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Abstract. In this paper by using the lacunary sequence and Orlicz function ¢, we introduce
a new concept of lacunary statistically ¢-convergence, as a generalization of the statistically
¢—convergence and ¢—convergence. Based on this concepts, introduce a new sequence space
S — ¢ and investigate some of its basic properties. Also studied some inclusion relations.
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1 Introduction

The idea of convergence of a real sequence was extended to statistical con-
vergence by Fast [5] (see also Steinhaus [18]) as follows:

A real number sequence z = (x,,) is said to be statistically convergent to the
number L if for each £ > 0,

lirrln% |{k<n:zp—L|>¢c}|=0,

where the vertical bars indicate the number of elements in the enclosed set.
L is called the statistical limit of the sequence (z,) and we write S — lim,z =
L or z;; — L(S). We shall also use S to denote the set of all statistically
convergent sequences. Statistical convergence turned out to be one of the most
active areas of research in summability theory after the works of Fridy [9],
Salat [15]. Some applications of statistical convergence in number theory and
mathematical analysis can be found in [1, 2, 8, 11, 12, 13, 16, 17, 19]. There
is a natural relationship [3] between statistical convergence and strong Cesaro
summability:

| o1 |= {x = (zy) : for some L, lim (L 3"}, | 2 — L |) = 0}.
n

In another direction, a new type of convergence called lacunary statistical
convergence was introduced in [10] as follows (for details one may refer [4]):
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A lacunary sequence is an increasing integer sequence 6 = (k)¢ NU{o} such
that kg = 0 and h, = k, — k,—1 — o0, as r — oo. Let I, = (ky—1,k,] and

k
QT:kT-

r—1

A real number sequence z = (x,,) is said to be lacunary statistically conver-
gent to the number L if for each € > 0,

lilnh%|{k€IT:|a:k—L|26} |=0;

L is called the lacunary statistical limit of the sequence (x,) and we write
Sp —limz = L or xp, — L(Sp). We shall also use Sy to denote the set of all la-
cunary statistically convergent sequences with respect to the lacunary sequence
0. The relation between lacunary statistical convergence and statistical con-
vergence was established among other related things in[10]. There is a strong
connection between | o | and the sequence space Ny [6], which is defined as

Ny = {x = (xy,) : for some L, lim(h—lr > lzx— L) =0}
T kel
In the literature, statistical convergence of any real sequence is defined rela-
tively to absolute value. While, we know that the absolute value of real numbers
is a special case of an Orlicz function [14] i.e. a function ¢ : R — R such that it
is even, non-decreasing on R™, continuous on R, and satisfying

¢(z) =0<«<= x =0 and ¢(x) — 00 as x — 0.

Rao and Ren [14] describe the important roles and applications that Orlicz
functions have in many areas such as economics, stochastic problems etc.

An Orlicz function ¢ : R — R is said to satisfy the Ay condition, if there
exists an M > 0 such that ¢(2z) < M .¢(x), for every z € RT.

Example 1. (i) The function ¢ : R — R defined ¢(z) =| = | is an Orlicz
function.

(ii) The function ¢ : R — R defined by ¢(z) = 22 is not an Orlicz function.

(iii) The function ¢ : R — R defined by ¢(x) = 22 is an Orlicz function
satisfying the Ao condition.

(iv) The function ¢ : R — R defined by ¢(z) = el*l— | | —1 is an Orlicz
function not satisfying the Ao condition.

In this paper by using the lacunary sequence 6 and Orlicz function ¢, we
introduce a new concept of lacunary statistically ¢— convergence, as a generaliza-
tion of the statistically convergence [5] and lacunary statistically convergence[10]
and based on this concepts, introduce a new sequence space Sy — ¢. We inves-
tigate some of its basic properties. Also we study some inclusion relations.
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2 Definitions and Preliminaries

Definition 1. Let ¢ : R — R be an Orlicz function. A sequence x = (z,,)
is said to be ¢—convergent to L if lim¢(x, — L) = 0.
n

In this case, L is called the ¢—limit of (z,) and denoted by ¢ — limx = L.

Note 1. If we take ¢(x) =| x |, then ¢p—convergent concepts coincide with
usual convergence. Also it is easy to check, if © = (x,) is ¢—convergent to L,
then any of its subsequence is ¢p—convergent to L as well.

Definition 2. Let ¢ : R — R be an Orlicz function. A sequence x = (z,,)
is said to be statistically ¢p—convergent to L if for each € > 0,
lign% | {k <n:¢(xy, — L) >¢e}|=0.
L is called the statistical ¢— limit of the sequence (x,) and we write S —

¢ limz = L or x — L(S — ¢). We shall also use S — ¢ to denote the set of all
statistically ¢—convergent sequences.

Note 2. If we take ¢(x) =| = |, then S — ¢ convergence concepts coincide
with statistically convergence.

Definition 3. Let ¢ : R — R be an Orlicz function. We define new sequence
spaces | 01 |4 and Ny — ¢ are as follows:

| o1 |p= {z = (z) : for some L, lim(: >}, ¢(zy — L)) = 0},
Ny — ¢ = {x = (z,) : for some L, lim(h% > ¢(xr — L)) = 0}.

r kel,

Note 3. If we take ¢(x) =| « |, then the spaces | o1 |¢ and Ny — ¢ coincides
with | o1 | and Ny respectively.

3 Main Results

Definition 4. Let ¢ : R — R be an Orlicz function and 6 be a lacunary
sequence. A sequence z = (x,) is said to be lacunary statistically ¢—convergent
to L if for each € > 0,

livlqrnh% | {k €l :¢(xy, —L)>c}|=0.

In this case, L is called the lacunary statistical ¢— limit of the sequence (zy,)
and we write Sy — ¢ limxz = L or xp — L(Sp — ¢). We shall also use Sy — ¢ to
denote the set of all lacunary statistically ¢—convergent sequences.
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Note 4. If we take ¢(z) =| x |, then Sy — ¢ convergence coincide with
Sp—convergence; which was studied by Fridy and Orhan [10]. Thus Sy — ¢
convergence is a generalization of Syp—convergence.

Example 2. Let ¢(z) = 22 and § = (27). It is obvious that ¢, satisfies the
A9 condition. Let us consider the sequence (x,), defined by

vn, n=kkeN
ITn = 1 o .
%, otnerwise

then the sequence (z,,) is Sp — ¢ convergent to 0, although (z,) is not
convergent.

Justification: We have
lignh% |{kel,:p(xpy—L)>e}|= li;ny%l [ {ke @712 : ¢p(zp — 0) >} |
— 3 i r—1 Tl . 2 > < : i < . 2 >
2L1m2r\{k€(2 ,2].xk_5}\_21741m2r | {k<2":a?2>e}|
:21rim% | {kgn: x%Zs} |= 0.
This shows that the sequence (x,,) is Sy — ¢ convergent to 0, although (z,,)

is not convergent.

Example 3. Let ¢ : R — R be an Orlicz function with ¢(z) =| z |, 0 be
any lacunary sequence, then the sequence (z,,) defined by x, = n?, for every
n € N is not Sy — ¢ convergent.

Justification: Take any x € R. Then x < 0 or z > 0. If z < 0, choose € = %,
then for every n € N,

K(e)={kel,:|zy—zx|>c}=1,.
Therefore for x <0, li{nh% |[{kel |z —x|>e}|= li{nh% | I |= 1.
If z > 0, then there exists ng € N such that x,,—1 <z < z,,.
In this case, if x < 1, by taking € = % min{z, 1 — x}, we get
K(e)={kel,:|zy—z|>c}=1,.

Again, if x > 1, by taking ¢ = % min{z — Tp,_1, Tn, — T}, We get
K(e)={kel, |z —x|>e}=1,.

Thus for z > 0, limhi |[{kel,:|z—a|>e}|= limhi | I |= 1.
r r r hr
Hence the result.

Definition 5. A sequence z = (x,,) is said to be ¢— bounded with respect
to the Orlicz function ¢, if there exists M > 0 such that ¢(z,) < M, for every
n € N.
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In the following theorem we give some inclusion relations between the spaces
Ny — ¢ and Sy — ¢ and show that they are equivalent for ¢— bounded sequences.

Theorem 1. Let 0 = (k,) be a lacunary sequence, then
(i) xx, — L(Ng — ¢) implies x, — L(Sp — ¢), and reverse is not true.
(i) If x is ¢— bounded and xy, — L(Sp — ¢) then xp, — L(Ng — ¢).

Proof. (i) If ¢ > 0 and z, — L(Np — ¢) , we may write
oplep—L)> > Plepy—L)>ce|{kel, :p(xp—L)>¢e}]|

kel, kel
¢(x—L)>e
from which the first result follows.

In order to establish the 2nd part, we will construct a sequence which is in
Sg— ¢ but not in Ny — ¢. For this, let ¢(z) =| = |, proceeding as in [10], page-45,
0 be given and define z; to be 1,2,....... J[vVh,] at the first [/h,] integers in I,
and xp = 0, otherwise. Note that z is not bounded. It was shown in [10] that
x — 0(Sp), but xj, is not convergent to 0(NNy). By Note 3 and 4, we conclude
that xx — 0(Sp — @) but z is not convergent to 0(Ny — ¢). Hence we may write

(No — ¢) € (Sp — ¢)-
(7i) Let x — L(Sp — ¢) and z is ¢— bounded, i.e ¢(zy) < M for every
k € N. Given € > 0, we get
ey ek —L) =3 Y dlax—-L)+4 X dlax—L)

kel kel kel
(zp—L)>e ¢(zx—L)<e
< M++:(L) |{k €l :¢(xy— L) > e} | +e, which yields the result.

QED

Note 5. As a consequence of the result (i) and (i) of the above theorem,
we can conclude that, if z is ¢— bounded then Sy — ¢ = Ny — ¢.

In the following lemmas we study the inclusions S —¢ C Sgp—¢ and Sy— ¢ C
S — ¢ under certain restrictions on 6 = (k).

Lemma 1. For any lacunary sequence 6 and any Orlicz function ¢, S —
¢ limx = L implies Sy — ¢ limx = L if and only if liminfq, > 1. If liminfg, =
T T

1, then there exists a bounded S — ¢ summable sequence that is not Sy —
¢ summable (to any limit).

Proof. (Sufficiency) Suppose that liminfg, > 1, then there exists a 6 > 0 such
T
that ¢. > 1 + 9, for sufficiently large r, which implies that Z—: > %.
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If x, — L(S — ¢), then for every £ > 0 and for sufficiently large r, we have

il {k el i ¢(ax— L) > e} |= o [{k € I - p(ax — L) > e} |
<L (0 <k glan—L) 2 e}

Thus xp — L(Sp — qﬁ)

(Necessity) Assume that liminfg, = 1 and construct a sequence which is

— ¢ convergent but not Sy — ¢ convergent. For this, let ¢(x) =| x |, proceeding
as in ([7], page-510 and [10], page-46) we can select a subsequence (k;,) of the

lacunary sequence 6 such that -

<1+ and >j,whererj>r] 1+2.

krj
1, iel,,j=123.
0, otherwise

Then for any real L, we have %Z |zi— L|=|1—-L|,j=1,23,..

"3

and ﬁj12|xi—L\:|L|,forr7érj

Now we define a bounded sequence x = (z;) by x; = {

ie li;nh% |{kel :¢(xx—L)>e}|#0
Thus «x is not Sy — ¢ convergent to L.

However x is S — ¢ convergent, since if ¢ is any sufficiently large integer we

can find the unique j for which k:r <t<k,, S 1 and write
t +hr
%21‘:1@5(%’):121 1|5U1|< 1 %"’%:%
as t — o0, it follows that j — oo. Hence = €| 01 |0. It follows from Theorem
2.1 of [3] that z is statistically convergent. The above Note 2 implies x is S — ¢
convergent. QED

The following example shows that there exists a Sy — ¢ convergent sequence
which has a subsequence that is not Sy — ¢—convergent.

Example 4. Let § = (2") be the lacunary sequence, ¢(z) =| z | be an

n, n=k,keN
%, otherwise '
Then the sequence (z,) is Sp — ¢ convergent to 0. However, (x,) has a

subsequence, which is not Sy — ¢ convergent.

Orlicz function and (z,,) be a sequence defined by z,, =

Lemma 2. For any lacunary sequence 0 and any Orlicz function ¢, Sp —
¢ limx = L implies S—¢ limxz = L if and only if lim supg, < oco. If lim supgq, =

T T
o0, then there exists a bounded Sy — ¢ summable sequence that is not S — ¢
summable (to any limit).
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Proof. If limsupgq, < oo then there is an H > 0 such that ¢, < H for all r.

T
Suppose that xp — L(Syp — ¢), and let N, =| {k € I, : p(x, — L) > ¢} | .
By the definition of Sy — ¢ convergence we have, given any & > 0, there is
an rg € N such that
N’" < ¢ for all r > ry.
Now let M = max{N 1 < r < 1o} and let n be any integer satisfying
kr—1 <n < k;; the we can write
Li{k<n:glar—L) >e} |< 2 [{k <k dlap— L) > e} |

e k‘rl_l{Nl—i—Nz_'_ ...... NTO+NTO+1+ ...... _|_Nr}
Ny

< kiwl'lno + k: {hr0+1 T 0:11 4o + h?“%}

<7 roM + (sup P hrggr + o +h}

S TDM +€/k}; kro < EOM +6 qr < % +€/H

and the sufficiency follows immediately.
Conversely, suppose that lim supg. = oo and construct a sequence which is
T

Sg — ¢ convergent but not S — ¢ convergent. For this, let ¢(z) =| = |. Following
the idea in ([6], page-511 and [10], page-47), we can select a subsequence (k)
of the lacunary sequence 6 = (k;) such that g, > j, and defined a bounded
sequence x = (z;) by
1, ko1 <0< 2k, 1, 5 =1,2,3..
0, otherwise

It is shown in ([7], page-511) that z € Ny but = ¢| oy | . By Theorem 1(i) of
([10], page-44), we have z is Sp-convergent. The above Note 5 implies = is Sp— ¢
convergent, but it follows from Theorem 2.1 of [3] that z is not S—convergent.
By above Note 2 implies x is not S — ¢ convergent. QED

Ty =

Combining the above two lemmas we get
Theorem 2. Let 6 be any lacunary sequence; then S — ¢ = Sy — ¢ if and
only if 1 < liminfg,. <limsupg, < occ.
T r

Theorem 3. Let 0 be a lacunary sequence and ¢ be a convex Orlicz function.
If the sequence (zy,) is Sy — ¢ convergent, then Sy — ¢ limit of (x,) is unique.

Proof. If possible, let Sy — ¢ limz, = xg and Sy — ¢ limx, = yg. Then
lim- | {k € I, : ¢(z —w0) >} |=0
r T

and limh% |{ke€l:é¢(xr—1yo) >c}|=0
ie, limhir |{kel :¢(xy—x9) <e}|=1
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and lim- | {k € I, : p(zx —yo) < e} |=1
r T
Let us consider such k € I,. for which both of ¢(z, —x¢) < € and ¢(xr—yo) <
€ are true. For such k € I, we have
o(3(z0 — ) = d(3 (w0 — p + 2k — Y0)) < 2d(wk — 20) + (2w — yo) = €
Hence the theorem. QED

For the next result we assume the convex Orlicz function which satisfies
Ag—condition.

Theorem 4. If (z,) and (y,) are Sgp — ¢ convergent and « is any real
constant, then

(i) (xn+yn) is Sp — ¢ convergent and Sg— ¢ lim(z, +y,) = Sp— ¢ limz, +
Sy — ¢ lim y,.

(ii) (axy) is Sgp — ¢ convergent and Sy — ¢ lim(ax,) = a. Sy — ¢ lim x,.

Proof. Since ¢ satisfies the As— condition, then there exists M > 0 such that
d(2x) < M.¢p(x), for every z € R.
(i) Let Sg — ¢ limx, =z and Sy — ¢ limy, =y
ie h;nh% | {k €1, : ¢(x — ) > ¢} |:0:li£nh% | {k el : oy —vy)>e}|
ie liqgnhir |{kel,:¢(xr—z)<e} |:1:li7r1nh% |[{kel,:o(yr—y) <e}|
Let us consider such k € I, for which both of ¢(zx —) < 557 and ¢(yx —y) <
5a7 are true.
Then for such k € I, we have

O((zx +yr) — (x +y)) = o((zx — 2) + (yr — y)) < S(2(zx — 2) + 2(yx —y))
< M(¢p(zr —x) + d(ye —y) = M.(557 + 537) = €

Thus limh% [{kel,:p(zp+y—2z—y)<e}|=1

ie limhir |[{kel,:p(zr+yp—xz—y) >} |=0

ie Sg— ¢ lim(zy, +yn) =x+y =59 — ¢ limz, + Sy — ¢ limy,.

(ii) Let p € N such that | a |[< 2P and Sy — ¢ limz, ==z

then limh% |{kel :¢(zr—x)<e}|=1

Let us consider such k € I, for which ¢(x), — 2) < 55, then

plafey —x)) = ¢(| o | (w — ) < (2P (21, —x)) < 2PP(wp —2) <255 =&
Thus limh% [{k el :¢lafzy—x)) <e}|=1

ie lirnh% | {k €I, : ¢(axy —ax) >} |=0.

Hence Sy — ¢ lim(ax,) = a.x = a. Sy — ¢ limx,,. QED
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