Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932
Note Mat. 40 (2020) no. 1, 1-12. do0i:10.1285/115900932v40n1pl

Generalization of certain well-known
inequalities for rational functions

M. Bidkham

Department of Mathematics, Semnan University, Semnan, Iran.
mbidkham@semnan.ic.ir

T. Shahmansouri
Department of Mathematics, Semnan University, Semnan, Iran.
t.sh.math20160gmail.com

Received: 21.7.2019; accepted: 21.10.2019.

Abstract. Let P, be a class of all polynomials of degree at most m and let Ry =
Run(dy,..sdn) = {p(2)/w(2);p € Pm,w(2) = [[]_,(z — d;) where |d;| > 1,j =1,...,n and
m < n} denote the class of rational functions. It is proved that if the rational function r(z)
having all its zeros in |z| < 1, then for |z| =1

¥ () 2 1B ()] = (= m)}r(2).

The main purpose of this paper is to improve the above inequality for rational functions r(z)
having all its zeros in |z| < k < 1 with ¢t-fold zeros at the origin and some other related
inequalities. The obtained results sharpen some well-known estimates for the derivative and
polar derivative of polynomials.
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1 Introduction and statement of results

Let p(z) be a polynomial of degree at most n. We denote by U_ and Uy the
regions inside and out side the set U := {z : |2| = 1}, respectiveily.

In 1930, Bernstein [2] revisited his inequality and established the following
comparative result by assuming that p(z) and ¢(z) are polynomials such as p(z)
has at most of degree n and ¢(z) has exactly n zeros in U UU_ and for z € U

Ip(2)] < la(2)|,

then for z € U
' (2)] < 1d'(2)]. (1.1)
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Let D,p(z) denote the polar derivative of the polynomial p(z) of degree n
with respect to the point «; a € C, then

Dap(z) = np(2) + (= 2)p (2).

The polynomial D,p(z) is of degree at most n—1 and it generalizes the ordinary
derivative in the sense that

lim | ] =7'(2). (1.2)

a—00 o
In the past few years many papers were published concerning the polar deriva-
tive of polynomials (for example see ([3], [8])). Aziz and Rather[1] proved that
if all zeros of p(z) lie in |z| < k < 1, then for every real or complex number «
with |a| > k, we get

n
D > — —k . 1.3
max |Dap(2)] > 11 (lal — &) max|p(z) (13)

Let P, be a class of all polynomials of degree at most m and d1, ds, ..., d, be
n given points in Uy . Consider the following space of rational functions with
prescribed poles and with a finite limit at infinity:

Rin = Ropn(dy, ooy d) = {5;((22) :p€Pn),

where
w(z) =1_ (2 — d;).

The inequalities of Bernstein and Erdos-Lax have been extended to the rational
functions ([4], [7]) by replacing the polynomial p(z) with a rational functions
r(z) and z" with Blaschke product B(z) defined by

w*(z)  Zw(l) . 1-—d;z
Cow(z) w(z) = T z—d; )

Li et al.([6], [7]) obtained Bernstein-type inequalities for rational function
r(z). They proved that if r(2) € Ry, and all the zeros of r(z) in U UU_, then
for z€e U

I (2) = %{IB'(Z)I — (n=m)}r(z)]. (1.4)

Xin Li [6] extended the inequality (1.1) for rational functions by showing
that, if 7(z), s(z) € Ry such that s(z) has all its n zeros in U U U_ and for
zeU

r(2)] <s(2)l,
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then for z € U
[r'(2)] < 1'(2)]. (1.5)
Recently, Hans and Tripathi [5] proved that, if 7(z), s(z) € R, such that

s(z) has all its n zeros in U UU_ and |r(z)| < |s(z)| for z € U, then for every
real or complex number 5 with || <1 and z € U

@)+ BRI < G+ B @G L (1)

Also, they obtained that if r(z) € R, ., then for every real or complex
number § with |5| <1 and z € U

@)+ SIB ) | < T+ SIB G ). (1)

In this paper, we first prove the following theorem which not only leads to
several conclutions about inequality for rational function, but also generalize
inequality (1.4).

Theorem 1.1. If r(z) € Ry, has a zero of order p at zp with |z9| > k, k <
1, and the remaining m — u zeros are in |z| < k, then for z € U

w2 2 (1) (1 + 2 )

21
-1 ’20‘}%a5(|7“(z)|.

(1.8)

For ;4 = 0 in Theorem 1.1, we have the following generalization of the in-
equality (1.4).

Corollary 1.1. If 7(z) € Ry, has all its zeros in |z| < k <1, then for z € U

2m

/ 1 /
> —|—7— max . .
max [r(2)] 2 5\ 1B @)+ 7~ maxr(z)] (1.9)

Furthermore, if we take k = 1 and m = n in inequality (1.8), then we have
the following result.

Corollary 1.2. If r(z) € R, has a zero of order p at zp with |zp| > 1, and the
remaining n — u zeros are in U UU_, then for z € U

1[/1—1z0]\" 24
"(2)] > = B'(2)] — p) — :
max | (z)] 2 {<1+!zo|> (IB'(2)| = ) T 7o) max |r(z)]
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Remark 1.1. If we consider p(z) as a polynomial of degree m, then for rational

function (2) = 2% we have
- (2] [

w*(2) n(la)2=1) (1 —az\""
Also for B(z) = W)’ we have B'(z) = o) < P > , hence for

n(ja” - 1)

zeU, |B(z) = o af? . Now by taking m =nand d; = o; j =1,2,...,n

in Theorem 1.1 for z € U, we get
g Do) 1 (1=l (nla =)
2eU |z —af™tt 7 27\ 1+ |2 |2 — al?
2
B P
1+ 20| z€U |z — a|?

that is

1. (1—|2\" n(\oz|2 -1)
D > 1 e —
o Dap(e)| 2 (112 ) (M < s -l

2p]z — af

Cra Pl

which implies

mae|Da(a) 2 () (MY s ja)

2u
- 1+ |a|)fmax|p(2)|.
[ (0 o)} ma (o)
Therefore, we obtain the following result on the polar derivatives of a poly-
nomial which is an improvement and generalization of the inequality (1.3).

Corollary 1.3. If p(z) € P, has a zero of order p at zy with |z9| > 1, and the
remaining n — p zeros are in U U U_, then for every real or complex number «
with |a| > 1 and z € U

1 1—‘2’0’ H
D > — -1
i Dap()] > 00 (1512 ) (lal -
1
|

: [N GI}SD* i zod (lol + 1)} max p(:)l (1.10)
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Dividing two sides of inequality (1.10) by |a| and letting || — oo, we
have the following extension of a result which is proved by Turén[10].

Corollary 1.4. If p(z) € P, has a zero of order p at zp with |zp| > 1, and the
remaining n — p zeros are in U UU_, then for z € U

w2 2 5 {0 ($120) = 20 Lo

z€U — 2 1+ 20| )  1+]z20|) zev

Next, we obtain the following generalization of inequality (1.6) as follows:

Theorem 1.2. Let r(2),s(z) € Ry, and assume s(z) has all its zeros in
|z| <k <1.If r(2) and s(z) have zeros of order ¢ at origin and for z € U

r(2)] < s(2)],

1
then for every real or complex number p with |p| < B

/() o (1B + HEE IR 1

1+k

<

25(2) + p (yB'(z)| L k@) + (2m = ”>) s(z)‘ RENCREY

If we take t = 0, k = 1 and s(z) = B(z) max,cy |r(z)| in inequality (1.11),
then we have the following generalization of inequality (1.7).

1
Corollary 1.5. If 7(z) € Ry, 5, then for every real or complex p with |p| < 3
and for z € U
[2/(2) + p{1B'(2)| - (n — m)r(2)}] <

{11+ pllB'(2)| + (0 —m)lpl} max|r(z)].

Finally, by involving the coefficients ¢g and ¢;,,—¢ of p(z), we give a refinement
of Corollary 1.1 by proving the following theorem.

Theorem 1.3. If r(2) € Ry, has all its zeros in U U U_ with t-fold zeros
at the origin then for z € U

Re{”’(z)} > % {|B’(z)\ - (n—m—t)+|cmt|_|co|}.

7(2) |cm—t| + |col

We can immediately get from Theorem 1.3 the following result.
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Corollary 1.6. If r(z) € Ry, has all its zeros in U U U_ with t-fold zeros at
the origin, then for z € U

/ 1 N — (n—m — |em—t| — |col r(z
RO T B e e e LA IR CBE)

Since all the zeros of r(z) and therefore the zeros of p(z) := Z;:ot cjz) are
in UUU_, therefore |c;,—¢| > |co|. Hence inequality (1.12) is an improvement of
Corollary 1.1.

If we assume that r(z) has a pole of order n at z = «, |a| > 1, then
D
r(z) = —(Z_O‘Z()ill, where D,p(z) is the polar derivative of p(z).
2
-1
Also for z € U, |B'(2)| = nllol” = 1)
|2 —af?

Now by taking m = n and d; = o; j = 1,2,...,n in inequality (1.12) for
z € U, we get

L fnllaf - 1) len—tl =leol\ () _ .
Dap) 2 5 { M (e 220 ) o - ) f e

Therefore, we obtain the following result on D,p(z), which is an improvement
and generalization of the inequality (1.3) in particular case.

Corollary 1.7. If p(z) € P, has all its zeros in U UU_, with t-fold zeros at the
origin, then for every real or complex number a with |a| > 1 and for z € U

ol -1

Dap(2)] {n+t+ "“O‘} p(2). (1.13)

|en—t] + |col

Dividing two sides of inequality (1.13) by |a| and letting |o| — oo, we get
the following generalization of the result due to Turan [10].

Corollary 1.8. If p(z) € P, has all its zeros in U UU_, with t-fold zeros at the
origin, then for z € U

+t  1|en—t] — ol
'(z >{n + == 2)|.

2 Lemmas

For the proofs of these theorems, we need the following lemmas.
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Lemma 2.1. If z € U, then
2B'(2)

(11) Re{ w(2) }: 5 .

Proof.
(7). It is proved by Li [7].
i Cw) 2B Awie) | wl()
(7). Since B(z) =) th Bl2) () )
Hence by (i) for z € U

which gives

z(w*(2))", . — |B'(»
Re(2 ) Re( 5y )
For w*(z) = z”w(%), we have
2w (2)) = n2"w(Z) - (D),
and one can easily verify that for z € U
z(w*(z)) . 2w’ (2)
w*(z) ( w(z) )
therefore (w(2)) (2)
Re{T(z)} + Re{ e }=n

Using (2.1) in (2.2), we get for z € U

n—|B'(z)]
2 )

Re{ 2w (2)

} =

w(z)

which is the required result.

(2.2)

Lemma 2.2. Let r(z) € R, 5, has all its zeros in |z| < k < 1, with t-fold zeros

at the origin and m < n, then for z € U

Re{zr'(z)} 2;{’B,(z)H_k(2t—n)+(2m—n)}.

r(2) 1+ k&
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Proof. By the hypothesis of Lemma 2.2

o) = 220 _ A TI e = b

w(z)  Iljo(z—dj)

where b;, |b;| <k <1,i=1,..m —t, are the zeros of r(z). Hence

zr'(z) _ zp'(z)  2w'(z) _ oz _2w'(2)
EEE OO H(; =) ()

Now by (ii) of Lemma 2.1, for z € U

A, p R 2 n—|B)
f { r(z) } t+R(;Z—bz‘) 2 =

m—t n—|B(2)
1+k 2

t+

1
_
2{' () + 1+ %

which proves lemma 2.2 completely.
We need the following lemmas due to Li [6] and Osserman [9] respectively.

k(2t —n) + (2m—n)}

Lemma 2.3. Let A and B be any two complex numbers.Then

(7) If |A| > |B| and B # 0, then A # 6B for all complex numbers ¢ satisfying
|0] < 1.

(ii) Conversely, if A # 6B for all complex numbers § satisfying |0| < 1, then
| Al = |B|.

Lemma 2.4. Let f : D — D be holomorphic. Assume that f(0) = 0. Further
assume that there is b € 9D, so that f extends continuously to b, | f(b)| = 1 and
1/ (b) exists, then

2

3 Proof of theorems

Proof of Theorem 1.1. Let 7(z) = (2 —20)"s(z) € Ry n, where s(2) € Rp—pn
having all its zeros in |z| < k < 1. Then

r'(2) = (2 = 20)"s'(2) + p(z — 20)" ' s(2)

[(2)] = 1(z = 20)"'(2) + (= = 20)" ' 5(2)|
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> |(z = 20)"s'(2)] = ul(z = 20)" " 's(2)],

which implies
zeU
or

> |1 - ® —u(l .
gleag!r( z)| > |1 = |zol| maxls( )= w(1+ [20)" meaUx! s(2)

By lemma 2.2, for z € U

w5 (2) 2 3 {1 + 2P )

Tk max |s(z)|.

zeU

By applying this inequality in (3.1), we get

max\r/(z)] > %{‘1 — | zo] | (\B’(z)] i M B n>

zeU
—2u(]1 + |20/)* "} max [s(z)].
zeU

For z € U, we obtain

1 1
s(z)|=———r(?)| 2 75— Ir(z
s2) = ol 2 (@)

or

> .

we 1 2 s ey 28 )

> — 20)"s' (2)| — — 20)" s(2)).
max [r'(2)| = max |(z - z0)"s'(2)] — pmax|(z — 20)" " s(2)|

(3.1)

(3.2)

(3.3)

Using (3.3) in (3.2), we get (1.8). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. First supposing that s(z) # 0 for z € U, then for
every complex number « with |a| < 1, it follows by Rouche’s Theorem that
ar(z) + s(z) has all zeros in |z| < k < 1 with t-fold zeros in origin. Now

ar(z) +s(z) # 0 in U U Uy, hence by Lemma 2.2 for z € U, we get

zlar(z) +s(2))'| _ 1 ' k(2t —n) + (2m —n)
ar(z) + s(z) >2{|B( I+ }’

|2(ar’(2) + 5(2))]

{|B'(z)| + k(2 nl) _—:: ](§2m —n) } lar(z) + s(z)].

1
>
-2
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Since |B'(z)| # 0 (see formula 14 in [7]), it follows by using (i) of Lemma 2.3
for every real or complex 8 with 8] < 1,

Har'(2) +5'(2)}

v {|B’(z)\ M2+ B o) } {ar(=) +5(2)} £0

in U U U4. This implies that

a {zr’(z) 4 g <|B’(z) LIC Rl ”)) r(z)}

1+k

L {Zsl(z) . g <|B’(z)\ N k(2t — nl) ——:: I(€2m - n)> s(z)} .

Now using (ii) of Lemma 2.3, we get for « with |a] < 1 and z € U,

s g (!B’(z)l L Rt - nl) j: ]izm - n)> s(z)‘

>

(2 + g (B’(z)| LR+ (2m = ”)) T(z)‘ |

1+ k
: g o . 1
Taking p := 5 8ives us the desired inequality when [p| < 3"
Finally, by continuity, the same must be hold for those zeros of s(z) lie on U

1
and for |p| < 3" This completes the proof of Theorem 1.2.
Proof of Theorem 1.3. Let

where p(2) = ¢t Hﬁ_lt(z —bi),bjeU_,i=1,2...,m—t.
Therefore, we have

el f e e e )

hence by (i) of Lemma 2.1

re{ T oy pe B n=ITE (3.4)
Now we calculate Re ZZS) }

Since p(z) is a polynomial of degree m —t, which has all its zeros in U_, therefore
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)#0in U_ .

-2

Em—t X
1=

the polynomial p*(z) = 2™~ p(

Hence

is analytic function in U UU_ with H(0) =0 and |H(z)| =1 for z € U.

Applying Lemma 2.4 to H(z), we conclude for z € U

|H/(Z)| > m .
Also,
HG) . @) @)
Ho 't v
and for z € U
P = n = 00— ()

Therefore for z € U

ZH%@::—Un—t—1)+2Re{iiS>}.

Also,
H'(z) _

s H'(2)
H(z)

| = @)

:

therefore

|H%ﬂ:(mtlﬂ2%{ﬁgw.

Using (3.5), we obtain for z € U

Since p(z) # 0 for z € U, hence by (3.9), (3.10) and (3.6), we get
zp'(z)} - 2|Crm—t|

p(2) | 7 ol + lem—tl’

—On—t—1)+2Re{

11

(3.8)

(3.9)

(3.10)
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Re{zp/(z)} > m—t—1 N lem—t] .
p(z 2 |col + |em—t]

Using this inequality and (3.4), we get for z € U

/ 4 _ /
Re{zr (z)} L t—1 lem—t|  n—|B'(2)]
r(z) 2 |col + |em—t] 2

) P |Co|}
= SIBR|-nh-m-—t)+ ——— b,
2{| ()] — ( )+ [t

which is the required result.
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