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Abstract. Let {Zn}n∈Z be a sequence of identically distributed, weakly independent and
weakly Gaussian cylindrical random variables in a separable Banach space U . We consider the
cylindrical difference equation, Xn = AXn−1 + Zn, n ∈ Z, in U and determine a cylindrical
process {Yn}n∈Z which solves the equation. The cylindrical distribution of Yn is shown to
be weakly Gaussian and independent of n. It is also shown to be strongly Gaussian if the
cylindrical distribution of Z1 is strongly Gaussian. We determine the characteristic functional
of Yn and give conditions under which {Yn}n∈Z is unique.
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1 Introduction

The stochastic sequence {Xn}n≥1, defined recursively by the stochastic
difference equation

Xn = AnXn−1 +Bn, (1.1)

where (An, Bn), n ≥ 1 are random pairs in R2 and X0 is given, is used in
stochastic modeling of phenomena in various disciplines. In most of the applica-
tions, Xn represents the quantity of some stock at time n, Bn an amount added
to the stock just before time n and An is the rate of decay of the stock between
the times n − 1 and n. The wide range of applicability of this model is one of
the major reasons for the attention paid to it over the last several decades. In
[20], the author investigates among other questions, conditions under which the
sequence {Xn}n≥1 in (1.1) converges in distribution, when {(An, Bn)}n≥1 is an
i.i.d. sequence in R2 and studies the limit distribution. He shows that under
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112 Felix Che Shu

certain conditions, this convergence is equivalent to the almost sure conver-

gence of
∞∑
k=1

A1A2 · · ·Ak−1Bk and to the existence of a solution to the equation

X
d
= AX +B, in which X and (A,B) are independent and A and B are generic

elements of the sequences {An}n≥1 and {Bn}n≥1 respectively. These results are
some of the most fundamental in the i.i.d. setting, in one dimension.

In [11], Grincevicius shows that if A 6= 0 with probability 1, and X
d
=

AX + B has a solution X, then the distribution of X is absolutely continuous
or singular and continuous or degenerate. In particular, non degenerate discrete
distributions do not occur as distributions of solutions of this equation whenever
A 6= 0 with probability 1.

The results in [20] are obtained, assuming that {(An, Bn)}n≥1 is a sequence
of i.i.d. random vectors in R2. Given that this assumption is restrictive in view
of applications, Brandt [9] extends these results to the case of stationary and
ergodic sequences in R2. He determines conditions under which a uniquely de-
termined stationary solution of the equation

Xn+1 = AnXn +Bn, (1.2)

n ∈ Z, exists. He shows that if {(An, Bn)}n∈Z is a stationary and ergodic se-
quence in R2 for which −∞ ≤ E ln |A0| < 0 and E ln+ |B1| <∞ or P(A0 = 0) >

0 then {Xn}n∈Z, where Xn :=
∞∑
j=0

An−1 · · ·An−jBn−j−1, (we define An−1An =

1), is the only proper stationary solution of (1.2) for the given sequence

{(An, Bn)}n∈Z. In this case,
∞∑
j=0

An−1 · · ·An−jBn−j−1 converges absolutely al-

most surely for all n ∈ Z and P( lim
n→∞

|yn(Y,Ψ)− yn(Ψ)| = 0) = 1, where

yn(Y,Ψ) :=
n−1∑
j=0

An−1 · · ·An−jBn−j−1 +An−1 · · ·A0Y ,

yn(Ψ) :=
∞∑
j=0

An−1 · · ·An−jBn−j−1 and Y is an arbitrary random variable de-

fined on the same space as the vectors of the sequence Ψ := {(An, Bn)}n∈Z.

In particular, under these conditions,
n−1∑
j=0

An−1 · · ·An−jBn−j−1 + An−1 · · ·A0Y

converges to
∞∑
k=0

An−1 · · ·An−kBn−k−1 in distribution as n tends to infinity. The

main differences in the studies by Vervaat [20] and Brandt [9] are that, while
[20] considers sequences {(An Bn)}n≥1 which are i.i.d., [9] considers sequences
{(An Bn)}n∈Z which are stationary and ergodic and in addition, while the series
yn(Ψ) in [9] uses a backward construction, the corresponding series Y ∗n in [20]
uses a forward construction.
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Results in the one dimensional setting for (1.2), when {(An, Bn)}n∈N is non
stationary are found in Horst [12], where he gives conditions on the sequence
{(An, Bn)}n∈N under which the finite dimensional distributions of {Xn}n∈N con-
verge weakly to the finite dimensional distributions of a unique stationary so-
lution of (1.2) under some measure P∗ on the same space (Ω,F ,P) on which
{(An, Bn)}n∈N is defined. The results of [12] generalize those of Brandt [9] and
Borovkov [4] from the stationary to the non stationary case.

For real multidimensional autoregressive processes, we mention the works of
Bougerol and Picard [8] and Kesten [13]. In [8], Bougerol and Picard consider the
equation (1.1) where {(An, Bn)}n∈Z is a strictly stationary and ergodic process,
Xn and Bn are random vectors in Rd and An is a d × d random matrix for
each n. Assuming that {(An, Bn)}n∈Z is i.i.d., they give conditions under which
a non anticipative strictly stationary solution {Xn}n∈Z of (1.1), if it exists,

satisfies Xn =
∞∑
k=0

AnAn−1 · · ·An−k+1Bn−k almost surely (the series converging

almost surely) and is the unique strictly stationary solution of (1.1). They also
show that if {(An, Bn)}n∈Z is i.i.d., (1.1) is irreducible, E ln+ ‖A0‖ < ∞, and
E ln+ ‖B0‖ < ∞, then (1.1) has a non anticipative strictly stationary solution
if and only if inf{ 1

n+1E ln ‖A0 · · ·An‖ : n ∈ N} < 0. In essence, the results
presented in [8] are an extension of the results in [9] to the multidimensional
case, when {(An, Bn)}n∈Z is i.i.d.

Considerations on autoregressive processes in Hilbert and Banach spaces
appear in Bosq [5], [6], [7]. In [6], Bosq considers the autoregressive Hilbertian
process {Xn}n∈Z in a Hilbert space H-

Xn − µ = ρ (Xn−1 − µ) + εn, n ∈ Z, (1.3)

where µ ∈ H, ρ is a bounded linear operator, ρ : H → H and {εn}n∈Z is a
H-white noise process, i.e. a sequence of H-valued random variables for which
0 ≤ E‖εn‖2 < ∞, Eεn = 0 for all n ∈ Z, the covariance operator Cεn of εn
does not depend on n and the random variables in the sequence {εn}n∈Z are
orthogonal, i.e. if n 6= m, then E〈εn x〉〈εm y〉 = 0 for all x, y ∈ H. He shows that
if for some integer j0 ≥ 1, ‖ρj0‖ < 1, then (1.3) has a unique stationary solution

given by Xn := µ +
∞∑
j=0

ρjεn−j , n ∈ Z, where the series converges in L2 and

almost surely. In addition, {εn}n∈Z is the innovation process of {(Xn − µ)}n∈Z.
He also gives a necessary and sufficient condition for the existence of a stationary
solution of (1.3) when µ = 0 and ρ is a symmetric and compact operator. For
future purposes, we point out that by Lemma 3.1 in [6], the condition ‖ρj0‖ < 1

for some j0 ≥ 1 implies that
∞∑
k=0

‖ρj‖ <∞.
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Results in [5] on the existence of stationary solutions to Banach space val-
ued autoregressive processes are generalizations of the studies in Hilbert spaces
which in turn generalize the case in finite dimensional Euclidean space.

In what follows, we consider the difference equation

Xn = AXn−1 + Zn, n ∈ Z, (1.4)

in a separable Banach space U , where A is a bounded linear operator on U and
{Zn}n∈Z is a sequence of identically distributed, weakly independent, weakly
Gaussian cylindrical random variables in U , and determine a cylindrical process
{Yn}n∈Z in U which solves the equation. The cylindrical distribution of Yn is
shown to be weakly Gaussian and independent of n. Conditions are also given
for the cylindrical distribution of Yn to be strongly Gaussian. We determine
the characteristic functional of Yn and give conditions under which {Yn}n∈Z is
unique. We note that in the equations (1.1) and (1.2), An is random while the
operator A in the case we study is non random and does not depend on n. Thus
the equation we study is more similar to the case of Hilbert and Banach space
valued autoregressive processes as presented in [5] and [6]. The difference equa-
tion (1.4) can be considered as a discrete analogue of the stochastic differential
equation

dY (t) = AY (t) + CdM(t), (1.5)

studied in [14], [2] (see [21] for a related comparison), in which M is a cylindrical
Lévy process in a Banach space U , A is the infinitesimal generator of a strongly
continuous semi-group of linear operators and C is a linear bounded operator,
these operators being defined on appropriate spaces. Applications of the con-
cepts of cylindrical stochastic differential equations and cylindrical stochastic
processes can be found in Da Prato et al. [10], Peszat et al. [17] etc. In compar-
ison with the results in Banach and Hilbert spaces, our results are an extension
and generalization of the corresponding results for Hilbert and Banach space
valued autoregressive processes to the case of cylindrical random variables. The
rest of this paper is organized as follows: In the next section we introduce defini-
tions and cite the theorems we need. Our main theorem is presented in section
3. We then end this note with a conclusion.

2 Prerequisites

Throughout the note, U is a fixed separable Banach space with dual U∗

and dual pairing 〈·, ·〉. We also fix a probability space (Ω,F ,P). For Γ ⊆ U∗,
let Z(Γ) := {π−1

a1,...,an(B) | n ∈ N, a1, . . . , an ∈ Γ, B ∈ B(Rn) }, where for
a1, . . . , an ∈ U∗, we define πa1,...,an : U → Rn by,
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πa1,...,an(u) := ( 〈u, a1〉, . . . , 〈u, an〉 ), u ∈ U , and write B(Rn) for the Borel
σ-algebra on Rn. Z(Γ) is an algebra. It is not a σ-algebra in general, but if Γ is
finite, then it is the smallest σ-algebra relative to which the elements of Γ are
measurable.

Definition 1. Let Γ be a subspace of U∗. A map µ : Z(Γ) → R+ is called
a cylindrical measure on Z(Γ) if µ(U) = 1 and for each finite set 4 ⊂ Γ, µ|Z(4)

is a measure.

Definition 2. Let V be a vector space. A function χ : V → C is said to
be pseudo-continuous if its restriction to any finite-dimensional subspace of V
is continuous.

If Γ is a subspace of U∗ and µ is a cylindrical measure on Z(Γ), then the

functional µ̂ : Γ → C defined by the formula µ̂(a) :=

∫
U

ei〈x,a〉µ(dx), where the

integral is the usual Lebesgue integral on the measure space (U,Z({a}), µ), is
called the characteristic functional of the cylindrical measure µ. The following
Proposition is taken from Vakhania [19].

Proposition 1. Let V be a set and Γ be a vector space of real valued func-
tions defined on V . For a cylindrical measure µ on Z(Γ), let µ̂ denote its char-
acteristic functional, then

(a) The map µ 7→ µ̂ establishes a one-to-one correspondence between the col-
lection of all cylindrical measures defined on Z(Γ) and the collection of
their characteristic functionals.

(b) The characteristic functional µ̂ : Γ → C of an arbitrary cylindrical mea-
sure on Z(Γ) is positive definite, pseudo-continuous and µ̂(0) = 1.

(c) If V is a linear space and Γ consists of linear functionals, then for any
positive-definite pseudocontinuous functional ϕ : Γ → C with ϕ(0) = 1,
there exists a cylindrical measure µ on Z(Γ) such that µ̂ = ϕ.

Proof. See [19] Proposition VI 3.2. QED

A cylindrical random variable X in U is a linear map X : U∗ → L0(Ω,F ,P).
If X is a cylindrical random variable in U , then the functional ϕX : U∗ → C
defined by the formula ϕX(a) := E(eiXa), a ∈ U∗, is called the characteristic
functional of X.

Remark 1. (i) The characteristic functional of a cylindrical random vari-
able X is positive definite pseudo-continuous and ϕX(0) = 1. By Proposi-
tion 1 c, there exists on Z(U∗) a cylindrical measure µ, such that µ̂ = ϕX .
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µ is called the cylindrical distribution of X. If µ is the cylindrical distri-
bution of X, then for n ∈ N and a1, . . . , an ∈ U∗ we have that µπa1,...,an

=
PXa1,...,Xan . Here µπa1,...,an

is defined by µπa1,...,an
(B) := µ( {u ∈ U |

πa1,...,an(u) ∈ B } ), B ∈ B(Rn). For more on this, see [19] section VI 3.2.

(ii) In the definition of a cylindrical random variable, it is not assumed to be
continuous. However, to avoid technicalities, we shall require that cylin-
drical random variables be continuous.

Definition 3. We shall say that two cylindrical random variables X and Y
in U are identically distributed if they have the same cylindrical distribution.

Remark 2. We shall henceforth write X
d
= Y to mean that the cylindrical

random variables X and Y are identically distributed according to Definition 3,
while X = Y means that for each fixed a ∈ U∗, Xa = Y a, i.e. Xa(ω) = Y a(ω)
for all ω ∈ Ω, i.e. Xa and Y a are equal as functions defined on Ω. We write
Xa = Y a almost surely to mean that the equality holds on a set of measure 1.

Remark 3. By Proposition 1 (a) and Remark 1 (i), cylindrical random
variables in U are identically distributed if and only if they have the same
characteristic functional.

We write C2 for the set of all cylindrical random variables X in U with
X(U∗) ⊆ G ( where G is a fixed, closed, separable subspace of L2(Ω,F ,P) ),
with the property that X is continuous with respect to the norm ‖ · ‖C2 in C2,
where ‖X‖C2 := sup{ ‖Xa‖L2 : a ∈ U∗, ‖a‖ ≤ 1 }, X ∈ C2. We endow C2 with
the topology generated by the norm, then (C2, ‖ · ‖C2) is a Banach space ( see
Mamporia [15] page 602 ).

The following Definition is taken from Riedle [18]:

Definition 4. A cylindrical measure µ on Z(U∗) is said to be a weakly
Gaussian cylindrical measure if its one dimensional projections µπa , a ∈ U∗ are
one dimensional Gaussian measures on B(R).

If µ is a weakly Gaussian cylindrical measure on Z(U∗) and (U∗)
′

is the
algebraic dual of U∗, then the operator Q : U∗ → (U∗)

′
defined by Q(a)(b) :=∫

U

〈x, a〉〈x, b〉µ(dx)−
∫
U

〈x, a〉µ(dx)

∫
U

〈x, b〉µ(dx), is called the covariance opera-

tor of µ.

Part (i) of the following Definition is also taken from Riedle [18]:

Definition 5. (i) A centered weakly Gaussian cylindrical measure µ on
Z(U∗) is said to be strongly Gaussian, if its covariance operator is U -
valued.

(ii) We say that a cylindrical random variable X : U∗ → L0(Ω,F ,P) is a
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weakly Gaussian cylindrical random variable, if its cylindrical distribution
is a weakly Gaussian cylindrical measure on Z(U∗) and that it is a strongly
Gaussian cylindrical random variable, if its cylindrical distribution is a
strongly Gaussian cylindrical measure on Z(U∗).

It therefore follows that X is a weakly Gaussian cylindrical random variable
if and only if for each a ∈ U∗, Xa is a one dimensional real Gaussian random
variable.

We shall use the following Theorem from [18].

Theorem 1. Let U be a separable Banach space with dual pairing 〈·, ·〉. If
µ is a weakly Gaussian cylindrical measure on Z(U∗), then its characteristic

functional is given by µ̂ : U∗ → C, µ̂(a) :=

∫
U

ei〈x,a〉dµ(x) = exp{ im(a) −

1

2
σ(a) }, where m(a) =

∫
U

〈x, a〉µ(dx) and σ(a) =

∫
U

〈x, a〉2µ(dx)− (m(a))2.

Conversely, if µ is a cylindrical measure on Z(U∗) with characteristic func-

tional of the form µ̂(a) := exp{ im(a)− 1

2
σ(a) }, where m : U∗ → R is a linear

functional and σ : U∗ → R+ is a quadratic form on U∗, then µ is a weakly
Gaussian cylindrical measure.

Proof. See [18] Theorem 2 page 194. QED

Remark 4. It follows that if X is a weakly Gaussian cylindrical random
variable, then its characteristic functional has the form

ϕX(a) := E(eiXa) = exp

{
imX(a)− 1

2
σX(a)

}
, (2.6)

where mX : U∗ → R is a linear functional and σX : U∗ → R+ is a quadratic form
on U∗ and if the characteristic functional of a cylindrical random variable is of
the form above , then it is a weakly Gaussian cylindrical random variable. We
also note that mX(a) is the expectation of Xa and σX(a) is the variance of Xa.
Since X is continuous, there exists a constant M such that E|Xa|2 ≤ M‖a‖2
for all a ∈ U∗. We can check that if µ is the cylindrical distribution of X, then∫
U

〈x, a〉2µ(dx) =

∫
R

z2PXa(dz) = E|Xa|2 ≤ M ‖ a ‖2 and |mX(a)| ≤
√
M‖a‖.

Therefore σX and mX in Theorem, 1 are continuous. For a cylindrical random
variable X in U and a ∈ U∗, we shall write Xa or X(a), whichever is more

convenient and define Λ(a) :=

{
0 : a = 0
a
‖a‖ : a 6= 0

. Note that ‖Λ(a)‖ ≤ 1 for all
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a ∈ U∗. We shall use indices to differentiate between the different norms we use
when there is danger of confusion.

Suppose that {Xn}n∈N is a sequence of cylindrical random variables in U
which converges in C2 to a cylindrical random variable X in U and a ∈ U∗, then
from the inequality ‖Xna−Xa‖L2 ≤ ‖a‖‖Xn−X‖C2 , it follows that Xa = (C2-

lim
n→∞

Xn )a = L2- lim
n→∞

(Xna). In particular, if the series
∞∑
k=0

Xk of cylindrical ran-

dom variables in U converges in C2 and a ∈ U∗, then

( ∞∑
k=0

Xk

)
a =

∞∑
k=0

(Xka),

where the convergence on the right of the equality is understood to be in L2

and the convergence of the series on the left of the equality is understood to be
in C2.

Definition 6. We say that a stochastic process {Xt}t∈T , T = N or Z with
values in a Banach space E is strictly stationary, if for all m ≥ 1, t1 < · · · <
tm∈ T and h ≥ 0 , (Xt1 , . . . , Xtm )

d
= (Xt1+h, . . . , Xtm+h ). The process is said

to be weakly stationary, if the following hold:

i. E‖Xt‖2 <∞ for all t ∈ T .

ii. E(Xt) = ν for all t ∈ T , where ν ∈ E is a constant.

iii. For all s, t, h ∈ T , h ≥ 0 and x∗, y∗ ∈ E∗, E( 〈Xs+h − µ, x∗〉〈Xt+h −
µ, y∗〉 ) = E( 〈Xs − µ, x∗〉〈Xt − µ, y∗〉 ).

Let X be a cylindrical random variable in U and a1, . . . , an ∈ U∗, then
following [2], we shall write X(a1, . . . , an) for the Rn -valued random vector
(Xa1, . . . , Xan ).

Definition 7. Let (Ω,F ,P) be a probability space andXt : U∗ → L2(Ω,F ,P),
t ∈ T , T = N or Z be a cylindrical process in U . We say that {Xt}t∈T is a
cylindrical strictly stationary process in U if for all m ≥ 1 and a1, . . . , am ∈
U∗, the process {Xt(a1, . . . , an)}t∈T is strictly stationary in Rm. We say that
{Xt}t∈T is a cylindrical weakly stationary process in U if for all m ≥ 1 and
a1, . . . , am ∈ U∗, {Xt(a1 · · · am)}t∈T is weakly stationary in Rm.

3 THE AUTOREGRESSIVE PROCESS

Definition 8. We say that a sequence {Zn}n∈Z of cylindrical random vari-
ables in U is weakly independent if for all n ∈ N, distinct indices i1, . . . , in ∈ Z
and ai1 , . . . , ain ∈ U∗, the random variables Zi1ai1 , . . . , Zinain are independent.

Remark 5. This definition of weak independence in Definition 8 is essen-
tially Definition 2.4 in [3] and the corresponding definition in [2] page 705. If
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X = {Xk}k∈T , T = N or Z, is a sequence of weakly Gaussian cylindrical random
variables with characteristic functionals E(eiXka) = exp{ imXk(a)− 1

2σXk(a) },
then we shall write σX(a) when σXk(a) does not depend on k. Same applies to
mXk .

Our main Theorem uses the following Lemmas:

Lemma 1. Let {Xn}n∈Z be a sequence of cylindrical random variables in
U , Xn : U∗ → G, which satisfies

Xn = AXn−1 + Zn, n ∈ Z, (3.7)

where {Zn}n∈Z is a given sequence of identically distributed, weakly independent,
weakly Gaussian cylindrical random variables in U , Zn : U∗ → G and A be a
bounded linear operator on U . Suppose that X0 ∈ C2, then:

(i) For each n ≥ 1, there exist weakly independent, cylindrical random vari-
ables ξn and ηn in U , such that Xn = ξn+ηn and ηn is a weakly Gaussian
cylindrical random variable in U .

(ii) ξn ∈ C2, ηn ∈ C2 and Xn ∈ C2 for all n ≥ 1.

(iii) If for each n ∈ Z and l ≥ 1 we define ηnl :=
l−1∑
k=0

Zn−k((A
∗)k(·)), then

ηl
d
= ηnl. In addition, for all l ≥ 1, we have that ηl = ηll.

Proof. For a linear operator A on the Banach space U and a cylindrical random
variable X in U, the cylindrical random variable AX is defined by (AX)a :=
X(A∗a), a ∈ U∗ ( see [2] page 720 ), hence for each n ≥ 1 and a ∈ U∗, Xn in (3.7)
satisfies Xna = X0((A∗)na) +Z1((A∗)n−1a) + · · ·+Zn−1(A∗a) +Zna. Define ξn
by ξn(·) := X0((A∗)n(·)) and ηn(·) := Z1((A∗)n−1(·))+· · ·+Zn−1(A∗(·))+Zn(·).
That ξn is a cylindrical random variable in U , follows from the fact that for all
k ≥ 0, k ∈ Z, (A∗)k : U∗ → U∗ is linear, X0 : U∗ → G is linear and since X0

and A are continuous, ξn is a linear and continuous map from U∗ into G.
We now show that ηn is a weakly Gaussian cylindrical random variable in

U . For a ∈ U∗ and k ∈ Z, Zk(a) is a real Gaussian random variable. Since
the sequence {Zn}n∈Z is a sequence of weakly independent cylindrical random
variables, ηn(a) is a sum of independent real Gaussian random variables and
hence is real Gaussian. ηn is a finite sum of linear maps and is thus linear. Also
ηn : U∗ → G since it is a finite sum of maps which map U∗ into G. ηn is also
continuous as a finite sum of continuous maps. If µ is the cylindrical distribution
of ηn, then for all a ∈ U∗, µπa = Pηna and hence µπa is one dimensional real
Gaussian. From these considerations, it follows that ηn is a weakly Gaussian
cylindrical random variable. It is obvious that {ξn, ηn} is weakly independent,
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since, if {Xn}n∈Z satisfies (3.7), then X0 depends on {Zk : k ≤ 0}, hence
{X0} ∪ {Zn}n≥1 is weakly independent.

(ii) From the proof of (i), ξn : U∗ → G, ηn : U∗ → G. We have that for

any a ∈ U∗, ‖ξna‖2L2
= E|X0((A∗)na)|2 = ‖(A∗)na‖2E

∣∣X0(Λ((A∗)na))
∣∣2, thus

‖ ξn ‖2C2
≤ ‖(A∗)n‖2‖X0‖2C2

< ∞, since A is bounded and X0 ∈ C2. Therefore

ξn ∈ C2. Further, ‖ηna‖2L2
≤ 2n

n∑
k=1

‖Zk((A∗)n−ka)‖2L2
. Since for each k, Zk is a

weakly Gaussian cylindrical random variable, it follows that for k ∈ { 1, . . . , n },
and by Remark 1 (ii) and Remark 4, ‖Zk((A∗)n−ka)‖2L2

= σZ((A∗)n−ka) +

(mZ((A∗)n−ka))2 ≤ 2M‖(A∗)n−ka‖2, where M < ∞ is a constant, mZ : U∗ →
R is linear and σZ : U∗ → R+ is a quadratic form.

Thus ‖ηna‖2L2
≤ 2n+1M

n∑
k=1

‖(A∗)n−k‖2‖a‖2. Therefore

‖ηn‖2C2
≤ 2n+1M

n∑
k=1

‖(A∗)n−k‖2 <∞. Since ηn is a cylindrical random variable

with values in G, it follows that ηn ∈ C2. Since ‖Xn‖2C2
≤ 2‖ξn‖2C2

+2‖ηn‖2C2
<∞

and by the assumptions of the Lemma, Xn is a cylindrical random variable with
values in G, we have that Xn ∈ C2.

(iii) That for each n ∈ Z and l ≥ 1, ηl
d
= ηnl follows by computing the charac-

teristic functionals. It is also clear that ηl = ηll for all l ≥ 1. QED

Lemma 2. Let {Xt}t∈T , T = N or Z be a sequence of weakly independent
and identically distributed cylindrical random variables in U , then for all m ≥ 1
and a1, . . . , am ∈ U∗, the sequence {Xt(a1, . . . , am)}t∈T is a sequence of i.i.d.
Rm-valued random vectors.

Proof. Let m ≥ 1, a1, . . . , am ∈ U∗, α := (α1, . . . , αm) ∈ Rm, then

E( e i〈Xt(a1,...,am),α〉 ) = E exp{ i
m∑
k=1

αkXtak } = E exp{ iXt(
m∑
k=1

αkak) }

= E exp{ iX1(
m∑
k=1

αkak) }. Therefore the joint distribution of Xt(a1, . . . , am) is

independent of t and hence {Xt(a1, . . . , am)}t∈T is identically distributed.

Let now n ≥ 1, m ≥ 1 and t1 < t2 < · · · < tn ∈ T , a1, . . . , am ∈ U∗ and
α1, . . . , αn be arbitrary Rm- vectors, αj := (αj1, . . . , αjm), then

E exp

{
i
n∑
j=1
〈Xtj (a1, . . . , am), αj〉

}
= E exp

{
i
n∑
j=1

m∑
k=1

Xtjakαjk

}
=

E exp

{
i
n∑
j=1

Xtj

(
m∑
k=1

akαjk

)}
=

n∏
j=1

E exp

{
iXtj

(
m∑
k=1

akαjk

)}
=
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n∏
j=1

E exp
{
i〈Xtj (a1, . . . , am) , αj〉

}
. Since the αj , s were arbitrary Rm-vectors,

the assertion follows from Kac’s theorem (see [1] Theorem 2.1). QED

Theorem 2. (i) Let the assumptions of Lemma 1 hold,
∞∑
k=0

‖(A∗)k‖ <∞

and Z1 be centered with ‖Z1‖C2 < ∞, then for each n ∈ Z, {ηnl}l≥1 con-
verges in (C2, ‖·‖C2) as l tends to infinity, to a weakly Gaussian cylindrical
random variable ηn in U , whose cylindrical distribution is independent of
n. Further, ηn has characteristic functional

ϕη(a) := exp

{
−1

2

∞∑
k=0

σZ((A∗)ka)

}
, where a 7→ exp

{
−1

2σZ(a)
}

is the

characteristic functional of Z1.

(ii) If for each n ∈ Z, we define Yn := lim
l→∞

ηnl, where the limit is taken in

(C2, ‖ · ‖C2), then

(1) Yn is well defined for all n ∈ Z, Yn ∈ C2 and for all a ∈ U∗, Yna =
(AYn−1)a+ Zna almost surely.

(2) If {Xn}n∈Z satisfies (3.7) and X0
d
= Y0, then Yn

d
= Xn for all n ∈ N.

(3) If {Xn}n∈Z satisfies (3.7) and X0 ∈ C2, then lim
n→∞

‖Xn − Yn‖C2 = 0.

(iii) The process {Yn}n∈Z is cylindrical weakly stationary.

(iv) If the cylindrical distribution of Z1 is strongly Gaussian, then the cylin-
drical distribution of Yn is strongly Gaussian for all n ∈ Z.

(v) {Yn}n∈Z is the unique cylindrical weakly stationary, centered, weakly Gaus-
sian cylindrical process, Yn ∈ C2 for all n, for which, for all a ∈ U∗, Yna =
(AYn−1)a+Zna almost surely, for all n ∈ Z, i.e. if {Wn}n∈Z is any other
cylindrical weakly stationary, centered, weakly Gaussian cylindrical pro-
cess, Wn ∈ C2 for all n, for which for all a ∈ U∗, Wna = (AWn−1)a+Zna
almost surely for all n ∈ Z, then for all a ∈ U∗, Wna = Yna almost surely,
for all n ∈ Z.

Proof. (i) We show that {ηnl}l≥1 converges in (C2, ‖ · ‖C2) as l tends to infinity.

From Lemma 1 (iii), for each fixed n ∈ Z and all l ≥ 1, ηl
d
= ηnl. Therefore

by Lemma 1 (ii), ηnl ∈ C2 for each fixed n ∈ Z and all l ≥ 1. We will now
show that {ηnl}l≥1 is a Cauchy sequence in (C2, ‖ ·‖C2). Since Z1 is centered, i.e.
E(Z1a) = 0 for all a ∈ U∗ and the cylindrical random variables Zk are weakly
independent and identically distributed, we have that for p ≥ l ≥ 1 and a ∈ U∗,



122 Felix Che Shu

‖ηnpa− ηnla‖2L2
=

∥∥∥∥ p−1∑
k=l

Zn−k((A
∗)ka)

∥∥∥∥2

=

∥∥∥∥ p−1∑
k=l

‖(A∗)ka‖Zn−k(Λ((A∗)ka))

∥∥∥∥2

=

E

(
p−1∑
k=l

‖(A∗)ka‖Zn−k(Λ((A∗)ka))

)2

=

p−1∑
k=l

‖(A∗)ka‖2E
(
Zn−k(Λ((A∗)ka))

)2 ≤ ‖Z1‖2C2

p−1∑
k=l

‖(A∗)ka‖2. Therefore

‖ηnpa− ηnla‖2L2
≤ ‖Z1‖2C2

p−1∑
k=l

‖(A∗)ka‖2 ≤ ‖Z1‖2C2
‖a‖2

p−1∑
k=l

‖(A∗)k‖2. (3.8)

From this, it follows that ‖ηnp − ηnl‖2C2
≤ ‖Z1‖2C2

p−1∑
k=l

‖(A∗)k‖2. Now, from the

assumption, we have that
∞∑
k=0

‖(A∗)k‖2 < ∞ and hence {ηnl}l≥1 is a Cauchy

sequence in (C2, ‖ · ‖C2). Since (C2, ‖ · ‖C2) is complete, it follows that {ηnl}l≥1

converges in (C2, ‖ · ‖C2) to some cylindrical random variable ηn ∈ C2 as l tends
to infinity.

We now show that ηn is a weakly Gaussian cylindrical random variable. For
a ∈ U∗ and l ≥ 1, we have that E|ηnla − ηna|2 ≤ ‖a‖2‖ηnl − ηn‖2C2

. Therefore
{ηnla}l≥1 converges to ηna in L2 as l tends to infinity. Since by Lemma 1 (i)
and (iii) {ηnla}l≥1 is a sequence of real Gaussian random variables, it follows
that ηna is a real Gaussian random variable. Since ηn is the limit of a sequence
of elements of C2 which is a Banach space, we have that it is an element of C2,
hence it is linear, continuous and sup{‖ηna‖ : ‖a‖ ≤ 1} <∞. We therefore have
that ηn is linear, continuous and ηna is real Gaussian for all a ∈ U∗. It thus
follows that ηn is a weakly Gaussian cylindrical random variable. It remains to
show that the cylindrical distribution of ηn is independent of n. To do this, we
compute the characteristic functional of ηn.

For the characteristic functional ϕηnl of ηnl, we have that for a ∈ U∗,

ϕηnl(a) = ϕηnla(1) = E ( exp {iηnla} ) = E exp

{
l−1∑
k=0

iZn−k((A
∗)ka)

}
=

l−1∏
k=0

E exp{iZn−k((A∗)ka)} = exp

{
−1

2

l−1∑
k=0

σZ((A∗)ka)

}
.

Since {ηnla} converges to ηna in L2, it follows that ϕηnla(1) converges to
ϕηna(1) = ϕηn(a) as l tends to infinity. Therefore

ϕηn(a) = exp{−1
2

∞∑
k=0

σZ((A∗)ka) }. If we show that the map ϕηn(·) is indeed

the characteristic functional of a weakly Gaussian cylindrical random variable,
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then it will follow from Proposition 1 (a), that it is the characteristic func-
tional of ηn. Further, it will also follow that the cylindrical distribution of ηn
is independent of n and by Theorem 1, that ηn is a weakly Gaussian cylin-

drical random variable. Note that the series
∞∑
k=0

σZ((A∗)ka) is convergent for

all a ∈ U∗. This follows from the following argument: From the assumption of

the theorem,
∞∑
k=0

‖(A∗)k‖ < ∞, thus there exists n0 such that for all n ≥ n0,

‖(A∗)k‖ < δ < 1 for any fixed 0 < δ < 1 chosen arbitrarily and hence for all

n ≥ n0, ‖(A∗)k‖2 ≤ ‖(A∗)k‖ < δ so that
∞∑

k=n0

‖(A∗)k‖2 ≤
∞∑

k=n0

‖(A∗)k‖ < ∞.

Also, by Remark 4, |σZ(a)| ≤ M‖a‖2 for some constant M and all a ∈ U∗.

Therefore
∞∑
k=0

|σZ((A∗)ka)| ≤
∞∑
k=0

M‖(A∗)k‖2‖a‖2 ≤M
∞∑
k=0

‖(A∗)k‖‖a‖2 <∞.

On U∗, define m(a) := 0 and σ(a) :=
∞∑
k=0

σZ((A∗)ka), then m is linear. Since

σZ is a quadratic form, if we define f(x, y) := 1
2 [σZ(x) + σZ(y) − σZ(x − y) ],

then f will be bilinear, so that for all k ≥ 0, (x, y) 7→ f((A∗)kx, (A∗)ky) is

bilinear and (x, y) 7→
l−1∑
k=0

f((A∗)kx, (A∗)ky) is bilinear for all l ≥ 1. Therefore

for all l ≥ 1, hl(x, y) :=

l−1∑
k=0

1

2
[σZ((A∗)kx) + σZ((A∗)ky) − σZ((A∗)k(x − y)) ]

is a bilinear function of (x, y). Since
∞∑
k=0

σZ((A∗)ka) < ∞ for all a ∈ U∗, it

follows that h(x, y) := lim
l→∞

hl(x, y) is well defined for all (x, y) ∈ U∗ × U∗ and

h defines a bilinear form. Thus σ(a) = h(a, a) defines a quadratic form; i.e.

σ(a) :=
∞∑
k=0

σZ((A∗)ka) defines a quadratic form on U∗. Therefore ϕη(a) :=

exp{−1
2

∞∑
k=0

σZ((A∗)ka) } is the characteristic functional of a weakly Gaussian

cylindrical measure.

(ii) (1) From (i), we have that for each n ∈ Z, Yn is well defined as a weakly
Gaussian cylindrical random variable which is the C2-limit of {ηnl}l≥1 as l tends

to infinity. By (3.8), for each a ∈ U∗,
∞∑
k=0

Zn−k((A
∗)ka) converges in L2. It holds

that EZn−k((A
∗)ka) = 0 for each a ∈ U∗. By Remark 4 and the fact that

{Zk}k∈Z is i.i.d., we also have that
∞∑
k=0

E[Zn−k((A
∗)ka)]2 =

∞∑
k=0

σZ((A∗)ka)) <
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∞. It therefore follows that
∞∑
k=0

Zn−k((A
∗)ka) converges almost surely for each

a ∈ U∗. We then have that for each a ∈ U∗, Yna =
∞∑
k=0

Zn−k((A
∗)ka) =

∞∑
k=1

Zn−k((A
∗)ka)+Zn(a) =

∞∑
k=0

Zn−k−1((A∗)k+1a)+Zna almost surely. We note

that Yn−1 is a cylindrical random variable and (AYn−1)a =
∞∑
k=0

Zn−1−k((A
∗)k+1a)

almost surely. Therefore Yna = (AYn−1)a+ Zna almost surely for all a ∈ U∗.

(ii) (2) We note first that for each a ∈ U∗ and k ∈ N, the series Y0((A∗)ka)

converges almost surely. By assumption, Y0
d
= X0. Since ηn=ηnn for all n ≥ 1,

X0 and ηn are weakly independent, and Y0 and ηnn are weakly independent, we

have that for each a ∈ U∗ and n ∈ N, X0((A∗)na) + ηna
d
= Y0((A∗)na) + ηnna.

By Lemma 1 (i), we have that for n ≥ 1, Xna = X0((A∗)na) + ηna and hence

for n ≥ 1, Xna
d
= Y0((A∗)na) + ηnna. Further, we have that for all a ∈ U∗,

Y0((A∗)na) + ηnna =

∞∑
k=0

Z−k((A
∗)n+ka) +

n−1∑
k=0

Zn−k((A
∗)ka)

=
∞∑
k=n

Zn−k((A
∗)ka) +

n−1∑
k=0

Zn−k((A
∗)ka)

=
∞∑
k=0

Zn−k((A
∗)ka) = Yna,

almost surely. It thus holds that Xn and Yn have the same characteristic func-

tional for each n and hence Xn
d
= Yn for all n ∈ N.

(ii) (3) Suppose that X0 ∈ C2. By (ii) (1), for all a ∈ U∗, Yna = Y0((A∗)na)+ηna
almost surely. Also Xna = X0((A∗)na)+ηna. It follows that on a set of measure
1 depending on a, |Xna − Yna|2 = |X0((A∗)na) + ηn − (Y0((A∗)na) − ηn|2 =
|X0((A∗)na)− Y0((A∗)na)|2. Therefore

‖Xna− Yna‖2 = E|Xna− Yna|2 = E|X0((A∗)na)− Y0((A∗)na)|2

= ‖X0((A∗)na)− Y0((A∗)na)‖2 ≤ ‖(A∗)n‖2‖X0 − Y0‖2C2
‖a‖2.

Hence ‖Xn−Yn‖C2 ≤ ‖(A∗)n‖‖X0−Y0‖C2 . Since
∞∑
k=0

‖(A∗)k‖ <∞, the assertion

follows since we also have that Y0 ∈ C2.
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(iii) Let n ∈ Z. For m ≥ 1, let a1, . . . , am ∈ U∗, then since
∞∑
k=0

Zn−k((A
∗)ka)

converges in L2 for all a ∈ U∗, we have that for some constant M < ∞,

E‖Yn(a1, . . . , am)‖2 =

m∑
j=1

E|Ynaj |2 =

m∑
j=1

E

∞∑
kl=0

Zn−k((A
∗)kaj)Zn−l((A

∗)laj) =

m∑
j=1

∞∑
kl=0

EZn−k((A
∗)kaj)Zn−l((A

∗)laj) =

m∑
j=1

∞∑
k=0

EZn−k((A
∗)kaj)

2 =

m∑
j=1

∞∑
k=0

σZ((A∗)kaj) ≤ M

m∑
j=1

‖aj‖2
∞∑
k=0

‖(A∗)k‖ < ∞. Also, for each n ∈ Z,

EYn(a1, · · · , am) = (EYna1, . . . ,EYnam) = 0 and lastly, if m ≥ 1, a1, . . . , am ∈
U∗, s, t, h ∈ Z, h ≥ 0, α, β ∈ Rm, α = (α1, . . . , αm) and β = (β1, . . . , βm), then

E〈Ys+h(a1, . . . , am), α〉〈Yt+h(a1, . . . , am), β〉 = E[

m∑
j=1

αjYs+haj ][

m∑
l=1

βlYt+hal] =

m∑
j,l=1

αjβlE(Ys+haj)(Yt+hal) =
m∑

j,l=1

αjβl

∞∑
n,k=0

EZs+h−k((A
∗)kaj)Zt+h−n((A∗)nal)

=
m∑

j,l=1

αjβl
∞∑

{ k,n|s−k=t−n }
EZs+h−k((A

∗)kaj)Zt+h−n((A∗)nal).

A similar argument shows that, E〈Ys(a1, . . . , am), α〉〈Yt(a1, . . . , am), β〉 =
m∑

j,l=1

αjβl
∞∑

{ k,n|s−k=t−n }
EZs−k((A

∗)kaj)Zt−n((A∗)nal). By Lemma 2, for a, b ∈

U∗, the joint distribution of Zm(a, b) := (Zma, Zmb) is independent of m. It
therefore follows that E

[
Zm((A∗)kaj)(Zm((A∗)nal)

]
is independent of m and

the proof is complete.

(iv) Suppose that the cylindrical distribution of Z1 is strongly Gaussian with
covariance operator Q, then σZ(a) = 〈Qa, a〉, where Q is a positive symmetric
Operator, Q : U∗ → U(also see [18] page 196).

Define Q̃a :=
∞∑
k=0

AkQ(Ak)∗a, a ∈ U∗, then obviously, Q̃ : U∗ → U and

‖Q̃‖ ≤ ‖Q‖
∞∑
k=0

‖Ak‖2 < ∞. Also, 〈Q̃a, a〉 =
∞∑
k=0

〈Q(Ak)∗a, (Ak)∗a〉 ≥ 0 since

Q is positive. Finally, if u∗, v∗ ∈ U∗, then using the symmetry of Q we get

〈Q̃u∗, v∗〉 = 〈
∞∑
k=0

AkQ(Ak)∗u∗, v∗〉 =

∞∑
k=0

〈Q(A∗)ku∗, (Ak)∗v∗〉

=

∞∑
k=0

〈Q(Ak)∗v∗, (Ak)∗u∗〉 = 〈
∞∑
k=0

AkQ(A∗)kv∗, u∗〉 = 〈Q̃v∗, u∗〉.
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Therefore Q̃ is positive, symmetric and Q̃ : U∗ → U . Also we have that

σY (a) =
∞∑
k=0

σZ((Ak)∗a) =
∞∑
k=0

〈Q(Ak)∗a, (Ak)∗a〉 = 〈
∞∑
k=0

AkQ(Ak)∗a, a〉

= 〈Q̃a, a〉.

Therefore the cylindrical distribution of Yn is strongly Gaussian.

(v) Suppose that {Wn}n∈Z is another cylindrical weakly stationary, centered,
weakly Gaussian cylindrical process such that Wn ∈ C2 for all n, Wna =
(AWn−1)a+Zna almost surely for all a ∈ U∗, then |Wna−Yna| = |(AWn−1)a−
(AYn−1)a| = |((Wn−1(A∗)a)− Yn−1((A∗)a)|, so that by iterating, for all k ≥ 1,
we have that

|Wna− Yna|2 = |Wn−k((A
∗)ka)− Yn−k((A∗)ka)|2

≤ ‖(A∗)ka‖2|Wn−k(Λ((A∗)ka))− Yn−k(Λ((A∗)ka))|2

≤ 2‖(A∗)k‖2‖a‖2|Wn−k(Λ((A∗)ka))|2

+ 2‖(A∗)k‖2‖a‖2|Yn−k(Λ((A∗)ka))|2.

Since {Wl}l∈Z is cylindrical weakly stationary, it follows that for fixed k and
each a ∈ U∗, {Wl(Λ((A∗)ka))}l∈Z is weakly stationary in R1.
Therefore E|Wl(Λ((A∗)ka))|2 is independent of l, hence
E|Wl(Λ((A∗)ka))|2 = E|W1(Λ((A∗)ka))|2 for all l ∈ Z. In particular,
E|Wn−k(Λ((A∗)ka))|2 = E|W1(Λ((A∗)ka))|2. Since W1 ∈ C2, a 7→ σW (a) is con-
tinuous and hence E|W1(Λ((A∗)ka))|2 = σW (Λ((A∗)ka)) ≤MW ‖Λ((A∗)ka)‖2=
MW for some constant MW . For arbitrary ε > 0,

P(‖(A∗)k‖|Wn−k(Λ((A∗)ka))| > ε) ≤ E‖(A∗)k‖2|Wn−k(Λ((A∗)ka))|2

ε2

≤ ‖(A∗)k‖2MW

ε2
.

Therefore

∞∑
k=0

P(‖(A∗)k‖|Wn−k(Λ((A∗)ka))| > ε) ≤
∞∑
k=0

‖(A∗)k‖2MW

ε2
< ∞ and

hence by Borel Cantelli’s Lemma, lim
k→∞

‖(A∗)k|‖Wn−k(Λ((A∗)ka))| = 0 almost

surely. A similar argument applied to {Yn}n∈Z shows that for all a ∈ U∗,
lim
k→∞

‖(A∗)k‖|Yn−k(Λ((A∗)ka))| = 0 almost surely. This shows that for all a ∈
U∗, Yna = Wna almost surely. QED

Example 1. Let U be a Hilbert space with inner product 〈·, ·〉. Let {Zk}
be a sequence of weakly independent standard Gaussian cylindrical random
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variables in U , then the characteristic functional of Z1 is given by ϕZ1(a) =

ϕZ1a(1) = E(eiZ1a) = exp{−1

2
‖a‖2 }. Therefore mZ(a) := E(Z1a) = 0 and

hence σZ(a) = E((Z1a)2) = ‖a‖2. Thus ‖Z1‖C2 = 1 < ∞, ‖Z1a‖ = ‖a‖, i.e.

Z1 is continuous. If the operaror A : U → U is such that
∞∑
k=0

‖(A∗)k‖ < ∞, for

example when ‖A‖ < 1 then Yn converges in C2 for all n ∈ Z and the assertions
of Theorem 2 hold.

4 Conclusion

We have considered the cylindrical auto-regressive process Xn = AXn−1 +
Zn, n ∈ Z in a seperable Banach space U , Zna ∈ G for all n and a ∈ U∗, where
G is a fixed, closed, seperable subspace of L2(Ω,F ,P), A is a bounded linear
operator on U and {Zn}n∈Z is a sequence of identically distributed, weakly inde-
pendent, weakly Gaussian cylindrical random variables in U and determined a
cylindrical process {Yn}n∈Z in U such that for all a ∈ U∗, Yna = (AYn−1)a+Zna
almost surely. We have shown that the cylindrical distribution of Yn is weakly
Gaussian and independent of n. Conditions are given for the cylindrical distribu-
tion of Yn to be strongly Gaussian. We have also determined the characteristic
functional of Yn and conditions under which {Yn}n∈Z is unique are given.

The results above are obtained under the condition that
∞∑
k=0

‖(A∗)k‖ < ∞

which ensures almost sure convergence of the series
∞∑
k=0

Zn−k((A
∗)a), a ∈ u∗.

This is weaker than the condition, lim
n→∞

1
n+1 ln ‖A0 · · ·An‖ < 0 almost surely,

required for the almost sure convergence of the series
∞∑
k=0

An · · ·An−k+1Bn−k in

[8], since the terms of the series in the latter case are required to tend to 0 at
an exponential rate.

Just as the results on Autoregressive processes in Banach spaces are essen-
tially an extension of results for the Euclidean space case, the results we have
obtained extend results on the general Banach space situation to the case of
cylindrical random variables. In addition it is very interesting that the concepts
of stationarity for Banach space random variables can be extended in the spirit
of cylindrical processes.

Acknowledgements. I would like to thank a careful and anonymous re-
viewer whose recommendations have greatly improved on the quality of this
paper.
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