that

δ2
S(A−1]B,A\tB) = δ2

S((A−1]B)1−2t, A).

Remark 3. Note that A\tB is the solution of the equation (A−1]B)t =
A−1]X, then we have that

δ2
S(A,A\tB)

= δ2
S(A1/2AA1/2, A1/2(A\tB)A1/2)

≥ 2δ2
S(A, (A1/2(A\tB)A1/2)1/2)

= 2δ2
S(I, A−1](A\tB))

= 2δ2
S(I, (A−1]B)t).
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