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Abstract. A large family of examples for subgroups normalized by the base group in a
complete monomial group of finite degree over any group H is given. This is then proven to be
a complete characterization of such subgroups in the case of an abelian group H. Centralizer
structure for this kind of subgroups, even in the non abelian case, is completely determined.
Notably, separate study of the case of elementary abelian 2-group H is needed. In the last
part, the results are extended to the case of limit monomial groups.
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1 Introduction

Let H be an arbitrary group and n ∈ N. The complete monomial group
of degree n over H, denoted by Σn(H), is the subgroup of the group of linear
automorphisms of the free module [ZH]n consisting of all automorphisms rep-
resented by generalized permutation matrices with entries in H (we also refer
to [5] for more on the topic). An element f of Σn(H) is called a monomial
substitution and will be represented by

f =

(
x1 x2 . . . xn
h1xi1 h2xi2 . . . hnxin

)
where {x1, . . . , xn} is a set of n variables and f changes each variable xj into
some other variable xij , multiplied by an element of H. The elements hi ∈ H
will be called factors or multipliers of f .

iThis paper was written while D. Esposito was a visiting Ph.D. student at Middle East
Technical University.
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If

g =

(
x1 x2 . . . xn
a1xj1 a2xj2 . . . anxjn

)
∈ Σn(H),

then

fg =

(
x1 x2 . . . xn

h1ai1xji1 h2ai2xji2 . . . hnainxjin

)
and

f−1 =

(
xi1 xi2 . . . xin

h−1
1 x1 h−1

2 x2 . . . h−1
n xn

)
The set of monomial substitutions of the form

µ =

(
x1 x2 . . . xn
h1x1 h2x2 . . . hnxn

)
= [h1, h2, . . . , hn], hi ∈ H,

is called the base group, denoted by B(n,H) and it is a normal subgroup of
Σn(H), which is isomorphic to the direct product H × . . .×H of n copies of H.
Elements in the base group are called multiplications.

The complete monomial group Σn(H) is known to split as a semidirect prod-
uct over the base group by a subgroup isomorphic to Sn (see [6]). Hence, every
monomial substitution can be written uniquely as a product of a multiplication
and a permutation. For example, the above element f can be written as

[h1, . . . , hn]

(
x1 . . . xn
xi1 . . . xin

)
.

Moreover one may observe that, when we take the conjugate of a multiplication
[h1, . . . , hn] by a permutation σ ∈ Σn({eH}), the coordinates of the multiplica-
tion are permuted according to σ−1. Indeed

[h1, . . . , hn]σ = [hσ−1(1), . . . , hσ−1(n)],

hence we have

Σn(H) ∼= B(n,H) o Sn ∼= (H × . . . H) o Sn ∼= H o Sn

where the symbol o denotes the so-called permutational wreath product.
Multiplications with all factors equal, such as

[h, h, . . . , h]

are called scalars and we will simply denote them by [h].
Any element ofH, when thought of as a diagonal element of B(n,H), induces

a scalar of Σn(H). It has been shown by Ore in [6] that the center of Σn(H) is
the subgroup of scalars induced by central elements of H.
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Moreover, if the groupH is abelian, the set of all multiplications [h1, h2, . . . , hn]
in B(n,H) such that the product h1h2 . . . hn = 1 is a normal subgroup of
B(n,H), denoted by B0(n,H) and its properties in B(n,H) have been studied
in [1].

Any monomial substitution f that is the product of a multiplication and
a cycle, where all non-trivial factors of f correspond to variables moved by
the cycle, is called a monomial cycle, or simply cycle where ambiguity is not
possible, and it is usually denoted omitting the variables it fixes, i.e.

f =

(
xi1 xi2 . . . xim
hi1xi2 hi2xi3 . . . himhi1

)
.

As stated in [6], in a way similar to symmetric groups, any monomial substitu-
tion can be written as a product of disjoint cycles.

For any monomial substitution f that is a cycle of length m, its power fm

is a multiplication with factors

∆1 = hi1hi2 . . . him , ∆2 = hi2hi3 . . . himhi1 , . . . , ∆m = himhi1 . . . him−1 .

Notice ∆
hij
j = ∆j+1 for any j < m so that all of the ∆j ’s are conjugate and

their conjugacy class is called the determinant class of the cycle f .

It was proven by Ore in [6] that two monomial cycles are conjugate if and
only if they have the same length the same determinant class and a similar result
extends to all monomial substitutions by looking at their unique decomposition
in cycles. It should also be noted that two monomial cycles are conjugate by
a multiplications if and only if they move the same variables in the same way
and have same determinant classes, and a similar result extends to all monomial
substitutions as above.

This means that for any monomial cycle f there is a conjugate of f by
a multiplication such that all factors are trivial except for one, lying in the
determinant class. This conjugate of f is called a normal form of f .

Let ξ = (n1, n2, . . .) be a sequence of natural numbers. ξ is called a divisible
sequence if ni|ni+1 for each i ∈ N. Let D be the set of all divisible sequences.
Define a relation on D; that is, for two divisible sequences ξ1 = (n1, n2, . . .) and
ξ2 = (m1,m2, . . .), ξ1 ∼ ξ2 if and only if for each ni ∈ ξ1, ni|mj for some mj ∈ ξ2

and for each mt ∈ ξ2, there exists nr ∈ ξ1 such that mt|nr. One immediately
observes that ∼ is an equivalence relation on D, partitioning it into equivalence
classes.

For a divisible sequence ξ = (n1, n2, . . .) for each i ∈ N define n1 = r1 and for
i ≥ 1, ni+1

ni
= ri+1. The sequence (r1, r2, . . . , ri, . . .) is called a factor sequence

of ξ.
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We may refine the divisible sequence ξ so that the factors ni+1

ni
are prime

numbers without changing equivalence class. Hence we will use, as a represen-
tative of each equivalence class, a sequence whose factors are prime numbers.

Let P be the set of all prime numbers and let rp, kp ∈ N∪{0,∞}. A Steinitz
number (or supernatural number) is any infinite formal product of the form∏

p∈P
prp .

The set of Steinitz numbers, denoted by SN, is a semigroup with identity when
endowed with the product∏

p∈P
prp

 ·
∏
p∈P

pkp

 =

∏
p∈P

prp+kp


with the understanding that t +∞ = ∞ +∞ = ∞ for any t ∈ N. The set
SN contains an isomorphic copy of the semigroup N as the sub-semigroup of
Steinitz numbers such only finitely many exponents {rp}p∈P are non-zero and
rp 6=∞ for all p ∈ P.

Stenitz numbers in SN\N are called infinite Steinitz numbers. The divisibility
relation | in SN, defined by

u|w ⇐⇒ ∃v such that w = uv

makes SN into a complete lattice.

We may associate a Steinitz number to each divisible sequence ξ, namely

Char(ξ) = λ :=
∏
pi∈P

plii

where li is the number of times that the prime pi appears in the factor sequence
of ξ. This number is called the characteristic of ξ.

Observe that ξ1 ∼ ξ2 if and only if Char(ξ1) = Char(ξ2).

Let
∏

be the set of sequences consisting of prime numbers. Let ξ ∈
∏

and
ξ = (p1, p2, . . .) be a sequence consisting of not necessarily distinct primes pi.
From the given sequence ξ, we may obtain a divisible sequence (n1, n2, . . . ni, . . .)
where n1 = p1 and ni+1 = pi+1ni, then we have ni|ni+1 for all i ∈ N.

We define an embedding of a complete monomial group Σni(H) diagonally
into Σni+1(H)

dpi+1 : Σni(H)→ Σni+1(H)
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as follows.

For any f =

(
x1 x2 . . . xni

h1xj1 h2xj2 . . . hnixjni

)
∈ Σni(H) we define

dpi+1(f) ∈ Σni+1(H)

as the monomial substitution mapping

xqni+r 7→ hrxqni+jr , ∀q ∈ {0, . . . , pi+1 − 1} and ∀r ∈ {1, . . . , ni}.

One can think of dpi+1(f) as a monomial substitution on ni+1 variables acting
exactly as f on the first set of ni variables, the second set of ni variables and
so on. This embedding corresponds to a strictly diagonal embedding of Σni(H)
into Σni+1(H) as seen in [5].

According to the given sequence of primes, we continue to embed

dpi+2 : Σni+1(H)→ Σni+2(H).

Then we have the following direct system:

{1} d
p1→ Σn1(H)

dp2→ Σn2(H)
dp3→ Σn3(H)

dp4→ . . .

The direct limit group obtained from the above construction is called limit
monomial group over the group H associated to the prime sequence ξ and de-
noted by Σξ(H). In [5] it is proven that this construction only depends on the
Steinitz number λ = Char(ξ), so that we will make use of the notation Σλ(H),
and that

Σλ(H) ∼=
∞⋃
i=1

Σni(H) ∼= S(λ) nB(λ,H)

where B(λ,H) is called base group.

2 Subgroups that are normalized by the base group

We start this section by providing a large family of examples of subgroups
F of the complete monomial group Σn(H) of finite degree n over H that are
normalized by the base group, i.e. such that NΣn(H)(F ) ≥ B(n,H).

Throughout all of this paper we are going to use the notation

π∗ : Σn(H)→ Σn(H)

B(n,H)
∼= Sn

to represent the canonical epimorphism of Σn(H) onto Sn and

p : [k1, . . . , kn]σ ∈ Σn(H) 7→ k1 · . . . · kn ∈ H
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to represent the function mapping each monomial substitution to the ordered
product of its factors. In general, p is not a homomorphism, but it is in the case
of an abelian group H.

Lemma 1. Let A ≤ Sn and choose H ′ ≤ K ≤ H and ϕ : A → H/K to be
any homomorphism from A to H/K.

Then

FA,K,ϕ =
{

[k1, . . . , kn]σ | σ ∈ A, k1k2 . . . kn ∈ ϕ(σ)
}

is a subgroup of Σn(H) normalized by the base group.

Proof. First we prove that FA,K,ϕ is a subgroup. If f1 = [h1, . . . , hn]π and
f2 = [k1, . . . , kn]σ belong to FA,K,ϕ then π = π∗(f1) and σ = π∗(f2) belong to
A and p(f1) and p(f2) belong to ϕ(π) and ϕ(σ) respectively, which are cosets
of K.

Of course

π∗(f1f
−1
2 ) = π∗(f1)[π∗(f2)]−1 = πσ−1 ∈ A

because A is a subgroup and

p(f1f
−1
2 )K = p(f1)[p(f2)]−1K

as K ≥ H ′.
This means that

p(f1f
−1
2 ) ∈ ϕ(π)ϕ(σ−1) = ϕ(πσ−1)

hence f1f
−1
2 lies in FA,K,ϕ.

Now we will prove that FA,K,ϕ is normalized by elements of the base group.
For any f ∈ FA,K,ϕ and ω = [ω1, . . . , ωn] ∈ B(n,H), we have

π∗(fω) = [π∗(f)]π
∗(ω) = π∗(f) ∈ A,

and again using K ≥ H ′ we get

p(fω)K = p(f)K

so that p(fω) ∈ ϕ(π∗(fω)) proving that fω lies in FA,K,ϕ and hence

NΣn(H)(FA,K,ϕ) ≥ B(n,H).

QED
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Corollary 1. For any 1 ≤ i ≤ r let ni ∈ N be positive integers such that

r∑
i=1

ni = n

and each 1 ≤ i ≤ r choose

� any subgroup Ai ≤ Sni,

� any subgroup H ′ ≤ Ki ≤ H and

� any homomorphism ϕi : Ai → H/Ki.

Then
r

Dr
i=1

FAi,ki,ϕi can be naturally embedded into Σn(H) as a subgroup normal-

ized by B(n,H).

Remark 1. Excluding the special case in which H = H ′, by restricting
the attention to soluble or abelian groups, for example, the above construction
gives a large family of examples of subgroups of the complete monomial group
of degree n over H that are normalized by the base group. What we are going to
show next is that in the case of an abelian group H, the examples given above
are precisely all of the subgroups normalized by the base group.

Lemma 2. Let H be an abelian group and F ≤ Σn(H) be any subgroup of
the complete monomial group of degree n over H that is normalized by the base
group. Let A := π∗(F ) ≤ Sn and K := p(F ∩B(n,H)) ≤ H. Then

ϕ : σ ∈ A 7→ p(F ∩ π∗−1(σ)) ∈ H/K

is a homomorphism from A to H/K and F ≤ FA,K,ϕ.

Proof. Notice that K is a subgroup because it is the image of the subgroup
F∩B(n,H) under the homomorphism p. Since F∩π∗−1(σ) are cosets of ker(π∗|F )

and K = p(kerπ∗|F ), we have that

ϕ(σ) = p(F ∩ π∗−1(σ)) ∈ H/K.

This means that ϕ is a well defined homomorphism from A to H/K. Now, for
any f ∈ F we have that

� π∗(f) ∈ π∗(F ) = A

� p(f) ∈ p(F ∩ π∗−1(π∗(f))) = ϕ(π∗(f))

so that F ≤ FA,K,ϕ. QED
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The following technical lemma, needed to get a better understanding of the
abelian case, is going to require some definitions regarding partitions of a set
(see also [2]).

We say a partition F1 is a refinement of F2 if every element Ω of F2 can be
written as union of elements of F1. We can also say F1 is finer than F2.

For any two partitions F1 and F2 it is easily proven that there exists a
partition F of which they are both refinements and F is the finest possible
partition with this property. We will denote this by F1 ∧ F2.

Moreover, for every partition F on {1, . . . , n} we define

BF (n,H) =

{
[k1, . . . , kn] | ∀Ω ∈ F ,

∏
i∈Ω

ki = 1

}
.

Lemma 3. Let F1 and F2 be two partitions of {1, . . . , n}. Then

〈BF1(n,H), BF2(n,H)〉 ≥ BF1∧F2(n,H).

Proof. Choose any element [a1, . . . , an] ∈ BF1∧F2 .

To be able to express it as a product of elements [h1, . . . , hn] ∈ BF1(n,H)
and [k1, . . . , kn] ∈ BF2(n,H) is equivalent to solving the following system of
equation 

hiki = ai ∀ i ≤ n∏
i∈Ω

hi = 1 ∀Ω ∈ F1∏
i∈Γ

ki = 1 ∀Γ ∈ F2.

which leads to the system
∏
i∈Ω

hi = 1 ∀Ω ∈ F1∏
i∈Γ

hi =
∏
i∈Γ

ai ∀Γ ∈ F2.
(2.1)

This system of equations can be split into completely independent subsystems,
one for each block in the partition F1 ∧ F2. For this reason, without loss of
generality we can assume that

F1 ∧ F2 = {{1, . . . , n}} and
n∏
i=1

ai = 1.

This means (2.1) is a system of s+t linear equations in n variables in an abelian
group, where s = |F1| and t = |F2|. The matter of consistency of this system
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can be approached by looking at the augmented matrix (A|b) associated to the
system (of course one should think of the system in additive notation to do
so). A is going to have only 1’s and 0’s as entries and every column is going
to contain exactly two non-zero entries. In particular, A can be divided into
an upper block of the first s equations and a lower block of the last t such
that in each block there is only 1 non-zero entry for each column. These blocks
correspond to the two different type of equations in system (2.1).

To show that the system is consistent we are going to show that for any
linear combination of the rows of A giving the null vector, the corresponding
linear combination of elements of the column b is 0.

Let v1, . . . , vs be the first s rows of A and w1, . . . , wt be the other t rows and
consider a vanishing linear combination of those, i.e.

s∑
j=1

αjvj +

t∑
j=1

βjwj = 0.

This means

v :=
s∑
j=1

αjvj = −
t∑

j=1

βjwj =: w.

However, since v is a linear combination of the rows of the upper block, two
of its components are going to be equal whenever they correspond to indices
in the same element of F1 and something similar can be said for w and F2. In
symbols:

∀Ω ∈ F1, ∀i, j ∈ Ω, vi = vj (2.2)

and

∀Γ ∈ F2, ∀i, j ∈ Γ, vi = vj (2.3)

where vj denotes the j-th component of the vector v.

We claim, then, v is necessarily a multiple of the vector (1, 1, . . . , 1). As a
matter of fact, by contradiction, assume the set:

Ψ = {j ≤ n | vj = v1}

is a proper subset of {1, . . . , n}. Then by (2.2) and (2.3), any Ω ∈ F1 and
Γ ∈ F2 is either contained in Ψ or its complement. This is a contradiction
because it shows that F1 and F1 are refinements of

{
Ψ, {1, . . . , n} \ Ψ

}
which

contradicts the assumption that F1 ∧ F2 = {{1, . . . , n}}. For this reason, v =
−w = α(1, . . . , 1).

This means the only way of combining rows of A to make them vanish is to
take αj = α = −βj for some α and for all j.
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Combining the elements of the column b with the same scalars gives

α

(
n∑
i

ai

)
= 0.

Hence the system is consistent and the lemma is proved. QED

Lemma 4. Let H be an abelian group and F ≤ Σn(H) be a subgroup of the
monomial group of degree n over H that is normalized by the base group and
such that π∗(F ) has transitive action on {1, . . . , n}.

Then F ∩B(n,H) contains the subgroup B0(n,H) consisting of all multipli-
cations the product of whose factors is 1.

Proof. If n = 1 the result is immediately seen to be true, so assume n > 1.

Choose any non-identical permutation π ∈ π∗(F ) and f = [h1, . . . , hn]π ∈ F
such that π∗(f) = π and take a multiplication ω = [ω1, . . . , ωn] ∈ B(n,H). Since
F is a subgroup normalized by the base group, then also fωf−1 should be an
element of F . In particular, since B(n,H) is normal in Σn(H), it should be an
element of F ∩B(n,H), in other words a multiplication inside F .

Computing the i-th of fωf−1 one get

ω−1
i hiωπ(i)h

−1
i = ω−1

i ωπ(i).

Let {ai}i≤n with ai ∈ H be a sequence of elements of H. We will now understand
a necessary and sufficient condition to be able to solve the system of equations
ai = ω−1

i ωπ(i), i.e. ωπ(i) = ωiai.

Now, π will have a unique decomposition as product of disjoint cycles, in-
ducing a partition Fπ of {1, . . . , n}.

Let Ω ∈ Fπ and consider equations ωπ(i) = ωiai for all i ∈ Ω. By trying to
solve them by substitution, it is easily seen that they have at least one solution
if and only if

∏
i∈Ω ai = 1.

So, what we have proven is that

F ∩B(n,H) ≥ BFπ(n,H), ∀π ∈ π∗(F ).

Now, using Lemma 3 and transitivity of π∗(F ) we conclude that

〈BFπ(n,H)|π ∈ π∗(F )〉 = B0(n,H)

hence the thesis of the theorem. QED
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Theorem 1. Let H be an abelian group and F ≤ Σn(H) be a subgroup of
the monomial group of degree n over H that is normalized by the base group
and such that π∗(F ) has transitive action on {1, . . . , n}.

Let A := π∗(F ) ≤ Sn, K := p(F ∩B(n,H)) ≤ H and

ϕ : σ ∈ A 7→ p(F ∩ π∗−1(σ)) ∈ H/K.

Then F = FA,K,ϕ.

Proof. Lemma 2 shows that F ≤ FA,K,ϕ. What is left to show is that for any
choice of π ∈ A, F contains the set of all monomial substitutions f such that
π∗(f) = π and p(f) ∈ ϕ(π).

For any k ∈ K, there exists f ∈ F ∩B(n,H) such that p(f) = k. By Lemma
4, we know F contains B0(n,H), hence it also contains the coset fB0(n,H),
which is the set of all multiplications g such that p(g) = k. This means that:

F ∩B(n,H) = {[h1, . . . , hn] ∈ B(n,H) | h1 . . . hn ∈ K}.

For any π ∈ A, there exists f ∈ F such that π∗(f) = π and p(f) ∈ ϕ(π).
Since it also contains the coset f [F ∩B(n,H)], which is the set of all monomial
substitutions g such that π∗(g) = π∗(f) = π and p(g)K = p(f)K, the proof is
concluded. QED

3 Centralizers of subgroups that are normalized by
the base group

In this section we will describe the structure of centralizers of subgroups F
normalized by the base group of the monomial group Σn(H) of degree n over
an arbitrary group H. In the next section, this will then be used to understand
the structure of centralizers of subgroups in limit monomial groups.

The structure of the centralizer of an element in a monomial group of finite
degree was studied by Ore in [6]. This was then used to understand the structure
of the centralizer of a monomial substitution in a limit monomial group of type
Σλ(H) by Kuzucuoǧlu, Oliynyk and Sushchanskyy in [5].

However, the structure of centralizers of subgroups has only been studied in
the context of symmetric groups and not in monomial groups both in the finite
degree case and in the limit case.

We are going to start studying the centralizers of subgroups of monomial
degrees starting with the additional assumption of transitive action of π∗(F ).
Before that, we give an example to show that it is necessary to deal with the
elementary abelian 2-group case separately.
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Remark 2. Assume H is an elementary abelian 2-group, n = 2 and choose
A = S2, K = {1} and ϕ to be the constant homomorphism from A to H/K.

Take then F to be FA,K,ϕ = {[k1, k2]σ | σ ∈ S2, k1 = k2}. F is abelian and it
is an extension of degree two of H which means that for any choice of H having
finite 2-rank, CΣ2(H)(F ) cannot be be embedded into H.

The following lemma, though, proves in particular that if H is not an ele-
mentary abelian 2-group and π∗(F ) is transitive, with any choice of a natural
number n, CΣn(H)(F ) can, in fact, be embedded into H, proving that the exam-
ple given above is a needed exception in the statement of the following lemma.

Lemma 5. Let H be a non-trivial group and n be any natural number. Let
F ≤ Σn(H) be a subgroup of the complete monomial group Σn(H) such that
NΣn(H)(F ) ≥ B(n,H).

If π?(F ) acts transitively on {1, . . . , n} then:

� If n = 1, then

CΣn(H)(F ) ∼= CH(F ).

� If n ≥ 2 and H is not an elementary abelian 2-group then

CΣn(H)(F ) ∼= Z(H).

Proof. Take any γ = ησ = [k1, . . . , kn]σ ∈ CΣn(F )(H).

Since π? is a homomorphism, π?(fγ) = π?(f)π
?(γ), hence for γ to be in

CΣn(H)(F ) it has to satisfy σ = π?(γ) ∈ CSn(π?(F )).

Now, we know that fγ must be equal to f for any element f = µπ =
[h1, . . . , hn]π of F . This means that

(ηµηπ
−1

)σπ = µπ

since σ and π commute. From that we get the following necessary condition on
factors:

k−1
i hikπ(i) = hσ(i). (?)

We also remark that for any f ∈ F , the normal form of f is also in F as it can
be obtained by conjugating f with a multiplication.

Case 1: n = 1 As Σ1(H) is trivially isomorphic to H, F can be embedded
into H and the thesis is trivial.

Case 2: n = 2 and H is not an elementary abelian 2-group Consider
any γ = ησ = [k1, k2]σ ∈ CΣ2(H)(F ). Now, we will prove by contradiction that
σ is the identity.
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If σ = (12), take any f ∈ F such that π = π?(f) = (12). By substituting f
with one of its conjugates we can assume f is in normal form, say:

f =

(
x1 x2

x2 hx1

)
.

Then, by imposing equality of factors in the equation fγ = f , by (?) we get:{
k−1

1 k2 = h

k−1
2 hk1 = 1

(??)

As γ is in CΣ2(H)(F ) it also has to commute with f [ω] for any ω ∈ H, and from
that and (?) we get: {

k−1
1 k2 = hω

k−1
2 hωk1 = 1.

This, of course, only has solution compatible with (??) if hω = h for any ω ∈ H.
Since ω must be arbitrary then h must be central.

Again, as γ is in CΣ2(H)(F ) it also has to commute with f [1,a] for any a ∈ H
and from that, with (?), we get:{

k−1
1 ak2 = a−1h

k−1
2 a−1hk1 = a

Substituting k2 = k1h (which comes from (??)) in the first one, we get ak1 = a−1

for all a ∈ H. This can only happen in an elementary abelian 2-group, so it
contradict our hypotheses.

Now we know σ has to be the identity. Then (?) will give:{
k−1

1 k2 = 1

k−1
2 hk1 = h.

This implies that γ is a scalar. Imposing also that γ commutes with f [1,a] proves
that the scalar has to commute with all elements a of H and so it is scalar
induced by an element in Z(H).

Viceversa, of course, any scalar induced by an element in Z(H) is in Z(Σn(H)).
Case 3: n ≥ 3 and H is not an elementary abelian 2-group. Let

γ = ησ = [k1, . . . , kn]σ ∈ CΣn(H)(F ). We are going to prove by contradiction
that σ has to be the identity map.

Assume that σ moves at least an element, say σ(i) = j 6= i. Since n ≥ 3, we
choose l 6= i, j and since π?(F ) is transitive, there exists f ∈ F with π = π?(f)
mapping i to l.
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fγ
−1

= f gives a condition on the i-th factor, namely:

kihik
−1
l = hj . (3.1)

Now, π moves i to l and it must also move j, because

π(j) = π(σ(i)) = σ(π(i)) = σ(l) 6= j

because σ is one-to-one.

This means that by considering a normal form of f we can assume hi =
hj = 1 because i and j are moved by π and are not moved one to the other.

This means ki = kl for any l 6= i, σ(i), but this can be done for any i proving
that η is a scalar. Now that we know η is a scalar, by using transitivity of the
action of π∗(F ) there exists f ∈ F such that π = π?(f) moves i to j and without
loss of generality we assume f in normal form.

In this case one can easily see that the cycle involving i and j is the same in
the cycle decomposition of π and σ. Then for any index r in the cycle involving
i and j we have:

k−1hσ(r)k = hr.

This would mean that all factors pertaining to the indices in the cycle involving
i and j in f must be conjugate. This is only possible if it has determinant class
equal to {1}.

If this cycle is a 2-cycle then by conjugating it with multiplications we can
make it of the form

fa =

(
. . . xi . . . xj . . .
. . . axj . . . a−1xi . . .

)
for any a ∈ H, and for γ = [k]σ to commute with all of those, k would have
to be an element of H which acts by conjugation on all elements of the group
H by inverting them. This is impossible since H is not an elementary abelian
2-group.

This implies the cycle of σ involving i and j is an m-cycle for m > 2.

This means that there is a conjugate of f in F with hi = 1 and hj = h for
any choice of h ∈ H. Since γ = [k]σ commutes with it, hk = 1 for any choice of
h ∈ H, which contradicts the hypothesis that H is non-trivial and so σ is the
identity.

Following similar steps to the case n = 2, we get that η has to be a scalar
in the center.

Again, any scalar induced by an element of Z(H) centralizes F as it is an
element of Z(Σn(H)), which concludes the proof. QED
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To approach the non transitive case, we first have to give a definition of
equivalent orbits for a subgroup of a monomial group. If the action of π∗(F ) on
{1, . . . , n} is not transitive then it induces a partition of it into orbits.

Consider any two orbits Ω and Γ. For any monomial substitution f ∈ F , the
restriction of f to Ω ∪ Γ is well defined.

We say Ω and Γ are equivalent if there exists a bijection τ : Ω→ Γ inducing
a permutation

τ̃ : i 7→

{
τ(i) i ∈ Ω

τ−1(i) i ∈ Γ

on Ω ∪ Γ and a monomial substitution ρ with π∗(ρ) = τ̃ such that

fρ = ρf, ∀f ∈ F.

Example 1. Choose a group H, elements h1, h2, x ∈ H and define:

F = 〈[1, h1, 1, 1, h
x
1 , 1](12)(45), [1, 1, h2, 1, 1, h

x
2 ](23)(56)〉.

π∗(F ) has {1, 2, 3} and {4, 5, 6} as orbits and, if we take

τ : i ∈ {1, 2, 3} → i+ 3 ∈ {4, 5, 6},

then τ̄ = (14)(25)(36) and the monomial substitution

ρ = [x, x, x, x−1, x−1, x−1](14)(25)(36)

commutes with the generators of F , so the orbits {1, 2, 3} and {4, 5, 6} are
equivalent.

Theorem 2. Let H be a non-trivial group and n be any natural number.
Let F ≤ Σn(H) be a subgroup of the complete monomial group Σn(H) that is
normalized by the base group.

Let {Γi}i≤r be the set of equivalence classes of orbits of π∗(F ) and define si
to be the order of Γi and ti to be the order of any orbit in Γi.

Then

CΣn(H)(F ) ∼=
r

Dr
i=1

Ci o Ssi

where
Ci ∼= CH(F|Ωi)

if ti = 1 and Ωi is any representative of Γi and

Ci ∼= Z(H)

if ti > 1.
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Proof. The result easily follows from lemma 5 together with the definition of
equivalent orbit. We only need to show that the choice of a representative in
equivalence classes of orbits of size 1 is irrelevant. Assume, for simplicity of
notation, Ω1 = {x1} and Ω2 = {x2} with Ω1 and Ω2 being equivalent. This
means there is a monomial substitution ρ = [k1, k2](12) in Σ2(H) commuting
with any element of F restricted to Ω1∪Ω2. Now, of course for any element h1 ∈
F|Ω1

(which we think of as embedded into H), by definition, we will have some
f ∈ F such that f|Ω1∪Ω2

= [h1, h2], where h2 ∈ F|Ω2
. Doing the calculations to

impose f|Ω1∪Ω2
ρ = ρf|Ω1∪Ω2

shows F|Ω1
≤ F k2|Ω2

and k1k2 ∈ CH(F|Ω1
). Similarly

one shows F|Ω2
≤ F k1|Ω1

, which allows to conclude F k2|Ω2
≤ F k1k2|Ω1

= F|Ω1
.

This means F|Ω1
and F|Ω2

are conjugate in H and hence their centralizer in
H is isomorphic and the choice of a representative in their equivalence class is
not important. QED

4 Centralizer of subgroups in limit monomial groups

In this section, we give a description of the structure of the centralizer of a
subgroup F of Σλ(H) that is normalized by the base group and such that π∗(F )
is finite.

As the group Σλ(H) can be seen as the union of an infinite increasing se-
quence of monomial groups of degree nj , each isomorphic to some Σnj (H), our
subgroup F can be thought of as subgroup of Σnk(H) for some k and π∗(F )
as a subgroup of Snk . When thinking of F as a subgroup of Σnk(H), it is also
trivial that it is normalized by the group.

In everything that follows, for any i ≤ r, Γi is going to denote an equivalence
class of orbits of π∗(F ) when thought of as a subgroup of Snk for some k ∈ N.

Theorem 3. Let λ be a Steinitz number, H an arbitrary group and Σλ(H)
be the limit monomial group over H associated to λ. Let F be a subgroup of
Σλ(H) normalized by the base group and such that π∗(F ) is finite.

Let {Γi}i≤r be the equivalence classes of orbits associated to F and let si
denote the order of Γi and ti denote the order of any orbit in Γi. Then

CΣλ(H)(F ) ∼=
r

Dr
i=1

Σλi(Ci)

where λi = si
λ
nk

and Ci is as in Theorem 2.

Proof. Using Theorem 2 we can find the structure of the centralizer of F as a
subgroup of Σnk(H) as

CΣnk (H)(F ) ∼=
r

Dr
i=1

Ci o Ssi ∼=
r

Dr
i=1

Σsi(Ci).
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For any j > k we can embed CΣnj (H)(F ) into CΣnj+1 (H)(F ), inspired by the way

it was done in ([4], Lemma 4.4) and ([3]), with strictly diagonal embedding.
To compute the centralizer in the direct limit, we take the limit of the direct

system of centralizers of F in Σnj (H) with j > k, concluding

CΣλ(H)(F ) ∼=
r

Dr
i=1

Σλi(Ci)

where λi = si
λ
nj∗

and the Ci are as in Theorem 2. QED
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