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1 Introduction

Let Pn denote the class of complex polynomials p (z) :=
∑n

j=0 ajz
j of degree

at most n and p′(z) is the derivative of p(z). For any positive real number k,
we denote Tk = {z : |z| = k > 0}. Let D−k represents the set of all points in-
side Tk and D+

k represents the set of all points outside Tk. For aj ∈ C with
j = 1, 2, . . . , n, let

w(z) :=
∏n
j=1 (z − aj) , B(z) := w∗(z)

w(z) =
∏n
j=1

(
1−ājz
z−aj

)
,

where w∗(z) = znw(1/z̄), and

<n = <n (a1, a2, . . . , an) :=

{
p(z)

w(z)
: p ∈ Pn

}
.

The product B(z) is known as Blaschke product and one can easily verify that

|B(z)| = 1 and zB
′
(z)

B(z) = |B′(z)| for z ∈ T1. Then <n is the set of all rational
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functions with at most n poles a1, a2, . . . , an and with finite limit at infinity. We
observe that B(z) ∈ <n. For f defined on T1 in the complex plane, we denote
‖f‖ = supz∈T1 |f(z)|, the Chebyshev norm of f on T1. Throughout this paper,
we always assume that all poles a1, a2, . . . , an are in D+

1 .
For p ∈ Pn, the following result known as Bernstein inequality (for reference

see [3]) is well known: ∥∥p′∥∥ ≤ n ‖p‖ .
For the class of polynomials p ∈ Pn having all zeros in T1∪D+

1 , the following
result was conjectured by Erdös and later verified by Lax [5]:∥∥p′∥∥ ≤ n

2
‖p (z)‖ .

In 1995, Li, Mohapatra and Rodriguez [6] have proved Bernstein-type in-
equalities for rational function r(z) ∈ <n with prescribed poles where they
replaced zn by Blaschke product B (z) and established the following results.

Theorem 1.1. If r ∈ <n, and all zeros of r lie in T1 ∪D+
1 , then for z ∈ T1,

we have ∣∣r′(z)∣∣ ≤ 1

2

∣∣B′(z)∣∣ ‖r‖ . (1.1)

Equality holds for r(z) = aB(z) + b with |a| = |b| = 1.

Theorem 1.2. Let r ∈ <n, where r has exactly n poles at a1, a2, . . . , an
and all its zeros lie in T1 ∪D−1 . Then for z ∈ T1,∣∣r′(z)∣∣ ≥ 1

2

[∣∣B′(z)∣∣− (n− t)
]
|r(z)| , (1.2)

where t is the number of zeros of r with counting multiplicity. The above result
is best possible and equality holds for r(z) = aB(z) + b with |a| = |b| = 1.

Remark 1.1. In particular, if r has exactly n zeros in T1∪D−1 , then the inequality
(1.2) yields Bernstein-type inequality, namely for z ∈ T1,∣∣r′(z)∣∣ ≥ 1

2

∣∣B′(z)∣∣ |r(z)| . (1.3)

Aziz and Shah [2] proved the following theorems which improves upon the
inequalities (1.2) and (1.3) by introducing m = minz∈T1 |r(z)| .

Theorem 1.3. If r ∈ <n, with all its zeros lie in T1 ∪D+
1 , then for z ∈ T1,

we have ∣∣r′(z)∣∣ ≤ 1

2

∣∣B′(z)∣∣ (‖r‖ −m) , (1.4)
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where m = minz∈T1 |r(z)| . The result is best possible and equality attains for
r(z) = B(z) + heiα with h ≥ 1 and α real.

Theorem 1.4. Let r ∈ <n, where r has exactly n poles at a1, a2, . . . , an
and all its zeros lie in T1 ∪D−1 . Then for z ∈ T1,∣∣r′(z)∣∣ ≥ 1

2

∣∣B′(z)∣∣ [|r (z)|+m] , (1.5)

where m = minz∈T1 |r(z)| . Equality attains for r(z) = B(z) + heiα with h ≤ 1
and α real.

Recently, Arunrat and Nakprasit [1] proved the following results, which not
only improve upon the inequalities (1.4) and (1.5), but also generalize them.

Theorem 1.5. Let r ∈ <n, where r has exactly n poles at a1, a2, . . . , an
and all its zeros lie in Tk ∪D+

k , k ≥ 1. Then for z ∈ T1,

∣∣r′(z)∣∣ ≤ 1

2

[∣∣B′(z)∣∣− (n(1 + k)− 2t) (|r(z)| −m)2

(1 + k) (‖r‖ −m)2

]
(‖r‖ −m) , (1.6)

where t is the number of zeros of r with counting multiplicity andm = minz∈Tk |r(z)|.
Theorem 1.6. Let r ∈ <n, where r has exactly n poles a1, a2, . . . , an and

all its zeros lie in Tk ∪D−k , k ≤ 1. Then for z ∈ T1,∣∣r′(z)∣∣ ≥ 1

2

[∣∣B′(z)∣∣+
2t− n(1 + k)

1 + k

]
(|r(z)|+m) , (1.7)

where t is the number of zeros of r with counting multiplicity andm = minz∈Tk |r(z)|.

2 Main results

In this paper, we shall obtain bounds for the derivative of rational functions
by involving the moduli of all its zeros. More precisely, we have the following:

Theorem 2.1. Let r (z) = p(z)
w(z) ∈ <n and b1, b2, . . . , bt are the zeros of r (z)

all lying in Tk ∪D+
k , k ≥ 1. Then for z ∈ T1,

∣∣r′(z)∣∣ ≤ 1

2

∣∣B′(z)∣∣− 2
(
n
2 −

∑t
j=1

(
1

1+|bj |

))
(|r(z)| −m)2

(‖r‖ −m)2

 (‖r‖ −m) ,

where m = minz∈Tk |r(z)|.
If r (z) has exactly n zeros all lying in Tk ∪D+

k , where k ≥ 1, we obtain the
following result from Theorem 2.1.
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Corollary 2.1. Let r (z) = p(z)
w(z) ∈ <n and b1, b2, . . . , bn are the n zeros of

r (z) all lying in Tk ∪D+
k , k ≥ 1. Then for z ∈ T1,

∣∣r′(z)∣∣ ≤ 1

2

∣∣B′(z)∣∣− 2
(
n
2 −

∑n
j=1

(
1

1+|bj |

))
(|r(z)| −m)2

(‖r‖ −m)2

 (‖r‖ −m) ,

(2.1)

where m = minz∈Tk |r(z)|.

Remark 2.1. As we have
1

1 + |bj |
≤ 1

k + 1
, (2.2)

for |bj | ≥ k ≥ 1. Using (2.2) in (3.3), we observe that Corollary 2.1 reduces to
the following result:

∣∣r′(z)∣∣ ≤ 1

2

[∣∣B′(z)∣∣− n(k − 1) (|r(z)| −m)2

(1 + k) (‖r‖ −m)2

]
(‖r‖ −m) .

For k = 1, we get inequality (1.4) from the above inequality.

Theorem 2.2. Let r (z) = p(z)
w(z) ∈ <n and b1, b2, . . . , bt are the zeros of r (z)

all lying in Tk ∪D−k , k ≤ 1. Then for z ∈ T1,

∣∣r′(z)∣∣ ≥ 1

2

∣∣B′(z)∣∣+ 2

 t∑
j=1

(
1

1 + |bj |

)
− n

2

 (|r(z)|+m) ,

where m = minz∈Tk |r(z)|.
If r (z) has exactly n zeros all lying in Tk ∪ D−k , where k ≤ 1, we get the

following result from Theorem 2.2.

Corollary 2.2. Let r (z) = p(z)
w(z) ∈ <n and b1, b2, . . . , bn are the zeros of

r (z) lie in Tk ∪D−k , k ≤ 1. Then for z ∈ T1,

∣∣r′(z)∣∣ ≥ 1

2

∣∣B′(z)∣∣+ 2

 n∑
j=1

(
1

1 + |bj |

)
− n

2

 (|r(z)|+m) , (2.3)

where m = minz∈Tk |r(z)| .
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Remark 2.2. As
1

1 + |bj |
≥ 1

1 + k
, (2.4)

where |bj | ≤ k ≤ 1. Using (2.4) in (3.1), we see that Corollary 2.2 reduces to the
following result due to Mir [7], which improves upon a result recently proved by
Tripathi, Hans, and Tyagi [8]:

∣∣r′(z)∣∣ ≥ 1

2

[∣∣B′(z)∣∣+
n(1− k)

k + 1

]
(|r(z)|+m) .

Also, for k = 1, we get inequality (1.5) from the above inequality.

3 Lemmas

For the proof of these theorems, we need the following lemmas. The first
lemma is due to Li, Mohapatra and Rodriguez [6].

Lemma 3.1. If r ∈ <n and r∗ (z) = B (z) r
(

1
z̄

)
, then for z ∈ T1,∣∣(r∗(z))′∣∣+

∣∣r′(z)∣∣ ≤ ∣∣B′(z)∣∣ ‖r‖ .
This next lemma is due to Bidkham and Shahmansouri [4].

Lemma 3.2. If z ∈ T1, then

Re

(
zw′(z)

w(z)

)
=
n− |B′(z)|

2
.

4 Proofs of Theorems

Proof of Theorem 2.1. Assume that r ∈ <n has no zero in |z| < k, where
k ≥ 1. Let m = min|z|=k |r(z)|. If r (z) has a zero on |z| = k, then m = 0 and
hence for every α with |α| < 1, we get r (z)− αm = r (z) . In case r (z) has no
zero on |z| = k, we have for every α with |α| < 1 that |−αm| = |α|m ≤ |r (z)|
for |z| = k. By Rouché’s theorem R (z) = r (z) − αm and r (z) have the same
number of zeros in with |z| < k, that is, for every α with |α| < 1, R (z) has no
zeros in |z| < k. Let b1, b2, . . . , bt are zeros of R (z) , t ≤ n, then |bj | ≥ k ≥ 1,
we have

zR′ (z)

R (z)
=
zr′ (z)

r (z)
=
zp′ (z)

p (z)
− zw′ (z)

w (z)

=
t∑

j=1

z

z − bj
− zw′ (z)

w (z)
.
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On using Lemma 3.2, we have

Re

(
zR′ (z)

R (z)

)
= Re

 t∑
j=1

z

z − bj

− (n− |B′ (z)|
2

)
.

This implies

Re

(
zR′ (z)

R (z)

)
≤

t∑
j=1

1

1 + |bj |
−
(
n− |B′ (z)|

2

)

=
|B′ (z)|

2
+

 t∑
j=1

1

1 + |bj |
− n

2

 . (4.1)

Note that R∗ (z) = B (z)R
(

1
z̄

)
= B (z) R̄

(
1
z

)
. Then

(R∗ (z))′ = B′ (z) R̄

(
1

z

)
+B (z)

(
R̄

(
1

z

)′)
= B′ (z) R̄

(
1

z

)
+B (z)

(
R̄′
(

1

z

))(
− 1

z2

)
= B′ (z) R̄

(
1

z

)
− B (z)

z2

(
R̄′
(

1

z

))
,

which further implies

z(R∗ (z))′ = zB′ (z) R̄

(
1

z

)
− B (z)

z

(
R̄′
(

1

z

))
.

Since z ∈ T1, we have z̄ = 1
z , |B (z)| = 1, zB

′(z)
B(z) = |B′ (z)| , hence

∣∣z(R∗ (z))′
∣∣ =

∣∣∣zB′ (z)R (z)−B (z) zR′ (z)
∣∣∣

=

∣∣∣∣zB′ (z)B (z)
R (z)− zR′ (z)

∣∣∣∣
=
∣∣∣∣∣B′ (z)∣∣R (z)− zR′ (z)

∣∣∣ .
Also, |B′ (z)| is real, we get∣∣z(R∗ (z))′

∣∣ = ||B′ (z)|R (z)− zR′ (z)| . Then by inequality (4.1), we obtain
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∣∣∣∣z(R∗ (z))′

R (z)

∣∣∣∣2 =

∣∣∣∣∣∣B′ (z)∣∣− zR′ (z)

R (z)

∣∣∣∣2
=
∣∣B′ (z)∣∣2 +

∣∣∣∣zR′ (z)R (z)

∣∣∣∣2 − 2
∣∣B′ (z)∣∣Re(zR′ (z)

R (z)

)
≥
∣∣B′ (z)∣∣2 +

∣∣∣∣zR′ (z)R (z)

∣∣∣∣2
− 2

∣∣B′ (z)∣∣
 |B′ (z)|

2
+

 t∑
j=1

1

1 + |bj |
− n

2


=

∣∣∣∣zR′ (z)R (z)

∣∣∣∣2 + 2

n
2
−

 t∑
j=1

1

1 + |bj |

 ∣∣B′ (z)∣∣ .
This implies that for z ∈ T1,∣∣R′ (z)∣∣2 + 2

n
2
−

 t∑
j=1

1

1 + |bj |

 ∣∣B′ (z)∣∣ |R (z)|2
 1

2

≤
∣∣(R∗ (z))′

∣∣ , (4.2)

whereR∗ (z) = B (z)R
(

1
z̄

)
= r∗ (z)−ᾱmB (z) .Moreover, (R∗ (z))′ = (r∗ (z))′−

ᾱmB′ (z) and R′ (z) = r′ (z) = (r (z)− αm)′. On applying these relations into
(4.2), we obtain∣∣r′ (z)∣∣2 + 2

n
2
−

 t∑
j=1

1

1 + |bj |

 ∣∣B′ (z)∣∣ |r (z)− αm|2
 1

2

≤
∣∣(r∗ (z))′ − ᾱmB′ (z)

∣∣ , (4.3)

for z ∈ T1 and for α with |α| < 1. Choose the argument of α such that∣∣r∗ (z)′ − ᾱmB′ (z)
∣∣ =

∣∣r∗ (z)′
∣∣−m |α| |B′ (z)| , for z ∈ T1. Since |r (z)−mα| ≥

||r (z)| −m |α|| . Note that ||r (z)| −m |α||2 = (|r (z)| −m |α|)2 ,
which implies that |r (z)−mα|2 ≥ (|r (z)| −m |α|)2,
which on using in (4.3), gives∣∣r′ (z)∣∣2 + 2

n
2
−

 t∑
j=1

1

1 + |bj |

 ∣∣B′ (z)∣∣ (|r (z)| −m |α|)2

 1
2
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≤
∣∣(r∗ (z))′

∣∣−m |α| ∣∣B′ (z)∣∣ .
Letting |α| → 1, we get∣∣r′ (z)∣∣2 + 2

n
2
−

 t∑
j=1

1

1 + |bj |

 ∣∣B′ (z)∣∣ (|r (z)| −m)2

 1
2

≤
∣∣(r∗ (z))′

∣∣−m ∣∣B′ (z)∣∣ .
By lemma 3.1, implies that∣∣r′ (z)∣∣2 + 2

n
2
−

 t∑
j=1

1

1 + |bj |

 ∣∣B′ (z)∣∣ (|r (z)| −m)2

 1
2

≤
∣∣B′ (z)∣∣ ‖r‖ − ∣∣r′ (z)∣∣−m ∣∣B′ (z)∣∣ .

Further simplifying and squaring both sides, gives us

∣∣r′ (z)∣∣2 + 2

n
2
−

 t∑
j=1

1

1 + |bj |

 ∣∣B′ (z)∣∣ (|r (z)| −m)2

≤ (‖r‖ −m)2
∣∣B′ (z)∣∣2 +

∣∣r′ (z)∣∣2 − 2 (‖r‖ −m)
∣∣B′ (z)∣∣ ∣∣r′ (z)∣∣ .

This implies that

∣∣r′ (z)∣∣ ≤ (‖r‖ −m)2 |B′ (z)|2

2 (‖r‖ −m) |B′ (z)|
−

2
[
n
2 −

(∑t
j=1

1
1+|bj |

)]
|B′ (z)| (|r (z)| −m)2

2 (‖r‖ −m) |B′ (z)|
.

Thus

∣∣r′(z)∣∣ ≤ 1

2

∣∣B′(z)∣∣− 2
[
n
2 −

(∑t
j=1

1
1+|bj |

)]
(|r(z)| −m)2

(‖r‖ −m)2

 (‖r‖ −m) .

This proves inequality for R (z) 6= 0. In case R (z) = 0, we obtain that
r′ (z) = 0. This implies that the above inequality is trivially true. Therefore,
inequality holds for all z ∈ T1. QED

Proof of Theorem 2.2. Assume that r ∈ <n has no zeros in D+
k where k ≤ 1.

Letm = min|z|=k |r(z)| , thenm ≤ |r (z)| for z ∈ Tk. If r (z) has a zero on |z| = k,
then m = 0, hence for every α with |α| < 1 we get r (z) + αm = r (z) . In case
r (z) has no zeros on |z| = k, we have for every α with |α| < 1 that |αm| < |r (z)|
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for |z| = k. It follows by Rouché’s theorem that R (z) = r (z) + αm and r (z)
have same number of zeros in D−k , that is, for every α with |α| < 1, R (z) has no
zero in D+

k . If b1, b2, . . . , bt are zeros of R (z) , t ≤ n and |bj | ≤ k ≤ 1, we have

zR′ (z)

R (z)
=
zr′ (z)

r (z)
=
zp′ (z)

p (z)
− zw′ (z)

w (z)

=

t∑
j=1

z

z − bj
− zw′ (z)

w (z)
.

For z ∈ T1, gives with the help of Lemma 3.2, that

Re

(
zR′ (z)

R (z)

)
= Re

 t∑
j=1

z

z − bj

− (n− |B′ (z)|
2

)

≥
t∑

j=1

1

1 + |bj |
−
(
n− |B′ (z)|

2

)

=
|B′ (z)|

2
+

 t∑
j=1

1

1 + |bj |
− n

2

 ,

where R (z) 6= 0. Then

∣∣∣∣R′ (z)R (z)

∣∣∣∣ =

∣∣∣∣zR′ (z)R (z)

∣∣∣∣ ≥ Re(zR′ (z)R (z)

)
≥ |B

′ (z)|
2

+

 t∑
j=1

1

1 + |bj |
− n

2

 .

This implies that

∣∣R′ (z)∣∣ ≥
 |B′ (z)|

2
+

 t∑
j=1

1

1 + |bj |
− n

2

 |R (z)| , for z ∈ T1.

As R (z) = r (z) + αm, therefore, we get

∣∣r′ (z)∣∣ ≥
 |B′ (z)|

2
+

 t∑
j=1

1

1 + |bj |
− n

2

 |r (z) + αm| , for z ∈ T1.

Note that this inequality is trivially true for R (z) = 0. Therefore, this inequality
holds for all z ∈ T1. Choosing the argument of α suitably in the right side of
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the above inequality and noting that the left side is independent of α, we get
that ∣∣r′ (z)∣∣ ≥

 |B′ (z)|
2

+

 t∑
j=1

1

1 + |bj |
− n

2

 (|r (z)|+ |α|m) ,

for z ∈ T1. Letting |α| → 1, we get for z ∈ T1, that

∣∣r′ (z)∣∣ ≥
 |B′ (z)|

2
+

 t∑
j=1

1

1 + |bj |
− n

2

 (|r (z)|+m)

=
1

2

∣∣B′ (z)∣∣+ 2

 t∑
j=1

1

1 + |bj |
− n

2

 (|r (z)|+m) ,

which proves the Theorem 2.2. QED
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