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Abstract. In Hopf-Galois theory, every H-Hopf-Galois structure on a field extension K/k
gives rise to an injective map F from the set of k-sub-Hopf algebras of H into the intermediate
fields of K/k. Recent papers on the failure of the surjectivity of F reveal that there exist
many Hopf-Galois structures for which there are many more subfields than sub-Hopf algebras.
In this paper we survey and illustrate group-theoretical methods to determine H-Hopf-Galois
structures on finite separable extensions in the extreme situation when H has only two sub-
Hopf algebras. This corresponds to the case when the lack of surjectivity is at its extreme.
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1 Introduction

Let k be field. A Hopf algebraH over k is defined to be a k-bialgebra endowed
with a k-linear map S : H −→ H called the antipode so that denoting by ∇ the
multiplication, ∆ the comultiplication, η the unit and ε the counit, we have

∇ ◦ (idH ⊗ S) ◦∆ = η ◦ ε = ∇ ◦ (S ⊗ idH) ◦∆.

Let σ : H ⊗H −→ H ⊗H be the k-linear map defined by σ(x⊗ y) = y ⊗ x for
all x, y ∈ H. Then, H is said to be cocommutative if σ ◦∆ = ∆. Group algebras
over k are basic examples of cocommutative k-Hopf algebras. Indeed if G is a
group, then the group algebra k[G] is a cocommutative k-Hopf algebra with
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comultiplication given by ∆(g) = g ⊗ g, counit given by ε(g) = 1 and antipode
given by S(g) = g−1, for all g ∈ G. Given a Galois extension of fields K/k, the
Fundamental Theorem of Galois Theory (FTGT) states that there is a one-to-
one correspondence between the lattice of intermediate fields k ⊆ F ⊆ K and
the lattice of subgroups of G = Gal(K/k). This is the Galois correspondence.
It allows us to determine intermediate subfields of K from subgroups of G. So
if G is a group with prime order, then the only subfields are K and k. Hopf-
Galois theory is a generalization of Galois theory. Indeed if K/k is Galois with
Galois group G, then G operates linearly on K as automorphism group, and
this action extends to a k-algebra homomorphism µ : k[G] −→ Endk(K). Thus,
K/k is Galois with Galois group G if and only if (1, µ) : K⊗k k[G] −→ Endk(K)
is an isomorphism, where (1, µ) is given by

(1, µ)(s⊗ h)(t) = s(µ(h)(t)), for all s, t ∈ K,h ∈ k[G].

From this we say that a finite extension of fields K/k is Hopf-Galois (we also
say that K/k has a Hopf-Galois structure) if there exists a finite cocommutative
k-Hopf algebra H and a Hopf action µ : H −→ Endk(K) such that

(1, µ) : K ⊗k H −→ Endk(K) is an isomorphism.

Chase and Sweedler obtained a weak Galois correspondence for Hopf-Galois
extensions.

Theorem 4 ([4]). Let K/k be a finite Hopf-Galois extension with algebra
H and Hopf action µ : H −→ Endk(K). For a k-sub-Hopf algebra H ′ of H we
define

KH′ = {x ∈ K | µ(h)(x) = ε(h) · x for all h ∈ H ′},

where ε is the counit of H. Then, KH′ is a subfield of K, containing k, and the
map

F : {H ′ ⊂ H sub-Hopf algebra} −→ {Fields E | k ⊆ E ⊆ K}
H ′ 7−→ KH′

is injective and inclusion reversing.

Recent papers on the failure of the surjectivity of F reveal that pretty often
there are many more subfields than sub-Hopf algebras, see for instance [6], [5],
or [9]. We say that the Galois correspondence holds in its strong form for a Hopf-
Galois structure H on a field extension K/k, if the map F associated to H in
Theorem 4 is a bijection. It is known that the k-sub-Hopf algebras of a finite
group algebra k[G] are the group algebras k[G′] where G′ is a subgroup of G, see
for instance [9, Proposition 2.1]. Therefore, FTGT implies that any finite Galois
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extension K/k with Galois group G has a natural Hopf-Galois structure (defined
by the group algebra k[G]) whose Galois correspondence holds in its strong form.
In case G has prime order, k[G] has only two k-sub-Hopf algebras. Motivated by
this, we define a minimal Hopf-Galois structure on a field extension K/k to be a
structure given by a k-Hopf algebra H having exactly two k-sub-Hopf algebras;
we exclude the trivial case dimk(H) = 1.

This paper surveys and illustrates group-theoretical methods to determine
minimal Hopf-Galois structures on separable field extensions. In section 2 we
state a fundamental criterion characterizing these minimal structures. Then we
deduce, later in section 4, minimal Hopf-Galois structures on the so-called almost
classically Galois extensions introduced by Greither and Pareigis in [7]. Sections
3 and 5 are devoted to illustrations. We start with basic examples constructed
from simple groups, and counterexamples constructed from groups having a
nontrivial proper characteristic subgroup. In particular, we present a family of
radical extensions in characteristic zero having no Hopf-Galois structure. By
using characteristically simple groups, we prove that for any positive integer
n ≤ 11, except for n ∈ {6, 10}, there exists a number field K of degree n having
at least one minimal Hopf-Galois structure and whose Galois closure K̃ satisfies
n < [K̃ : Q] < 672. All these examples are separable field extensions having
either no minimal Hopf-Galois structure, or exactly one minimal structure, or
at least two minimal structures. We deduce interesting questions for future work.

2 Fundamental criterion

As previously mentioned, the Galois correspondence associated to an Hopf-
Galois structure is not surjective in general. Another difference between Galois
theory and Hopf-Galois theory is that one may have several Hopf-Galois struc-
tures on the same Galois extension while a Galois extension has only one Galois
group. Hopf-Galois theory was first introduced by Chase and Sweedler [4] in
1969 to study purely inseparable extensions. Then Greither and Pareigis [7]
developed in 1987 Hopf-Galois theory for separable extensions. Since the publi-
cation of [7], many works concerning Hopf-Galois theory have been published.
These works deal with interesting problems such as designing methods to deter-
mine the number of distinct Hopf-Galois structures on a given Galois extension,
finding ways of quantifying Hopf-Galois structures for which Galois correspon-
dence holds in its strong form, or finding ways of quantifying the failure of the
surjectivity of the Galois correspondence.

In this section we are interested in identifying minimal Hopf-Galois struc-
tures among the structures that can be achieved on a given separable field
extension. The starting point is the characterization of Hopf-Galois structures
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proposed by Greither and Pareigis.

Theorem 5 ([7], Theorem 2.1). Let K/k be a degree n separable extension
and K̃ its normal closure. Set G = Gal(K̃/k) and G′ = Gal(K̃/K). Then K
has a k-Hopf-Galois structure if, and only if, there exists a regular subgroup
N of Perm(G/G′) normalized by G, where G is identified as a subgroup of
Perm(G/G′) via the faithful action

λ : G // Perm(G/G′)

g � // (λg : xG′ 7→ gxG′).

Furthermore, the Hopf-Galois structure corresponding to a regular subgroup N
of Perm(G/G′) normalized by G is defined by

K̃[N ]G = {x ∈ K̃[N ] | σ(x) = x, ∀σ ∈ G}

where for x =
∑

τ∈N aττ ∈ K̃[N ] and σ ∈ G, we have

σ(x) =
∑
τ∈N

σ(aτ )λ(σ)τλ(σ)−1.

With the notation of Theorem 5, a Hopf-Galois structure on a separable field
extension K/k defined by the algebra K̃[N ]G is said to be of type N . Actually,
N and G/G′ have necessarily the same order, but there is no natural one-one
correspondence between them; in fact G/G′ is not even a group in general. We
recall that a subgroup N of Perm(G/G′) is said to be regular if the action
of N on G/G′ is transitive and the stabilizer of any point is trivial. By [7,
Theorem 4.1], we know that if such an N is also normalized by G and contained
in G then it is a normal complement of G′ in G. Theorem 5 says that regular
subgroups of Perm(G/G′) normalized by G are in one-to-one correspondence
with the Hopf-Galois structures on K/k. The following theorem specifies the
minimal Hopf-Galois structures inside this correspondence.

Theorem 6 (Fundamental criterion). Let K/k be a finite separable ex-
tension. Let K̃ be the normal closure of K/k. Set G = Gal(K̃/k) and G′ =
Gal(K̃/K). Then the minimal Hopf-Galois structures on K/k are defined by
the algebras K̃[N ]G for which N is a regular subgroup of Perm(G/G′) normal-
ized by G such that N has no proper nontrivial subgroup normalized by G. In
particular:

1. The number of minimal Hopf-Galois structures on K/k is greater than or
equal to the number of normal complements N of G′ in G such that N
admits no proper nontrivial subgroup U which is a normal subgroup of G.
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2. Assume that K/k has a Hopf-Galois structure defined by K̃[N ]G.

a. If N has a nontrivial proper characteristic subgroup (this is the case
when K/k is a Hopf-Galois extension of degree mp where p is a prime
number and p > m > 1), then this structure is not minimal.

b. If N has prime order, then the structure is minimal.

3. If K/k is a Galois extension whose Galois group is a simple group, then K/k
has only one minimal Hopf-Galois structure.

Proof. Since the Hopf algebras providing a Hopf Galois structure on K/k are
of the form K̃[N ]G, the assertion results from [9, Proposition 2.2].

1. This special case is an immediate consequence of [[7], Proposition 4.1].

2. a. Let N be a group of order mp where p is a prime number and p > m > 1.
Then the unique p-Sylow of N is a nontrivial proper characteristic sub-
group. So a Hopf-Galois extension of degree mp with p a prime number
such that p > m > 1 is a special case of the situation that we are in-
terested in. Assume now that N is a regular subgroup of Perm(G/G′)
normalized by G. So λ(x)Nλ(x)−1 ⊂ N for all x ∈ G, where λ is the
faithful action described in Theorem 5. Assume also that N possesses
at least one nontrivial proper characteristic subgroup U . Since G nor-
malizes N , the maps n 7→ λ(x)nλ(x)−1 are automorphisms of N . We
deduce that G also normalizes U . Hence k, K̃[U ]G and K̃[N ]G are dis-
tinct k-sub-Hopf algebras of K̃[N ]G by [9, Proposition 2.2].

b. In that case, N has no nontrivial proper subgroup. Therefore the only
k-sub-Hopf algebras of K̃[N ]G are k and K̃[N ]G itself.

3. Assume first that the Galois group G of K/k is an abelian simple group. This
means that G is a cyclic group with prime order. From the above item, we
deduce that the classical Hopf-Galois structure defined by the group algebra
k[G] is a minimal one. This is the only Hopf-Galois structure on K/k by
[1, Theorem 1]. On the other hand, assume that K/k is a Galois extension
whose Galois group G is a nonabelian simple group. By [2, Theorem 1.1],
there are exactly two Hopf-Galois structures on K/k. By [7, Theorem 5.3],
we know that one of these structures comes from a Hopf algebra H giving
rise to a bijective Galois correspondence between its k-sub-Hopf algebras and
intermediate subfields k ⊆ F ⊆ K which are normal over k. However, G is
a simple group, therefore the only subfields which are normal over k are k
itself and K. Thus, this Hopf-Galois structure is minimal. The other Hopf-
Galois structure is the classical one, and it is obviously not minimal, since G
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(nonabelian simple) does have nontrivial subgroups. That is, for nonabelian
simple G as well, we have only one minimal Hopf-Galois structure.

QED

Remark 1. Concerning item 3 of Theorem 6, we would like to point out
that one has precise information about the only two Hopf-Galois structures
[2, Theorem 1.1] defined on a Galois extension K/k with nonabelian simple
Galois group G. Indeed, one of them, the classical one, is given by the group
algebra H = k[G]. The other one (the first one to be considered in the last
paragraph) arises by taking N = λ(G). Hence the action of G on N amounts to
the conjugation action of G on itself. The k-Hopf algebra H ′ which results may
be constructed for any G, and as soon as G is not abelian, H ′ is not isomorphic
to H as a k-Hopf algebra.

3 Examples (part 1)

This section illustrates some of the minimal Hopf-Galois structures described
in Theorem 6.

3.1 Example 1

Let K/k be a separable extension of degree n ≤ 4 whose normal closure
K̃/k has Galois group G. Set G′ = Gal(K̃/K). Assume that G′ has a normal
complement in G and Perm(G/G′) is isomorphic to G. Then K/k has only one
minimal Hopf-Galois structure. Indeed:

1. Assume n = 2. Since any separable extension of degree 2 is Galois, our
assertion comes from the third item of Theorem 6.

2. Assume n = 3. Then G is isomorphic to the symmetric group S3. The algebra
H = K̃[C3]S3 defines the only minimal Hopf-Galois structure on K/k.

3. Assume n = 4. Then G is isomorphic to S4. Since:

a. The Klein four-group C2 × C2 is the unique normal subgroup of S4 of
order 4,

b. C2 is the unique proper nontrivial subgroup of the Klein four-group,

c. C2 is not a normal subgroup of S4,

we conclude that K̃[C2×C2]S4 defines the only minimal Hopf-Galois structure
on K/k.
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Remark 2. If K is a number field of degree 5 such that its normal closure
K̃/Q has Galois group S5, then K/Q has no Hopf Galois structure because S5

admits no normal subgroup of order 5. There is another argument to see this in
a more general way, see for instance [7, Proof of Counterexample 2.4].

3.2 Example 2

Hopf-Galois extensions without minimal structure.

1. Given an odd prime number p, it is easily seen that:

a. No dihedral extension of degree 2p can have a minimal Hopf-Galois
structure.

b. No Galois extension whose Galois group is equal to the holomorph of
the cyclic group Cp can have a minimal Hopf-Galois structure.

2. a. Let p be an odd prime and n a positive integer. Let k be a field of
characteristic zero. Assume K = k(w) with wp

n
= a ∈ k where a is such

that [K : k] = pn and let r denote the largest integer between 0 and n
such that K ∩ k(ζpr) = k(ζpr), where ζpr denotes a primitive pr-th root
of unity. It is shown in [10] that if r < n then there are pr Hopf-Galois
structures on K/k of type N , a cyclic group of order pn. So if n ≥ 2,
then none of these pr Hopf-Galois structures is a minimal one, since N
does have characteristic subgroups.

b. Assume that K/k is a cyclic extension of degree 2n for n ≥ 3. It is shown
in [3] that K/k admits 3·2n−2 Hopf Galois structures. Among them 2n−2

of cyclic type, 2n−2 of dihedral type and 2n−2 of generalized quaternion
type. In fact, any of these structures is associated to a subgroup N
of Perm(G/G′) which has at least one nontrivial proper characteristic
subgroup. Indeed:

� If N is a cyclic group, then any subgroup of N is a characteristic
subgroup. In the case when N has order 2n for n ≥ 3, there are at
least 2 nontrivial proper characteristic subgroups.

� If N = D2n is a dihedral group, then its unique normal subgroup
of order 2n−1 is a nontrivial proper characteristic subgroup.

� If N = Qn is a generalized quaternion group, then its unique normal
subgroup of order 2 is a nontrivial proper characteristic subgroup.
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4 Minimal Hopf-Galois structures on almost classi-
cally Galois extensions

As before, we consider a separable field extension K/k of degree n, and we
denote by K̃ its normal closure. Set G the Galois group of K̃/k and G′ the Galois
group of K̃/K. We previously determined in Theorem 6 a lower bound of the
number of minimal Hopf-Galois structures on K/k from normal complements
of G′ in G. By [7, Definition 4.2], the existence of a normal complement N
of G′ in G means that K/k is an almost classically Galois extension. This is
equivalent to saying that G is equal to the semidirect product G = N oϕ G′.
Note that any almost classically Galois extension has a Hopf-Galois structure.
That is why these extensions are sometimes called almost classically Hopf-Galois
extensions. If the normal complement N of G′ in G is a cyclic group, one says
that K/k is an almost cyclic extension, see [3]. Note that any Galois extension
K/k is obviously almost classically Galois with N = Gal(K/k) and G′ = {1}.
In this section we are interested in minimal Hopf-Galois structures on almost
classically Galois extensions K/k in the case when the Galois group Gal(K̃/k)
is a subgroup of the holomorph of a characteristically simple group, subject to
a certain condition. Recall that for any group N , the group Inn(N) of all inner
automorphisms of N is a normal subgroup of Aut(N).

Lemma 1. With the above notation, assume that K/k is an almost clas-
sically Galois extension such that G is a semidirect product N o H, where N
is any group and H is a subgroup of Aut(N) such that no nontrivial normal
subgroup U ⊂ N is fixed by all elements of H (this assumption is fulfilled in
particular if N is characteristically simple and Aut(N) = H · Inn(N)).

Then K̃[N ]G defines a minimal Hopf-Galois structure on K/k.

Proof. By [9, Proposition 2.2], the Hopf-Galois structure on K/k defined by
K̃[N ]G is minimal if N has no proper nontrivial subgroup U which is a normal
subgroup of G = N oϕ H. This means that there is no nontrivial subgroup U
of N such that

[ia ◦ b](U) = U, for all a ∈ N, b ∈ H,

where ia stands for the inner automorphism of N associated to a. Recall that U
is fixed by all ia if and only if it is normal. Therefore the argument is complete,
since our hypothesis on H is tailormade to ensure that no nontrivial normal
subgroup U of N is fixed by all b ∈ H. QED

Simple groups obviously form a proper subfamily of characteristically simple
groups. On the other hand, Galois extensions are almost classically Galois. We
thus obtain more minimal Hopf-Galois structures from the study made in this
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section than the one made in Section 2. Note that any characteristically simple
group is the direct sum of finitely many copies of some simple group (see for
instance [2, Lemma 3.2], [11, 3.3.15], or [12, Theorem 8.10]). The Klein four-
group is the smallest abelian characteristically simple group which is not simple.
Besides, the direct product A5 × A5 is the smallest non-abelian characteristi-
cally simple group which is not simple. We already described in Example 3.1
minimal Hopf-Galois structures by using the Klein four-group and subgroups of
symmetric groups. Lemma 1 allows us to construct even more examples.

5 Examples (part 2)

This section illustrates minimal Hopf-Galois structures stemming from Lemma
1 and Theorem 6.

5.1 Example 3

We are interested in minimal Hopf-Galois structures on some almost classi-
cally Galois extensions K/k of degree n such that n ≤ 9, or n = 2r and r ≥ 2.

1. Burnside’s theorem in Group Theory states that if G is a finite group of order
pαqβ where p and q are prime numbers, α and β are non-negative integers,
then G is solvable. On the other hand, Shafarevich showed that that every
finite solvable group is realizable over Q. Even if for n ≥ 5 the symmetric
group Sn and the alternating group An are not solvable, Hilbert proved that
for any positive integer n, the symmetric group Sn and the alternating group
An are realizable over Q. In addition, Sonn showed in [13] that every finite
group of order less than 672 is realizable over Q. Hence for any positive
integer n ≤ 11, except for n ∈ {6, 10}, there exists an almost classically
Galois extension K/Q of degree n having at least one minimal Hopf-Galois
structure and whose normal closure satisfies n ≤ [K̃ : Q] < 672. Indeed:

a. Assume that n is a prime number ≤ 11. Then the dihedral group Dn is
realizable over Q. Let K̃/Q be a dihedral extension with Galois group
Dn, and K be the fixed field of a chosen subgroup H ⊂ Dn of order 2.
Let N ⊂ Dn be the unique normal complement of H. Then H and N
satisfy the assumption of Lemma 1, and hence K is a number field of
degree n which has a minimal Hopf-Galois structure.

b. In case n ∈ {4, 8, 9}, the assertion will follow from subsection 5.2 below.

c. The exceptional cases when n ∈ {6, 10} are special cases of Theorem 6.
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2. It is shown in [3, Corollary 5.7] that any Hopf-Galois structure on an almost
cyclic extension of degree 2r with r ≥ 2 is of cyclic type. Hence, almost
cyclic extensions of degree 2r with r ≥ 2 cannot have any minimal Hopf-
Galois structures, since such extensions are defined by groups having at least
one nontrivial proper characteristic subgroup.

5.2 Example 4

This subsection concerns number fields of degree 4, 8, or 9.

1. Set N = Z/2Z× Z/2Z. This group N is characteristically simple. The auto-
morphism group of N is Aut(N) = GL2(F2), a non-abelian group of order 6.

Let H be the subgroup of Aut(N) generated by A =

(
1 1
1 0

)
. The matrix

A has exponent 3 and no eigenvalue in Z/2Z. Therefore no nontrivial sub-
group of N is H-invariant. One can also check that the semidirect product
N o H is isomorphic to the alternating group A4. Denote by K̃ a Galois
extension of Q with Galois group N o H, and let K be the fixed field of
H. Hence we may infer from Lemma 1 that K̃[N ]NoH defines a minimal
Hopf-Galois structure on K/Q. By similar arguments, any almost classically
Galois extension of degree 4 whose normal closure has Galois group equal to
Hol(N) has a minimal Hopf-Galois structure.

2. Set N = Z/2Z × Z/2Z × Z/2Z, which is again characteristically simple,
and denote by H the subgroup of Aut(N) = GL3(F2) generated by A = 1 1 1

1 1 0
1 0 0

. It is easily checked that H is cyclic of order 7, so the semidirect

product G := N oH has order 56. Moreover A has no eigenvalues in Z/2Z,
and this implies again that N has no nontrivial A-invariant subgroups. Let
K̃ be a Galois extension of Q with Galois group G, and K the fixed field of
H. By using Lemma 1 as in the preceding item, we see that K̃[N ]G defines a
minimal Hopf-Galois structure on K/Q. Also, any almost classically Galois
extension of degree 8 whose normal closure has Galois group equal to Hol(N)
admits at least one minimal Hopf-Galois structure.

3. Set N = Z/3Z×Z/3Z and denote by H the subgroup of Aut(N) = GL2(F3)

generated by the matrix

(
0 1
−1 0

)
, which has exponent 4. Consequently

the semidirect product G := N o H has order 36. Denote by K̃ a Galois
extension of Q with Galois group G, and let K be the fixed field of G′.
The same arguments as in the two previous items allow us to conclude that
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K̃[N ]G defines a minimal Hopf-Galois structure on K/Q, and that any almost
classically Galois extension of degree 9 whose normal closure has Galois group
equal to Hol(N) has at least one minimal Hopf-Galois structure.

5.3 Example 5

In this last subsection of the body of the paper, we discuss minimal structures
that arise from nonabelian characteristically simple groups.

We saw that the Galois group of the normal closure of an almost classi-
cally Galois extension is a semidirect product. So the study of minimal almost
classically Hop-Galois structures takes us to the study of normal subgroups of
semidirect products. In [14] Usenko described subgroups of semidirect products.
In particular, he characterized semidirect products G = N oϕG′ all of whose
proper normal subgroups are contained in the centralizer of N in G. We describe
here minimal Hopf-Galois structures arising from normal subgroups of special
semidirect products. Let K/k be an almost classically Galois extension. Assume
that the Galois group of its Galois closure K̃ is G = Hol(N), the holomorph of
a nonabelian group N .

Then G has at least two distinct normal subgroups which are isomorphic
to N . The first of them is the obvious one: Γ1 := {(g; 1) | g ∈ N}. We will
exhibit a nonobvious second such group. Recall that Inn(N) is the group of
inner automorphisms of N ; denote conjugation by g ∈ N by ig. We set

Γ2 := {(g−1; ig) | g ∈ N}

and claim it has the required properties. From the definition of Γ2, it is obvious
that the map f : N → Γ2 that sends g to (g−1; ig) is bijective. Moreover, a
direct calculation shows that

(g−1; ig)(h
−1; ih) = (h−1g−1; igh)

for all g, h ∈ N , and hence f is an isomorphism of groups. Likewise one can check
that Γ2 is normal in G. Indeed one can show that (g−1; ig) actually commutes
with (h; 1) for all g, h ∈ N , so N×1 centralizes Γ2. And if we conjugate (g−1; ig)
by (1; θ), then we get, by another small calculation, the element (θ(g)−1; iθ(g)),
which is again in Γ2; so 1 × Aut(N) normalizes Γ2. As N was assumed to be
nonabelian, Γ2 is obviously distinct from Γ1. Therefore, if N is a characteris-
tically simple group, then Γ1 and Γ2 define two distinct minimal Hopf-Galois
structures on K/k by Lemma 1 and [7, Theorem 3.1].
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6 Conclusion and Perspectives

This work presents Hopf-Galois structures defined by cocommutative Hopf
algebras H on separable extensions in the extreme situation when H has only
two sub-Hopf algebras. We first characterized these minimal structures in Theo-
rem 6. Then we exhibited in Lemma 1 a special class of cases of almost classically
Galois extensions; their normal closures have a Galois group G which is a spe-
cific type of subgroup of the holomorph of a characteristically simple group.
We provided many illustrations of these two statements, actually giving exam-
ples constructed from characteristically simple groups, and also counterexamples
constructed from groups having a nontrivial proper characteristic subgroup. The
resulting separable field extensions have either no minimal Hopf-Galois struc-
ture, or exactly one minimal structure, or at least two minimal structures.

An interesting problem might be to determine an upper bound of the num-
ber of minimal Hopf-Galois structures on a degree n extension K/k (separable
or not) according to n, in the case when the Galois group of the normal closure
K̃/k is equal to the holomorph of a characteristically simple group N . From
classification of characteristically simple groups, one might also start by com-
puting upper bounds of minimal Hopf-Galois structures of families of almost
classically Galois extensions. Then one would be able to determine the maximal
number of minimal Hopf-Galois structures which can be defined on a given al-
most classically Galois extension K/k such that Gal(K̃/k) = Hol(N), according
to the size of N .
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