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1 Introduction

In global coordinates (v, u, x, y) = (x1, x2, x3, x4), Siklos metrics are de-
scribed as the family of Lorentzian metrics of the form

g = − 3

Λx2
3

(
2dx1dx2 +Hdx2

2 + dx2
3 + dx2

4

)
, (1.1)

where H = H(x2, x3, x4) is an arbitrary smooth function (see [24],[23]). These
metrics are of Petrov type N , and yield exact solutions to Einstein’s field equa-
tions with an Einstein-Maxwell source, with a cosmological constant Λ < 0.
All of them admit a null non-twisting Killing field. For several subclasses of
(1.1), additional Killing vector fields appear. In particular, several homogeneous
subclasses of Siklos spacetimes exist [24]. These metrics have been intensively
studied. We may refer to [23],[20],[21],[9]-[11],[15] for several results about these
spacetimes.

A Ricci soliton is a pseudo-Riemannian manifold (M, g), together with some
smooth tangent vector field X and a real constant λ, such that

LXg + % = λg, (1.2)

with LX and % respectively denoting the Lie derivative in the direction of X
and the Ricci tensor. The Ricci soliton is called either shrinking, steady or

iWork partially supported by funds of the University of Salento and INDAM (GNSAGA)
http://siba-ese.unisalento.it/ © 2021 Università del Salento
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expanding, depending on whether λ > 0, λ = 0 or λ < 0. An Einstein manifold
(M, g), together with a Killing vector field X, yields a trivial solution to the
Ricci soliton equation. References [1]-[14],[22] provide several examples of study
of Ricci solitons in the framework of pseudo-Riemannian (and in particular,
Lorentzian) geometry.

In the general context of investigation of the Ricci soliton equation, metrics
with a higher degree of symmetry, and in particular homogeneous examples,
play a special role. It may be readily observed that if (M, g) and X satisfy the
Ricci soliton equation (1.2), then the same is true for the same real constant λ
substituting X by X + Y , where Y denotes any Killing vector field on M . This
simple observation gives more freedom in the research for solutions of (1.2) in
presence of additional symmetries of (M, g).

Moreover, it is worth to emphasize the fact that homogeneous Riemannian
Ricci solitons (M = G/H, g) are necessarily algebraic ([18],[19]) and so, deter-
mined by suitable derivations of the Lie algebra g of the transitive Lie group
G. On the other hand, algebraic Ricci solitons do not exhaust the homogeneous
solutions of (1.2) in pseudo-Riemannian settings (see for example [8],[14]).

With respect to a system of local coordinates, the Ricci soliton equation
translates into an overdetermined system of nonlinear second order PDEs, which
is in general very difficult to solve. With regard to homogeneous Siklos metrics,
we started investigating the solutions to the Ricci soliton equation (1.2) in [9],
solving it completely for a well known subclass. Further contributions to the
study of homogeneous Siklos metrics giving rise to Ricci solitons, were obtained
in [10] and [11]. The aim of this paper is to treat the remaining homogeneous
Siklos metrics, determining for them all solutions of (1.2).

We will also show that such solutions are higly nontrivial, because they are
not gradient Ricci solitons. A gradient Ricci soliton satisfies (1.2) for some vector
field X = gradg(f), where f is a smooth function. The existence of a gradient
Ricci soliton usually imposes some very strong restrictions on the geometry of
the manifold.

The paper is organized in the following way. In Section 2 we recall some
general information about the curvature of Siklos metrics and the classification
of the homogeneous examples. In Section 3 we shall determine when homoge-
neous Siklos metrics, not investigated in previous works, are Ricci solitons and
we prove that the solutions are not of gradient type. Calculations have been
checked using the software Maple 16©.
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2 On the geometry of Siklos metrics

We briefly report the essential information concerning the Levi-Civita con-
nection and curvature of Siklos metrics, as deduced in [23] and [9]. With respect
to the global coordinates (x1, x2, x3, x4) used in (1.1), the Levi-Civita connec-
tion ∇ of g is completely determined by the following possibly non-vanishing
components:

∇∂1∂2 = 1
x3
∂3,

∇∂1∂3 = − 1
x3
∂1,

∇∂2∂2 = 1
2(∂2H)∂1 + 1

2x3
(2H − x3∂3H)∂3 − 1

2(∂4H)∂4,

∇∂2∂3 = 1
2(∂3H)∂1 − 1

x3
∂2,

∇∂2∂4 = 1
2(∂4H)∂1,

∇∂3∂3 = − 1
x3
∂3,

∇∂3∂4 = − 1
x3
∂4,

∇∂4∂4 = 1
x3
∂3,

(2.1)

where ∂i := ∂
∂i

are coordinate vector fields. We already observed in [9] that
Siklos metrics do not admit any parallel vector field. In particular, they are not
locally reducible.

The Riemann-Christoffel curvature tensorR(X,Y )Z = [∇X ,∇Y ]Z−∇[X,Y ]Z
of g is completely determined by the following possibly non-vanishing compo-
nents:

R1212 = − 3

Λx4
3

, R1323 = 3

Λx4
3

,

R1424 = 3

Λx4
3

, R2323 =
3(2H−x3(∂3H)+x2

3(∂2
33H))

2Λx4
3

,

R2324 =
3(∂2

34H)
2Λx2

3

, R2424 =
3(2H−x3(∂3H)+x2

3(∂2
44H))

2Λx4
3

,

R3434 = − 3

Λx4
3

,

(2.2)

where Rijkl = g(∂i, R(∂k, ∂l)∂j). In terms of its components with respect to
{∂i}, the Ricci tensor of g is determined by the matrix

% =


0 −3x−2

3 0 0

−3x−2
3 −6H−2x3(∂3H)+x2

3(∂2
33H+∂2

44H)
2x2

3
0 0

0 0 −3x−2
3 0

0 0 0 −3x−2
3

 (2.3)
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and the Ricci operator Ric, which is defined by %(X,Y ) = g(Ric(X), Y ), is
determined by

Ric =


Λ −1

6Λx3

{
2(∂3H)− x3

(
∂2

33H + ∂2
44H

)}
0 0

0 Λ 0 0

0 0 Λ 0

0 0 0 Λ

 . (2.4)

The scalar curvature of a Siklos metric is τ = 4Λ. Einstein and locally confor-
mally flat Siklos metrics are characterized in the following propositions.

Proposition 1 ([24],[23],[9]). For an arbitrary Siklos metric g, as described
in (1.1), the following conditions are equivalent:

(i) g is Einstein. More precisely, % = Λg;

(ii) g is Ricci-parallel (that is, ∇% = 0);

(iii) the defining function H = H(x2, x3, x4) satisfies the PDE

2

x3
(∂3H)− ∂2

33H − ∂2
44H = 0. (2.5)

Proposition 2 ([10]). A Siklos metric g, as described in (1.1), is locally
conformally flat if and only if the defining function H = H(x2, x3, x4) satisfies
the system of PDEs {

∂2
33H − ∂2

44H = 0,

∂2
34H = 0,

(2.6)

that is, when H is explicitly given by

H(x2, x3, x4) =
1

2
T (x2)

(
x2

3 + x2
4

)
+ L(x2)x3 +M(x2)x4 +N(x2), (2.7)

where T, L,M,N are arbitrary smooth functions.

As we already recalled in the Introduction, Siklos [24] completely classified
metrics of the form (1.1) admitting some additional vector fields. Homogeneous
Siklos metrics correspond to cases admitting at least four linearly independent
Killing vector fields. They form five subclasses I),. . . ,V), and also include as
a special case the homogeneous Siklos metrics isometric to the anti-de Sitter
spacetime, which, being Einstein, are trivial cases for the actual investigation.

For each of subclasses I),. . . ,V), we report below the special form of the
defining function H, using the notation adopted in this paper for the global
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coordinates and the gravitational constant. Following [24], A(xi) will denote an
arbitrary smooth function of variables xi, while we shall use Aα(xi) to denote
a homogeneous function of degree α of the specified variables.

I) H = A−2(x3, x4).

II) H = A(x3).

III) H = A(x2)x2
3.

IV) H = x2β−2
2 A(xβ2x3).

V) H = ±xα3 .

Ricci solitons have already been completely determined in previous works for
cases from II) to V). In fact, the main result of [9] classified Ricci solitons in
the class V).

Theorem 1 ([9]). All homogeneous Siklos metrics defined by H = ±xα3 , are
solutions to the Ricci soliton equation. These Ricci solitons are not gradient.

Moreover, the following result holds.

Theorem 2 ([11]). Let g denote an arbitrary Siklos metric of the form (1.1)
with defining function H = F (x2, x3)+G(x2, x4), for arbitrary smooth functions
F and G. Then, g is a Ricci soliton if and only if H takes one of the following
forms:

(i) H(x2, x3, x4) = P (x2)x
3Λ−6α+

√
9Λ2+12Λα+36α2

2Λ
3

+Q(x2)x
3Λ−6α−

√
9Λ2+12Λα+36α2

2Λ
3

+1
2 T (x2)

(
x2

3 + x2
4

)
+M(x2)x4

+ 1
2α

(
2A′1(x2) +M(x2)A4(x2)

)
,

where P,Q, T,M,A1 are some arbitrary smooth functions, α 6= 0 is a real con-
stant and A4 satisfies

2A′′4(x2)− T (x2)A4(x2) + αM(x2) = 0. (2.8)

(ii) H(x2, x3, x4) = 1
3 S(x2)x3

3 + 1
2 T (x2)

(
x2

3 + x2
4

)
+2 ln(x3)

Λ

(
2A′1(x2) +M(x2)A4(x2)

)
+M(x2)x4 +N(x2),

where S, T,M,N,A1 are some arbitrary smooth functions and A4 satisfies equa-
tion (2.8) with α = 0.
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As proved in [11, Proposition 3.2], with the obvious exception of the trivial
Einstein cases, the above Ricci solitons are not gradient.

We may observe that homogeneous Siklos metrics within the classes II), III)
and IV) are defined by a function H which is a special case of H = F (x2, x3) +
G(x2, x4). Therefore, comparing the results of Theorem 2 with the defining
function H of cases II)-IV), we get the following (see also [11, Section 4]).

Corollary 1. A) A homogeneous Siklos metric in class II), i.e., defined by
H = A(x3), is a solution to the Ricci soliton equation if and only if H is of the
form either

(i) H = A(x3) = Px
3Λ−6α+

√
9Λ2+12Λα+36α2

2Λ
3 +Qx

3Λ−6α−
√

9Λ2+12Λα+36α2

2Λ
3 + 1

αC,

where P,Q,C and α 6= 0 are real constants; or

(ii) H = A(x3) =
1

3
Sx3

3 +
C

Λ
ln(x3) +N,

where S,C,N are real constants.

B) Homogeneous Siklos metrics in class III), i.e., defined by H =
A(x2)x2

3, are not solutions to the Ricci soliton equation (except in the trivial
case A = 0).

C) A homogeneous Siklos metric in class IV), i.e., defined by H =

x2β−2
2 A(xβ2x3), is a solution to the Ricci soliton equation if and only if β = 0

and H is of the form either

(i) H(x2, x3, x4) = Px−2
2 x

3Λ−6α+
√

9Λ2+12Λα+36α2

2Λ
3

+Qx−2
2 x

3Λ−6α−
√

9Λ2+12Λα+36α2

2Λ
3 + 1

αCx
−2
2 ,

where P,Q,C are real constants and α = −1
3Λ; or

(ii) H(x2, x3, x4) =
1

3
Sx−2

2 x3
3 +

C

Λ
x−2

2 ln(x3) +Nx−2
2 ,

where S,C,N are some real constants.

In the next section we shall consider the remaining case I), so achieving the
complete classification of homogeneous Siklos metrics which are Ricci solitons.

3 Ricci soliton Siklos metrics

We again refer to the system of global coordinates (x1, x2, x3, x4) used in (1.1)
to describe the whole class of Siklos metrics. Let X = Xi∂i be an arbitrary
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vector field, where Xi = Xi(x1, x2, x3, x4), i = 1, . . . , 4, are smooth func-
tions. The Lie derivative LXg is completely determined by the components
(LXg)ij = (LXg)(∂i, ∂j), i ≤ j = 1, . . . , 4, and can be calculated starting from
(2.1) (see also [9]). Explicitly, we have:



(LXg)11 = − 6
Λx2

3
∂1X2,

(LXg)12 = − 3
Λx3

3
{x3∂1X1 + x3H∂1X2 + x3∂2X2 − 2X3} ,

(LXg)13 = − 3
Λx2

3
{∂3X2 + ∂1X3} ,

(LXg)14 = − 3
Λx2

3
{∂4X2 + ∂1X4} ,

(LXg)22 = − 3
Λx3

3
{2x3∂2X1 + x3∂2HX2 + 2x3H ∂2X2 − 2HX3

+x3∂3HX3 + x3∂4HX4} ,

(LXg)23 = − 3
Λx2

3
{∂3X1 +H ∂3X2 + ∂2X3} ,

(LXg)24 = − 3
Λx2

3
{∂4X1 +H ∂4X2 + ∂2X4} ,

(LXg)33 = − 6
Λx3

3
{x3∂3X3 −X3} ,

(LXg)34 = − 3
Λx2

3
{∂4X3 + ∂3X4} ,

(LXg)44 = − 6
Λx3

3
{x3∂4X4 −X3} .

(3.1)

Using the components of LXg and the ones of the metric tensor g and the Ricci
tensor %, the Ricci soliton equation (1.2) is expressed by the following system
of ten PDEs for the components Xi of vector field X:
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∂1X2 = 0,

x3∂1X1 + x3H∂1X2 + x3∂2X2 − 2X3 + (Λ− λ)x3 = 0,

∂3X2 + ∂1X3 = 0,

∂4X2 + ∂1X4 = 0,

12x3∂2X1 + 6x3∂2HX2 + 12x3H ∂2X2 − 12HX3 + 6x3∂3HX3

+6x3∂4HX4 − 2Λx2
3∂3H + Λx3

3(∂2
33H + ∂2

44H) + 6(Λ− λ)x3H = 0,

∂3X1 +H ∂3X2 + ∂2X3 = 0,

∂4X1 +H ∂4X2 + ∂2X4 = 0,

2x3∂3X3 − 2X3 + (Λ− λ)x3 = 0,

∂4X3 + ∂3X4 = 0,

2x3∂4X4 − 2X3 + (Λ− λ)x3 = 0.

(3.2)

One then proceeds integrating equations in (3.2) one by one, starting from the
simpler ones. As already observed in [11], it is possible to integrate all but two
equations (namely, the fifth and the seventh) in the above system (3.2) in full
generality, without any restriction on the defining function H, obtaining that
necessarily λ = Λ < 0 (whence, a Ricci soliton is necessarily expanding) and
the general form of the components Xi, in order to satisfy all equations in (3.2)
but the fifth and the seventh, is given by:



X1 = −2b2x
2
1 + x1 (2B3(x2)−A′2(x2)−D′2(x2)) + x1x4C

′
2(x2)

−1
2x

2
3x4C

′′
2 (x2)− 1

2x
2
3B
′
3(x2)− 2b2

∫
(x3H) dx3 +G1(x2, x4),

X2 = b2(x2
3 + x2

4) + x4C2(x2) +A2(x2) +D2(x2),

X3 = −2b2x1x3 + x3x4C
′
2(x2) + x3B3(x2),

X4 = −2b2x1x4 − x1C2(x2)− 1
2x

2
3C
′
2(x2) + 1

2x
2
4C
′
2(x2)

+x4B3(x2) +A4(x2),
(3.3)

where G1, A2, C2, D2, B3, A4 are arbitrary smooth functions and b2 is a real
constant.

We shall now specialize our study to the remaining homogeneous case I).
Thus, we assume that H = A−2(x3, x4), that is, H is a homogeneous function
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of degree −2 of variables x3, x4. Explicitly, we have

H = k1x
−2
3 + k2x

−1
3 x−1

4 + k3x
−2
4 , (3.4)

for some real constants k1, k2, k3. We substitute from (3.3) and (3.4) into the
seventh equation of (3.2) and differentiate it three times by x3, obtaining

2C ′′2 (x2)x3x
3
4 − b2(k2x4 + 4k3x3) = 0,

which must hold for all values of x3, x4. Therefore, the above equation necessarily
yields C(x2) = u2x2 + v2 for some real constants u2, v2, and either b2 = 0,
or k2 = k3 = 0. We checked both possibilities: it turns out that assuming
k2 = k3 = 0 we also necessarily get b2 = 0 from the remaining equations, and
conversely. We report below the details for the more general case for the defining
function H, that is, we assume here b2 = 0 without restrictions on H, the other
case (setting k2 = k3 = 0) leads exactly to the same result.

Substituting C(x2) = u2x2 + v2 and b2 = 0, the seventh equation of (3.2) is
now equivalent to the following equation, written down as a polynomial in the
variable x3:(

∂4G1(x2, x4)x2
4 +B′3(x2)x3

4 +A′4(x2)x2
4 + k3u2x2 + k3v2

)
x2

3

+k2

(
u2x2x4 + v2x4

)
x3 + k1

(
u2x2x

2
4 + v2x

2
4

)
= 0.

The above equation must hold for all values of x3. So, it yields either k1 = k2 = 0,
or u2 = v2 = 0. Straigthforward calculations show that the first case eventually
leads to the trivial solution H = 0. Thus, we continue with the case u2 = v2 = 0,
whence the above equation reduces to

∂4G1(x2, x4) + x4B
′
3(x2) +A′4(x2) = 0,

whose general integral is given by

G1(x2, x4) = −1

2
x2

4B
′
3(x2)− x4A

′
4(x2) +A1(x2), (3.5)

for an arbitrary smooth function A1. We are now left with the fifth equation
of (3.2), which we write down as a polynomial equation in the variable x1, of
the form

6
Λx2

3

(
A′′2(x2) +D′′2(x2)− 2B′3(x2)

)
x1 +R(x2, x3, x4) = 0,

for some suitable smooth function R independent of x1. As the above equation
must hold for all values of x1, from the vanishing of the coefficient of x1, namely,

2B′3(x2)−A′′2(x2)−B′′2 (x2) = 0,
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by integration we get

B3 (x2) =
1

2
A′2(x2) +

1

2
D′2(x2) + u3, (3.6)

where u3 is a real constant. The fifth equation of (3.2) now reduces to the re-
maining condition R(x2, x3, x4) = 0, which we simplify taking into account of
(3.6) and rewrite as a polynomial in the variable x3, with coefficients indepen-
dent of x3. Explicitly, we have:

3
2Λx4

4

(
(A′′′2 (x2) +D′′′2 (x2))x4

4 − 6Λk3

)
x4

3 − k2

x3
4
x3

3

+ 3
2Λx3

4

(
(A′′′2 (x2) +D′′′2 (x2))x4

5 + 4A′′4(x2)x4
4

−4A′1(x2)x3
4 + 8u3k3x4 + 4k3A4(x2)

)
x2

3

+ k2

Λx2
4

(
12u3x4 − 2Λx4 + 3A4(x2)

)
x3 + k1

Λ

(
12u3 − 5Λ

)
= 0,

(3.7)

for all values of x3, so that all coefficients must vanish. In particular, setting
equal to zero the coefficients of x3

3 and x4
3 in (3.7), we get k2 = 0 and(

A′′′2 (x2) +D′′′2 (x2)
)
x4

4 − 6Λk3 = 0,

which must vanish for all values of x4, so that k3 = 0 and A′′′2 +D′′′2 = 0, whence,

D2(x2) = −A2(x2) +
1

2
r2x

2
2 + s2x2 + t2,

for some real constants r2, s2, t2. Observe that now necessarily k1 6= 0, otherwise
H = 0 and we get a trivial solution corresponding to the anti-de Sitter space.
Hence, again by (3.7), since k1(12u3 − 5Λ) = 0, we necessarily get u3 = 5

12Λ.
Finally, (3.7) now reduces to

−A′′4(x2)x4 +A′1(x2) = 0,

for all values of x4, and by integration we get

A1(x2) = a1, A4(x2) = a4x2 + b4,

for some real constants a1, a4, b4.
All equations of system (3.2) are now satisfied. We get the explicit descrip-

tion of the components Xi of vector field X with respect to {∂i}, simply substi-
tuting all the previous formulas into (3.3). Explicitly, we find

X1 = 5
6Λx1 − 1

4r2(x2
3 + x2

4)− a4x4 + a1,

X2 = 1
2r2x

2
2 + s2x2 + t2,

X3 = 1
2(r2x2 + s2)x3 + 5

12Λx3,

X4 = a4x2 + 1
2(r2x2 + s2)x4 + 5

12Λx4 + b4.

(3.8)
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In order to check the above conclusions, we computed (LXg)ij and Λgij − %ij
for all indices i, j = 1, . . . , 4. Using (1.1), (2.3), (3.1), (3.4) and (3.8) we obtain

(LXg)22 = 5k1x
−4
3 = Λg22 − %22,

(LXg)ij = 0 = Λgij − %ij in the other cases,

so that equation (1.2) holds with λ = Λ. It is easy to check from Propositions 1
and 2 that, as k1 6= 0, these examples are neither Einstein nor conformally flat.

We shall now prove that the ones described above are not gradient Ricci
solitons. In fact, suppose that this Ricci soliton is gradient. Then, there exists
some smooth function f = f(x1, x2, x3, x4), such that X = gradg(f).

We use (1.1) to determine the inverse matrix g−1 = (gij) of the matrix
describing the metric tensor g in coordinates (x1, x2, x3, x4). We then use it to
compute gradg(f) =

∑
i,j g

ij ∂f
∂xi
∂i. We obtain that X = Xi∂i = gradg(f), where

Xi are given by (3.8), if and only if f is a solution of the following system of 4
PDEs:

1
3Λk1∂1f − 1

3Λx2
3∂2f = 5

6Λx1 − 1
4r2(x2

3 + x2
4)− a4x4 + a1,

−1
3Λx2

3∂1f = 1
2r2x

2
2 + s2x2 + t2,

−1
3Λx2

3∂3f = 1
2(r2x2 + s2)x3 + 5

12Λx3,

−1
3Λx2

3∂4f = a4x2 + 1
2(r2x2 + s2)x4 + 5

12Λx4 + b4.

(3.9)

Integrating the last equation in (3.9) we get

f = − 1
Λx2

3

(
5
8Λx2

4 + 3
4(r2x2 + s2)x2

4 + 3(a4x2 + b4)x4

)
+ p(x1, x2, x3), (3.10)

for some smooth function p. We substitute from (3.10) into the second equation
of (3.9) and integrate. We find

p(x1, x2, x3) = − 3x1

2Λx2
3

(
(r2x2 + 2s2)x2 + 2t2

)
+ q(x2, x3),

where q is a smooth function. Next, we substitute the above expressions into
the third equation of (3.9). Writing it as a polynomial equation in the variable
x4, we have

(6r2x2 + 6s2 + 5Λ)x2
4 + 24(a4x2 + b4)x4

+
(
4Λx3

3∂3q(x2, x3) + 12x1x2(r2x2 + 2s2) + 24t2x1

+6x2
3(r2x2 + s2) + 5Λx2

3

)
= 0,

for all values of x4 and x2, whence, r2 = 0, s2 = −5
6Λ, a4 = b4 = 0 and the

remaining equation reads

Λx3
3∂3q(x2, x3)− 5Λx1x2 + 6t2x1 = 0,
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for all values of x1. But this contradicts Λ 6= 0. Therefore, no gradient Ricci
solitons occur in this case. The above results lead to the following.

Theorem 3. Let g be a Siklos metric, as described by (1.1), having a defin-
ing function of the form H = A−2(x3, x4), that is, as explicitly given in (3.4).
Then, g is a (nontrivial) Ricci soliton if and only if k2 = k3 = 0. In this case,
equation (1.2) holds with λ = Λ < 0 and X = Xi∂i described by (3.8). This
Ricci soliton is not gradient.

We summarize the complete classification of homogeneous Siklos metrics
which are Ricci solitons in the following Table I. For each class of homogeneous
Siklos spacetimes, we list the type, the defining function H and the cases where
H gives rise to solutions to the Ricci soliton equation. The checkmark “X” means
that for such defining function H, all homogeneous Siklos metrics are Ricci
solitons, while “NO” means that homogeneous Siklos metrics corresponding to
such H are never Ricci solitons, except in the trivial case where H = 0.

Type Defining H Ricci soliton cases

I) k1

x2
3

+ k2
x3x4

+ k3

x2
4

k2 = k3 = 0

II) A(x3)

Px
3Λ−6α+

√
9Λ2+12Λα+36α2

2Λ
3

+Qx
3Λ−6α−

√
9Λ2+12Λα+36α2

2Λ
3 + 1

αC

or

1
3 Sx

3
3 + C

Λ ln(x3) +N

III) A(x2)x2
3 NO

IV) x2β−2
2 A(x3x

β
2 )

Px−2
2 x

3Λ−6α+
√

9Λ2+12Λα+36α2

2Λ
3

+Qx−2
2 x

3Λ−6α−
√

9Λ2+12Λα+36α2

2Λ
3 + 1

αCx
−2
2

or

1
3 Sx

−2
2 x3

3 + C
Λx
−2
2 ln(x3) +Nx−2

2

V) ±xα3 X

Table I: Homogeneous Ricci soliton Siklos metrics

As reported in the above Table I, very different behaviours occur for the
different classes of homogeneous Siklos spacetimes in reference to the Ricci soli-
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ton equation (1.2). In some cases, all metrics in the considered subclass are
Ricci solitons. On the other hand, in some other classes there are some specific
solutions to the Ricci soliton equation, while in other cases no Ricci solitons
occur. Observe that the Ricci soliton equation, applied to a four-dimensional
Lorentzian metric, is itself a special case of Einstein’s field equations. Thus,
Siklos spacetimes satisfying the Ricci soliton equation provide solutions to Ein-
stein’s field equations in more than one sense.

Finally, we mention that Ricci solitons also highlight the existence of spe-
cial kinds of symmetries. In fact, a smooth vector field X appearing in the
Ricci soliton equation (1.2) is an infinitesimal harmonic transformation, that is,
satisfies tr(LX∇) = 0. (Infinitesimal harmonic transformations are also known
as 1-harmonic vector fields, because this harmonicity property is equivalent to
the vanishing of the linear part of the tension field of the local one-parameter
group of infinitesimal point transformations.) We shall investigate in detail the
symmetries of homogeneous Siklos metrics in future work.
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