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Abstract. Let X C PV be an integral and non-degenerate variety. Recall (A. Biatynicki-
Birula, A. Schinzel, J. Jelisiejew and others) that for any g € PV the open rank orx(q) is the
minimal positive integer such that for each closed set B C X there is a set S C X \ B with
#S < orx(q) and ¢ € (S), where { ) denotes the linear span. For an arbitrary X we give
an upper bound for orx (g) in terms of the upper bound for orx(q’) when ¢’ is a point in the
maximal proper secant variety of X and a similar result using only points ¢’ with submaximal
border rank. We study orx(g) when X is a Segre variety (points with X-rank 1 and 2) and
when X is a Veronese variety (points with X-rank < 3 or with border rank 2).
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Introduction

Let X c PV be an integral and non-degenerate projective variety. We recall
the following definition ([5, 7, 8, 11]). The papers [7, 8, 11] study Veronese
varieties, i.e. homogeneous polynomials, but [7, 8] also consider the case of non-
homogeneous polynomials, which is harder.

Definition 1. For any ¢ € PV the open rank or open X-rank orx(q) of q
is the minimal integer with the following property: for any closed set B C X
there exists S C X \ B such that #S < orx(q) and ¢ € (S), where ( ) denotes
the linear span.

We recall that the X-rank rx(q) of ¢ is the minimal integer such that there
is S C X with #S5 = rx(q) and ¢ € (S) ([13]).

Since X is non-degenerate, for any closed set B C X, X \ B spans PN,
Thus the integer orx(q) is a well-defined positive integer < N + 1. Obviously
orx(q) > rx(q). In general it is not easy to compute orx(q). For instance there
is no ¢ € PV such that orx(q) = 1 (Remark 3).
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We recall that for each integer ¢ > 0 the t-secant variety o;(X) C PV is the
closure in PV of the union of all linear spaces (S) for some S C X with #£5 =t
([1, 13]). Each o4(X) is irreducible, o1(X) = X and either o;(X) = PV or
0¢(X) € 0411(X) ([1, Observation 1.2]). The border rank bx(q) of ¢ € PV is the
first positive integer ¢ such that ¢ € 04(X). Let g be the generic X-rank, i.e. the
minimal positive integer such that o,(X) = PY. For each integer k € {1,...,g}
let v, denote the maximal integer orx(q) for some ¢ € 04 (X). Hence v, is the
maximal open X-rank of some g € PV. Let x1 be the minimal integer orx (q) for
some g € X. In general the integer p; is not the minimal integer orx (¢q) for some
q € PV (Examples 1 and 2). Obviously u; = v if X ¢ PV is a homogeneous
embedding of a homogeneous variety. For ¢ = 2,...,¢g let 4; be the maximum
integer orx (q) with g € 0;(X)\ 0;—1(X). Note that all ¢ € ;(X)\ 0;—1(X) have
rx(q) = i, but that o;_1(X) may contain points with X-rank i. Set 4 := ;.
Obviously ~; = maxj<j<; ;. In particular 7; > ;1 forall ¢ = 2,...,g.

In section 1 we give a few remarks on the open X-rank and prove the fol-
lowing result.

Theorem 1. Set e := N —dimoy_1(X). Then 74 < v4—1 + e and 7, <
Yg—1 + €.

We ask the following Question.

For the rational normal curve this sequence is strictly decreasing (Remark
6), but there are many examples of X and ¢ such that 4; < 441, e.g. the case
n>2,d>2 and i =1 for the order d Veronese embedding of P" (Theorem 2).

In section 2 X is a Veronese variety, i.e. each ¢ € PV is an equivalence class
(up to a non-zero multiplicative constant) [f] of a homogeneous polynomial f
and rx(q) is the minimal number of addenda needed to write f as a sum of
powers of linear forms. In section 3 X is a Segre variety, i.e., each ¢ € PV is an
equivalence class ¢ = [T'] (up to a non-zero multiplicative constant) of a tensor
T # 0 and rx(q) is the tensor rank of 7. For Veronese varieties we study the
case in which rx(¢) = 1 (Example 1), rx(q) = 2 (Theorem 2) and rx(q) = 3
and the polynomial associated to ¢ effectively depends on more than 2 variables
(Theorem 3). We describe the open ranks of all ¢ € g2(X) (Theorem 2). For the
Segre variety we study the case rx(q) = 1 (Theorem 4) and the case rx(q) = 2
when the tensor depends on all factors of Y (Theorem 5).

We work over an algebraically closed field K.

1 General remarks and proof of Theorem 1

Let X C PN be an integral and non-degenerate projective variety. For any
q € PV let S(X,q) denote the set of all A C X such that #A4 = rx(¢) and
g€ (A).
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Remark 1. Fix ¢ € PV with S(X,q) finite, say S(X,q) = {S1,...,5.}.
Thus B := S1U---US, is a proper closed subset of X. Every set A C X such
that #A = rx(q) and ¢ € (A) is contained in B. The definition of open X-rank
gives orx(q) > rx(g). Since all ¢ € 01(X) = X have #S(X,q) = 1, it follows
that rx(q) > 1 for all ¢ € X. Thus 71 > u3 > 1. The same proof shows that
orx(q) > rx(q) for all ¢ € PV such that Uses(x,qA is not Zariski dense in X.

Remark 2. Take any ¢ € PV, any closed B C X and any A C X such that
#A =rx(q) and q € (A). By the definition of open X-rank for each a € A there
is S, C X \ B such that #5S, := orx(a) and g € (S,). Set S := UgzecaS,. Since
S C X\ Band #S < virx(q), we get orx(q) < yirx(q) for all ¢ € PV,

Remark 3. Since orx(¢) > rx(q) and rx(¢) = 1 if and only if ¢ € X,
Remark 1 gives orx(q) > 1 for all ¢ € PV,

Remark 4. Let p be the maximal positive integer such that each S C X
with #S5 < p is linearly independent. For any g € PV with rx(¢) < |p/2], there
is a unique set A C X such that #A < |p/2], ¢ € (A) and ¢ ¢ (A’) for any
A" C A. Thus orx(q) > |p/2] for all ¢ € PV, Since each set with cardinality
< p is linearly independent and S(X,0) = {o} for all 0 € X, p1 > p.

Example 1. Let vg : P* — PV, N = (”Id) — 1, be the order d Veronese
embedding of P". Set X := v4(P™). The last part of Remark 3 gives p; > d+ 1.
Fix a closed set B C X and set B’ := Vd_l(B). Let L C P" be a line containing
o and containing at least one point of P\ B’. Thus L N B’ is finite. Take any
A C L\ LNB such that #A = d+ 1. Since v4(L) is a degree d rational normal
curve in its linear span, we have ¢ € (v4(L)) = (vq(A)). Hence orx(q) =d + 1.

Example 2. Take X = PV. This is the case d = 1 of Example 1. Thus
orx(q) =2 for all ¢ € PV, In this case all ¢ € P have orx(q) > rx(q).

Example 3. Let X C PV be a hypersurface of degree d > 1. A point
o € PV is said to be a strange point of X if for each smooth point a of X
the tangent space T, X of X contains o ([10, 12]). Fix ¢ € PV \ X. Remark 3
gives orx(q) > 1. Note that orx(¢) = 2 if and only if a general line L c PV
containing ¢ contains at least 2 points of X, i.e. if and only if the separable
degree of the morphism X — P"~! induced by the linear projection from g is
at least 2. Take an arbitrary ¢ € PV. If X is a cone with vertex ¢/ (and hence
¢ € X), then a general line through ¢’ contained in X shows that orx(¢') < 2.
Remark 3 gives orx(¢’) = 2. Now assume that X is not a cone with vertex
containing ¢’. Fix a closed set B C X. Fix a general (p1,p2) € X2. Since X is
non-degenerate, L := ({p1,p2}) is a line not contained in X and ¢’ ¢ L. Thus
E :={{¢,p1,p2}) is a plane. The scheme X N F is a plane curve, possible with
multiple components. Let Y C E be the reduction of X N E. Since L ¢ X, Y
is not a line. Thus (Y) = E (even if Y is reducible). Since p1,ps are general,
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pi ¢ B, i =1,2. Thus Y has either at least two irreducible components or an
irreducible component not contained in B. Thus there is p3 € Y \ Y N B such
that E = ({p1,p2,p3}). Thus orx(q¢’) < 3. Now assume ¢’ € X with X not
a cone with vertex containing ¢’. Let a be the multiplicity of X at ¢’. We see
that orx(q') = 2 if and only of if the general line containing ¢’ meets X in at
least 2 other points, i.e. (since X is not a cone with vertex containing ¢') if and
only the morphism f : X \ {¢'} — PV~! induced by the linear projection from
¢’ has separable degree at least 2. This is never the case if @ = d — 1 and in
particular this is never the case if d = 2. Now assume d > a+ 2. Thus under the
assumption d > a + 2 orx(q') = 2 if either char(K) = 0 or char(K) > d — a. In
summary, orx(q) € {2, 3} for all ¢ € P and we gave a geometric description of
the points ¢ with orx(q) = 3.

Remark 5. Set n := dim X and assume ¢ := (N +1)/(n+ 1) € N and
o¢(X) = PN, For a general ¢ € PV we have rx(q) = t and S(X,q) is finite.
Thus orx(q) > t for a general ¢ € PV. Fix ¢ € PV such that rx(q) = t and
S(X, q) infinite. If there is at least one o € X such that no A € (X, ¢) contains
o, then orx(q) > t. Now assume that N is odd and that X is a curve. In this
case 0;(X) = PV ([1, Remark 1.6)).

The following lemma is a variation of the proof of [14, Proposition 5.1].

Lemma 1. Assume char(K) = 0. Set n := dim X. Then orx(q) < N+1—n
for all g € PV \ X.

Proof. Fix ¢ € PV \ X and a closed set B C X. Let V C PV be a general linear
subspace of codimension n containing g. By the uniform position lemma, the
set V' N X is formed by deg(X) points, any N 4+ 1 — n of them spanning V' (]9,
Lemma 3.4]). Since VN B = () for a general V, orx(q) < N +1 —n.

Let X be an projective variety, D an effective Cartier divisor of X and
Z C X a zero-dimensional scheme. The residual scheme Resp(Z) of Z with
respect to D is the closed subscheme of X with Z, : Zp as its ideal sheaf. We
have Resp(Z) C Z and deg(Z) = deg(ZN D) +deg(Resp(2)). If Z,...,Z, are
the connected components of Z, then Resp(Z) = Resp(Z1)U---UResp(Z,). If
Z is reduced, them Resp(Z) = Z\ D. For any line bundle Ll on X the following
sequence, often called the residual sequence of D,

0 = ZResp(z) ® L(=D) =2 Iz ® L = Tzap,p @ Lip — 0

is exact.
The following lemma is just [3, Lemma 5.1] (see [4, Lemmas 2.4, 2.5] for
similar statements).
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Lemma 2. Let X C PV be a linearly normal projective variety and D an
effective Cartier divisor of X. Assume h'(Ox (1)) = h1(Ox(1)(=D)) = 0. Fiz
q € PV zero-dimensional schemes A, B C X such that A # B, q € (A) N (B),
q & (A forany A’ C A and q ¢ (B') for any B' C B. Set Z := BUA. Assume
(X, TResp(z) ® Ox(1)(=D)) = 0 and that one of the following conditions is
satisfied:

(a) Resp(A) NResp(B) = 0.
(b) At least one among A and B is reduced.

Then Resp(A) = Resp(B).

Proof of Theorem 1: We first prove the inequality v, < 741 +e. Fix ¢ € PN If
q € 04—1(X), then orx(q) < v4—1 by the definition of v,_1. Thus we may assume
q € PN\ 0,_1(X). Fix a closed set B C X and take a general (p1,...,pe) €
(X \ B)¢. Set V := ({¢,p1,...,pe}). Since X is non-degenerate and e < N,
dimV = e. Hence VNoy_1(X) # 0. Fix ¢ € 0,-1(X)NV. Since ¢ ¢ g4_1(X)
and {p1,...,pe} is general, ({¢} UE) Nog_1(X) = 0 for all E C {p1,...,pe}
and ({p1,...,pe}) Nog—1(X) = 0. Thus q € ({¢,p1,...,pe}). By the definition
of open X-rank and the inequality orx(q) < yg4—1 there is A C X \ B such that
#A < v4-1 and ¢’ € (A). Set S := AU {p1,...,pc}. Since S C X \ B and
g€ ({d,p1,...,pe}) C(S), orx(q) < #5 <1 t+e.

Now we modify the proof just given to prove that 7, < 7,-1 + e. Since
Y9 < vg and 41 = 71, we may assume g > 3. By the definition of 7, we start
with ¢ ¢ 04—1(X). Note that o4_2(X) has codimension > e ([1, Observation
1.2]). By the generality of {p1,...,pe} we have V Noy_o(X) = 0. Thus ¢’ €
0g-1(X) \ 04—2(X) and we may repeat the proof of the first inequality.

2 Veronese varieties

Let vg : P* — PN, N = (":er) — 1, be the order d Veronese embedding of
P". Set X = X, g = vq(P").

Remark 6. Let X C P? be a rational normal curve, i.e. take X = X1,4- By
[5, Proposition 3.1] orx(q) = d+ 2 — bx(q) for all q.

Remark 7. Take X as in Remark 6. All ¢ ¢ X have orx(q) < 1.

The following result is (in a weak form) the opposite of concision for the
open rank of symmetric tensors.

Proposition 1. Let M C P™, n > 2, be a positive dimensional linear space.
Take any q € (vg(M)). Then oanyd(q) > 0Ty, (M) (q).

Proof. Using induction on the codimension of M we reduce to the case dim M =
n—1. Set a := orx, ,(q). Fix a closed subset B’ C M. Take any S C P"\ M
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such that b := #5 < a and q € (v4(5)). It is easy to check that for a general
o € P" we have 0 ¢ S and ¢(S) N B’ = 0, where ¢ : P" \ {o} — M denotes
the linear projection from o. Since #£(S) < a and ¢(S) N B’ = {), to prove
that orx(q) < a it is sufficient to prove that ¢ € (v4(¢(5))). Fix homogeneous

coordinates xg, . . ., x,, such that M = {zo = 0}. Take homogeneous polynomials
f(xo,...,x,) representing g and f;(zo,...,zy), 1 < i < b, representing the
points of S. By assumptions there are constants c1, ..., ¢, such that f = c1f1 +

-+ cpfp. For any [f;] € S, [fi(0,21,...,2,)] represents £([f;]) . Since ¢ €
(vg(M)), f does not depend on zp. Thus f = Zle ¢ifi(0,21,. .., xy).

Theorem 2. Take X, 4. Fiz q € PN such that bx(q) = 2.
(1) If n =1, then orx(q) = d.
(2) If n > 2, then orx(q) = 2d.

Proof. Until step (e) we assume rx(q) = 2. By Remark 6 we may assume n > 2.
Fix A C P" such that v(A4) € S(X,q). Let L C P" be the line spanned by A.
Fix any closed B C X containing v4(L) and set B’ := v, '(B). Take a general
u € P*\ B’ and call M the plane spanned by L and u. Let D C M be a
smooth conic containing {u} U A. Since u ¢ B, D N B is a finite set. Since D is
a projectively normal curve, dim(v4(D)) = 2d. Since or,,(p)(¢) = 2d (Remark
2), orx(q) < 2d. Assume orx(q) < 2d — 1 and take S C P"\ B’ such that
#S < 2d —1 and q € (v4(9)). Note that h'(Zsua(d)) > 0. Since B’ O L,
SN A = (. Applying case (b) of Lemma 2 with as Cartier divisor a general
hyperplane H O L, we obtain h!(Zs(d — 1)) > 0. Since #S < 2(d — 1) + 1, [6,
Lemma 34] gives the existence of a line R C P" such that #(RNS) > d + 1.
Since SNL =0, R # L.

(a) Assume n = 2. Applying case (b) of Lemma 2 taking as the Cartier
divisor the conic LUR we get that either hl(Ig\SmR(d— 2)) > 0or S C R. Since
#(S\SNR) <d—2, h'(Zg\snr(d—2)) = 0. Thus S C R. Since ¢ € (v4(5)),
we get g € (vq(R)). Concision gives A C R ([13, Ex. 3.2.2.2]). Thus R = L, a
contradiction.

(b) Assume n =3 and LN R # (. Set H := (L U R). Applying any of the
two cases of Lemma 2 with respect to the Cartier divisor H we get that either
W (Zs\snm(d—1)) >0o0r S C H. Since #(S\ SNH) <#(S\SNR) <d-2,
we get S C H. Since q € (vg(H)) and S C H, step (a) gives a contradiction.

(¢) Assume n =3 and LN R = (). Since Z;r(2) is globally generated and
S is a finite set, there is @ € |Zrugr(2)| such that SNQ = SN R. Applying part
(b) of Lemma 2 to the Cartier divisor @ we get S C R.

(d) Assume n > 4. There is a hyperplane H C P" containing R U L. As
in step (b) we get a contradiction using induction on n.
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(e) Assume rx(g) > 2. There is a degree 2 connected zero-dimensional
scheme v C P™ such that ¢ € (vg(v)). We repeat the proof of the previous steps
using v instead of A. In all cases we take B’ containing the reduction of v and
hence v NS = () in all steps. Thus we may apply any of the two cases of Lemma
2. QED

Remark 8. Let X C PV be a Veronese variety. Since X is homogeneous
and the embedding is homogeneous, 111 = ;. Example 1 and Theorem 2 show
that when n = 1 there are points ¢ with orx(q) < p1.

Theorem 3. Taoke X = X, 4, n >2,d>4 and N = (”zd). Take q € PN
such that rx(q) = 3 and there is no line L C P™ such that q € (vq(L)).

(1) If n =2, then orx(q) =2d — 1.
(2) If n > 2, then orx(q) = 3d — 1.

Proof. Fix A C P" such that v4(A) € S(X,q). Since there is no line L C P
such that ¢ € (v4(L)), concision gives dim(A) = 2 ([13, Ex. 3.2.2.2]). Take a
closed set B’ C P™. If n = 2 we assume that B’ contains the 3 lines spanned by
2 of the points of A. If n > 2 we assume B’ D (A).

(a) Assume n = 2. Fix a general u € P?\ B’. Since AU {u} is contained in
a smooth conic, the case n > 2 of the proof of Theorem 2 gives orx(q) = 2d — 1.
Assume ory(q) < 2d — 2 and take E C P?\ B’ such that #F < 2d — 2 and
q € (vq(E)). Since orx(q) > rx(q), #E > 3. Since E N B’ = (, we have
ENA={.Since q € (vg(E)) N (vg(A)), h'(Zgua(d)) > 0. Take a line L C P?
spanned by 2 of the points of A, say A = (AN L) U {o}. By the choice of B,
LNE = 0. Since E # {o}, part (b) of Lemma 2 gives h' (Z (0} (d—1)) > 0. Since
#(EU{o}) <2d—1=2(d—1)+1, [6, Lemma 34] gives the existence of a line R
such that #(RN(EU{o}) > d+1. Note that #(RNA) < 1. Part (b) of Lemma 2
gives hl(I(EuA)\(EuA)mR(d—l)) > 0. The inequality #((EUA)\(EUA)NR) <d
contradicts [6, Lemma 34].

(b) Assume n > 3. Take a general u € P"\ B’ and set M := (AU{u}). We
have dim M = 3 and there is a degree 3 rational normal curve G C M containing
AU{u}. Thus GN B’ is a finite set containing A. Since G is projectively normal,
the restriction map HY(Opn (d)) — H°(Og(d)) is surjective. Thus dim(v4(G)) =
3d and v4(G) is a rational normal curve of (v4(G)). Remark 6 gives the existence
of S € G\GN DB’ such that #S = 3d—1 and ¢q € (v4(S)). Thus orx(q) < 3d—1.

Assume orx(q) < 3d—2 and take E C P\ B’ such that #F < 3d—2. Recall
that B" O (A) and hence ENA = (). Set S := EUA. Since ¢ € (v4(E)) N (va(A)),
h'(Zs(d)) > 0. Since #S < 3d + 1, by [2, Theorem 1] one of the following cases
occurs:
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(1) there is a line L C P™ such that #(LNS) > d+ 2;
(2) there is a reduced conic D such that #(D N S) > 2d + 2;

(3) there is a reduced plane cubic T and S’ C S such that #S’ = 3d and
S € |Or(d—-1)f;

(4) #S = 3d+ 1 and there is a reduced plane cubic F' C P" such that S C F.

(b1) Case (4) is excluded, because it would force E C (A), contradicting
our choice of B'.

(b2) For the same reason in case (3) we have #S = 3d + 1 and S\ S’ is
a point, o, of A. Consider the plane (T') and call H C P" a general hyperplane
containing (T) (hence H = (T) if n = 3). Since S\ SN H = {o} and h'(Z,(d —
1)) =0, case (a) of Lemma 2 gives a contradiction.

(b3) Assume the existence of a reduced conic D such that #(D N S) >
2d+-2. Since EN(A) = 0, we have #((D)NA) < 2. Let H be a general hyperplane
containing (D). Thus HNS =(D)NS and 1 < #(S\SNH) <d-1. Thus
h(Zg\snm(d — 1)) = 0, contradicting part (a) of Lemma 2.

(b4) Assume the existence of a line L C P™ such that #(L N S) > d + 2.
Since E N (A) = 0, we have #(L N A) < 1. Take a hyperplane H C P" such
that H O L and A ¢ H. Part (b) of Lemma 2 gives h!'(Zg\snp(d — 1)) > 0.
Since #(S\SNH) <2d—1=2(d— 1)+ 1, there is a line R C P" such that
#RN(S\SNH)) >d+1 ([6, Lemma 34]). Note that R # L and hence
#(LNR) < 1.

(b4.1) Assume either n > 3 or RNL # (). These assumptions are equivalent
to the existence of a hyperplane U D LU R. Since #(S\ SNU) < 3d+1—
d—2—d—1+1, W' (Zg\snuy(d—1)) =0 and hence S C U (part (b) of Lemma
2). Since S is a finite set, taking a general U containing W := (RUL) D S.
Since (A) NE = 0, dim(W = 3, i.e. RN L = (). Since Zrurw(2) is globally
generated and S is a finite set, there is a quadric surface Q C W such that
SNQ =SN(LUR). Let Q@ C P" be any quadric hypersurface such that
Q'NW = Q. Since #(S\SN(LUR)) <3d+1—-d—2—d~— 1, we have
h!(Zg\snq(d —2)) = 0 and hence S C RU L. Thus at least one of the lines R
or L contains 2 points of A and hence they contain no point of £ by the choice
of B’, a contradiction.

(b4.2) Assume n = 3 and RN L = (). We use the quadric @ as in step
(b4.1).
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3 Segre varieties

Let Y =P" x --- x P Lk >1, n; >0 for all 7, be a multiprojective space.
Set N := Hle(ni +1). Let v : Y — PV be the Segre embedding of Y. Set
X :=v(Y). Thus X is a Segre variety. For any i € {1,...,k} let m; : Y — P™
denote the projection onto the i-th factor of Y and let ¢; € N* be the multiindex
(a1,...,ar) with a; = 1 and aj, = 0 for all h # 1.

Remark 9. If £ = 1 Example 2 gives orx(q) = 2 for all ¢ € PV,
By Remark 9 it would be sufficient to study the case k > 1.

Remark 10. Take ¢ € PV, which is not concise, i.e. assume the existence
of a multiprojective subspace Y/ C Y such that ¢ € (v(Y")) (we allow the case
g € X in which we may take Y’ = {q}). Set X' := v(Y”). By concision rx(q) =
rx/(q) and S(X',¢") = S(X,q) ([13, Proposition 3.1.3.1]). Taking B = Y’ we
get orx(q) > rx(q).

The following result is (in a weak form) the opposite of concision for the
open rank of symmetric tensors.

Proposition 2. Let M C Y be a positive dimensional multiprojective space.
Take any q € (v(M)). Then orx(q) > oryn)(q)-

Proof. Set a := orx(q). Using induction of the integer dim Y —dim M we see that
it is sufficient to do the case dim M = dimY — 1. Fix a closed subset B’ C M.
Write M = [[7%, P™ with 0 < m; < n; for all ¢ and ), m; = >, n; — 1.
Permuting the factors of Y we may assume m; = n; — 1, thus M = M; x W,
where W := Hf:z P and M; is a hyperplane of P"'. Fix a closed set B” C Y.
Take any S C Y\ B” with #S < a and q € (¢(S9)). Fix a general o € P"~! and let
¢:P"\{o} — M; denote the linear projection from o. The submersion ¢ induces
a submersion p : Y \ {o} x W — M. For a general o we have {o} x W NS = (.
Thus p is defined at each point of S. Since (v(S)) N (v(M)) C (v(u(S))), we
have ¢ € (v(u(S))). Since #u(S) < a, to conclude the proof it is sufficient to
find B” such that u(S) N B’ = (). Take B” := p~Y(B'). QED

Theorem 4. We have orx(q) =k +1 for allqg € X.

Proof. By Remark 9 we may assume k > 2. Fix ¢ € X, say ¢ = v(o) with
o= (01,...,01). Let B C X be a closed subset. Set B’ := v~}(B). Fix u =
(u1,...,ux) €Y \ B’ such that u; # o; for al i. Take a,b € P! such that a # b.
Let f; : P! — P™ be any degree 1 embedding such that f;(a) = u; and f;(b) = o;.
Let f = (f1,..., fx) : P! =Y be the embedding such that 7; o f = f; for all i.
Set D := v(f(P!)). Note that D is a degree k rational normal curve in its linear
span. Since f(a) = u and f(b) = o, {u,0} C D. Since f(a) ¢ B, DN B is a finite
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set. Fix S € D\ DN B such that #S = k + 1. Since D is a degree k rational
normal curve of (D), (S) = (D). Thus orx(q) < k + 1.

Assume orx(q) < k. Set B’ := UF_;7;'(0;) C Y and B := v(B'). Take
A C Y\ B such that #4 < k, ¢ € (v(A)) and ¢ ¢ (v(A")) for any A" C A.
Write A = {a(1),...,a(e)} for some e < k and a(i) # a(j) for all ¢ # j. Let H;,
i=1,...,e, be a general element of |Oy (¢;)| containing a(7). By the definition
of the set B’ we have o; ¢ m;(A) for i = 1,...,k. By the generality of each
H; we have o ¢ H;. Thus o ¢ A and q € (v(A)), b (Zauqn(1,...,1)) > 0. If

e < k take as H;, e+ 1,...,k, any element of |Oy (¢;)| not containing o. Set
D := Hy +---+ Hy. Note that DN ({o} UA) = A. Since 0 ¢ A and h'(Z,) =0,
part (b) of Lemma 2 gives a contradiction. QED

Theorem 5. Take ¢ € PN such that rx(q) = 2 and q depends on all k
factors of Y. Then:
(i) orx(q) = k;
(ii) orx(q) = k if and only if q is concise, i.e. if n; =1 for all i.

Proof. Fix A C'Y such that v(A) € S(X,q). By concision the assumption that
g depends on all factors of X is equivalent to #m;(A) =2 for all i € {1,...,k}.
Since 7x(q) = 2 and ¢ depends on all factors, ¢ is concise if and only if n; = 1
for all i. We fix 3 distinct points of P! and call it 0, 1 and oco. Fix A = {a, b} such
that v(A) € S(X, q). Fix a general u € Y\ B’. Since u is general ;(u) ¢ m;(A)
for any 1.

(a) First assume n; = 1 for all i. Fix a closed B C X and set B’ := v~!(B’).
Let f; : P! — P! be the only isomorphism such that f;(0) = a;, f;(1) = b;
and f;(co) = u;. Thus f = (f1,..., fx) induces an embedding f : P! — Y’
such that f(0) = a, f(1) = b and f(co) = u. Set D := f(P!). Note that
dim(r(D)) = k and that v(D) is a degree k rational normal curve of (v(D)).
Since u ¢ B’, D N S is finite. By Remark 6 there is S C D such that #S < k
and g € (v(5)). Thus orx(q) < k. Assume orx(q) < k—1 and take E C Y \ B’
such that #F < k—1 and ¢ € (v(FE). We assume B’ D A. With this assumption
hY(Zpua(l,...,1)) > 0. Since #(EUA) = k+1, mimicking the proof of Theorem
10 we get a contradiction.

(b) Now assume n; > 2 for some i. Let Y C Y be the concise Segre of
g. By concision ([13, Proposition 3.13.1]) every S C Y such that ¢ € (v(5))
and S ¢ Y’ has cardinality > k. Taking as closed set B the set Y’ we get
orx(q) > k.
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