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Abstract. Let p(z) be a polynomial of degree n having no zero in |z| < k, k < 1, then Govil
[Proc. Nat. Acad. Sci., 50, (1980), 50-52] proved

’ n
max P < max Ip(2)l,

provided |p(z)| and |¢’(z)| attain their maxima at the same point on the circle |z| = 1, where

In this paper, we not only obtain an integral mean inequality for the above inequality but also
extend an improved version of it into L" norm.
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1 Introduction
Let p(z) be a polynomial of degree n. We define

T

2
Ipll- = / p(e)| do b, 0<r<oo (1.1)
0
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If we let » — oo in ([1.1]) and make use of the well-known fact from analysis (see
[18],[19]) that

2m T
lim | — )| - 1.2
tim | o= [ [pe) = maxp(z)). (1.2)
0
we can suitably denote
[Plloo = max [p(z)]. (1.3)
|z]=1
Similarly, we can define
2
Il = exp < 5 [ log ln(e)la
27 ’
0

and show that hm+ llpll» = [|pllo- It would be of further interest that by taking
r—0

limit as 7 — 0T that the stated results on L™ norm inequalities holding for
r > 0, hold for r = 0 as well.
The famous result of Bernstein [3] states that if p(z) is a polynomial of
degree n, then /
19 llo0 < nllpllo (1.4)

Inequality ((1.4) can be obtained by letting » — oo in the inequality
Ip'll- < nlplly, > 0. (1.5)

Inequality ([1.5) was proved by Zygmund [20] for » > 1 and by Arestov [I] for
0<r<l.
If we restrict to the class of polynomials having no zero in |z| < 1, then

inequalities ([1.4)) and ([1.5)) can be respectively improved as

MW»_JMM, (1.6)

12l < ——llpllr, >0. (1.7)
11+ 2l

Inequality was conjectured by Erdos and later verified by Lax [13] whereas
inequality was proved by de-Bruijn [5] for » > 1 and by Rahman and
Schmeisser [16] for 0 < r < 1.

As a generalization of , Malik [14] proved that if p(z) is a polynomial
of degree n having no zero in |z| < k, k > 1, then

o0 00» 1.8
Il _1+kMH (1.8)
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whereas, under the same hypotheses of the polynomial p(z), Govil and Rahman
[11] extended inequality (|1.8)) to L" norm by showing that

’ n
P [lr < iz el r=>1. (1.9)

+ Kl
Gardner and Weems [9] and independently by Rather [17] showed that inequality
holds true for 0 < r < 1 as well.

For the class of polynomials p(z) of degree n having no zero in |z| < k, k < 1,
the precise upper bound estimate for maximum of [p’(z)| on |z| = 1, in general,
does not seem to be easily obtainable. For quite sometime, it was believed that
if p(z) has no zero in |z| < k, k¥ < 1, then the inequality analogous to

should be
n

1+ kn

untill E.B. Saff gave the example p(2) = (z — ) (2 + %) to counter this belief.

There are many extensions of inequality ( see Chan and Malik [6],
Dewan and Bidkham [7], and Dewan and Mir [§]). However, for the class of
polynomials having no zero in |z| < k, k < 1, Govil [10] proved inequality
with extra condition.

11 lloe < [12]]oo; (1.10)

Theorem 1. If p(z) is a polynomial of degree n having no zero in |z| < k,

k <1, then
n

o 1.11
=l (1.11)

provided |p'(2)| and |¢'(z)| attain their mazima at the same point on the circle
|z| =1, where

1P lloe <

q(z) = Z”p<1>- (1.12)

z
In this paper, we shall prove the following more general result which as a
special case gives inequality ([1.11]). In fact, we prove

Theorem 2. If p(z) is a polynomial of degree n having no zero in |z| < k,
k <1, then for every r > 0,

Knllplle < NIz + &l {nllpllsc — l17'lloc} - (1.13)
provided |p'(z)| and |¢'(z)| attain their mazima at the same point on the circle
|z| =1, where

z

q(z) = z"p<1>- (1.14)

Further, we prove the following improved result which sharpens Theorem
More precisely, we obtain
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Theorem 3. If p(z) is a polynomial of degree n having no zero in |z| < k,
k < 1, then for every real or complex number o with |a] < 1 and for every
r >0,

k™n ’

pE +ag| <le+k fnlple =[Pl (115)

provided |p'(2)| and |¢'(2)| attain their mazima at the same point on the circle
|z| =1, where

a(z) = " ( ) (1.16)
and m = min |p(z)].
|2|=k
Letting r — oo on both sides of ((1.13]), we readily get inequality (1.11]) of
Theorem [Il

Remark 1. Further, taking limit as » — oo on both sides of (1.15)), we get

k" n|m|ax‘ +0¢—‘ (1+&") {nmlax|p( )| —lm‘ax|p ‘} (1.17)
1 2|=1 1

Suppose zp on |z| =1 be such that |m|a>1<|p(z)| = |p(20)|. Then, in particular,
z|l=

‘zgm—kakmn‘ glr}zl'i)l(‘z"ﬁ—koz% . (1.18)
Now we can choose the argument of « suitably such that
|2t p(z0) + o | = Ip(z0) | + ol (1.19)
Using ([1.19)) to , we have
Ip(z0)] + ]a!k—n < |m‘a>1< ’z p(2) + al% : (1.20)

On combining (1.17)) and -, we have
Fn {max p(2)] + rar,jﬁ} < @) {nmax o) - maxl G | (.20

z[=1 |z[=1

which implies

max |p'(z)| <

n
< — . 1.22
i o { maxlo(a)] - fabn (122)

If we take limit as |o| — 1 in ([1.22)), we get the following inequality proved
by Aziz and Ahmad [2, Theorem 3].
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Corollary 1. If p(z) is a polynomial of degree n having no zero in |z| < k,

k <1, then

n

19|00 < T {lIplloec —m}, (1.23)

provided |p'(2)| and |¢'(z)| attain their mazima at the same point on the circle
|z| = 1, where

q(z) = z”p@) (1.24)

and m = min |p(2)|.
|z|=k

Remark 2. For a = 0, inequality (1.22)) reduces to inequality (1.11]).

2 Lemmas.

For the proofs of the theorems, we require the following lemmas. The first
lemma is a special case of a result due to Govil and Rahman [I1].

Lemma 1. If p(z) is a polynomial of degree n, then on |z| =1

W@N+W&N§nﬁgm@ﬁ (2.1)

2|

q(z) = zan)

Lemma 2. If p(z) is a polynomial of degree n having no zero in |z| < 1,
then for every R > 1 and every r > 0,

where

2 2
1o (re?) a8 < oy [ |o ()] . (2.2)
0 0

where
1
e

2
{f 1+ R"ew\’”de}
0

C, =

; o (2.3)
[ eor an)
0

Lemma [2| was proved by Boas and Rahman [4] for » > 1 and by Rahman
and Schmeisser [16] for 0 < r < 1.
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Lemma 3. Ifp(z) is a polynomial of degree n having all its zeros in |z| < k,
k > 1, then for every r > 0,

nlpllr < 1+ E"2] 1P [loo, (2.4)

q(z) = zan).

Proof of Lemma [3l Since p(z) has all its zeros in |2| < k, k > 1, the poly-
nomial E(z) = p(kz) has all its zeros in |z| < 1 and hence the polynomial
F(z) = z"E(L) has all its zeros in |z| > 1. If z,, v = 1,2,3, ......, n are the zeros
of F(z), then obviously |z,| > 1,1 <v <n and

zF’(z):Zn: z 7 (2.5)

F(z) iz

where,

so that for points e, 0 < @ < 2x, for which F(e??) # 0, we have

Re(wF;(w > ZR@( <’ > 5 (2.6)

which gives

eiOF/ ei@ eiOF/ ei@
)| |, (o] o
nk (e?) nk (e?)
for points €%, 0 < 6 < 2, for which F (ew) £ 0.
Inequality (2.7) is equivalent to
‘F/ <619)‘ S ‘TLF (67,9> _ ’L@F/ ( 7,9) (28)

for points €, 0 < < 2x, for which F (ew) # 0. Also inequality trivially
holds for the points e?, 0 < 6 < 2, for which F (eie) = 0. Hence it follows that
for |z| =1

|F'(2)| < |nF(z) - ZF'(Z)} . (2.9)
Since E(z) has all its zeros in |z| < 1, by Gauss Lucas Theorem E’(z) has all
its zeros in |z| < 1 and hence the polynomial

VLR <i> =nF(z) — zF'(z) (2.10)

has all its zeros in |z| > 1.
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From (2.10)) it follows that the function

2F'(2)

W(z) = nF(z) — zF'(z)

(2.11)

is analytic in |z| < 1 with |[WW(z)| < 1 for |z| < 1 and W(0) = 0, hence the
function 1 + W (z) is subordinate to the function 1 + z for |z| < 1. Hence, by a
well- known property of subordination [12], we have for every r > 0,

2 2m
/‘1+W(ei9)‘Td9§/’1+ei9Td@. (2.12)
0 0
Now,
B nkF(z)
W) = e (2.13)
For |z| = 1, we have from
|E' ()| = |2" " E (i) = |nF(z) — 2F'(2)] . (2.14)

For |z| = 1, using equation (2.14)), relation (2.13)) gives

n|F(2)| = |1+ W()||nF(2) — 2F'(2)| = |1 + W(2)||E'(2)]- (2.15)

Combining (2.12) and (2.15)), we have for every r > 0

nTZr‘F (ew)‘rdG < Z1+ei0 " {lr?la)lc’E'(z)}}T. (2.16)

Using inequality (2.2)) of Lemma [2 to F'(z), we get for every k > 1 and every
r>0

21 ) 2m )
/ F(ke®) [ dB < (C,)" / (e[ db, (2.17)
0 0
where
27 %
<f |1 +k”ei9\rd0>
C, =Y

1
2 T

<f 11+ ew\’”d0>
0
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1 k
Since F(z) = 2"FE <> =z"p <>, we have for 0 < 6 < 27
Z

z

(1) -

From (2.16)), (2.17) and (2.18)), it follows that for every r > 0

p(ew)‘ . (2.18)

kneinem‘ — k"

kT 7‘;9 (e“’) ‘ 6 <n" (C,)" 7‘1? (e“’) ‘ do
0 0

2T
< /]1+k”ei“d9 {max|E’(z)|} . (2.19)
0

|z[=1

Since E'(z) = kp/(kz), we have

maxe|7(2) = hmax[p/(k2)| = kma (7). (2.20)

If h(z) is a polynomial of degree n, then it is a simple deduction from the
maximum modulus principle [15] that

h(z)| < R" h(z)|. 2.21
Jnax [A(2)] < B max [A(2)] (2.21)
Applying (2.21)) to p'(2) for R =k > 1 and using the result to (2.20]), we have
max |E'(2)| < k" max |p(2)|. (2.22)
|z]=1 |z|=1
Using (Z22) to (Z19), we get
2m 2m .
. T AT
n" / ‘p(e’e)’ df < / ‘1 + ke d {m|ax |p'(z)]} , (2.23)
z|=1
0 0

which is equivalent to

2 % 27
n /‘p(ew)‘ ol < /ll—i—k%w
0 0

which completes the proof of Lemma QED

" do max[p'(2)] (2.24)
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3 Proofs of the Theorems

We first prove Theorem [3]

Proof of Theorem [3l Let p(z) be a polynomial of degree n having no zero in
2| < k, k < 1. Then q(z) = 2"p (£) has all its zeros in |z| < 1/k, 1/k > 1. If m/

denotes min ]q( )|, then
|2|=

I — = — 1 = m
m' = |§|m,t la(2)l =5 min p()l = 1

where m = ‘Ir|11n Ip(2)]. Now, for every real or complex number o with |a| < 1,
it follows by Rouche’s theorem that the polynomial
Q(2) = q(2) + am’ = q(z) + a

m

i3 (3.1)

has all its zeros in |z| < %, % > 1. Applying Lemma |3| to the polynomial Q(z),
we have for every r > 0

2 T
Q (e ’ / ’1 max | Q'
[le(«) mx Q')
0
which is equivalent to
1 1
T 2m r
/‘q 0y 4 < / k" 4 e ag |m‘a)1<\q( 2).  (3.2)
0 4
By Lemma (1, we have for |z] =1
1P’ (2)| + |4 (2)| £ nmax|p(2)|. (3.3)

|z|=1

Since [p/(z)| and |¢'(z)| attain their maxima at the same point on |z| = 1, let z

on |z| = 1 be such that |r?|i)1( Id'(2)| = |¢'(20)|, then

max|p'(2)] = 7/ (z0)]

Now, in particular (3.3 gives

|4 (20)] + IP'(20)] < nmax p(2)], (3-4)
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which implies
max |¢'(2)| < nmax |p(z)| — max |p'(2)]. (3.5)
|z|=1 |z|=1 |z|=1

Using (3.5)) to (3.2]), we have

2
df < /
0

s« {nmax o) - maxly ()} G0

|z[=1 |2|=1

r

k" + el ap

27
k"n /‘q(eie) —i—a%
0

|| =

From ¢(z) = 2"p < >, we have

q (ew) = " (). (3.7)

Using (3.7)) to (3.6]), we have

Sl

2m 21 %
n nid_ [ 0\ m T n io|"
k"n /e p(el)—l—aﬁ o] < /k‘ + el do
0 0
« {rmaxlp(a)| - maxlf ()} (39
z|= z|=
which completes the proof of Theorem QED

Proof of Theorem [2l The proof of this theorem follows on the same lines as
that of Theorem [3| but instead of applying Lemma [3[to Q(z) given by (3.1]), we
simply apply the same lemma to ¢(z) = z”p(%) and we omit it. QED
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