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Introduction

Determining the subgroups of finite groups is one of the important problems
in finite group theory. In last century, the problem was completely solved for
finite abelian groups (see [2, 5]). In [3], Calhoun determined the subgroups of
ZM-groups (finite group with all Sylow subgroups are cyclic). Motivated by
the paper of Calhoun [3], M. Tărnăuceanu determined the normal subgroups of
ZM-groups [9]. In [9], Tărnăuceanu also proposed the following problem:

“Describe the normal subgroups of an arbitrary metacyclic group”.

In this paper, we partially answer the above problem by determining the
normal subgroups of finite non-abelian metacyclic p-groups of class two (p odd).
A group G is said to be metacyclic if it contains a normal cyclic subgroup C
with cyclic quotient group G/C. Throughout the paper groups will always be
finite and N denotes the set of positive integers.

1 Basic Results

In this section, we give some results that will be needed later. First, we state
a theorem that gives a presentation for a non-abelian metacyclic p-group of class
two, p odd.
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Theorem 1 ([1, Theorem 1.1]). Let M be a non-abelian metacyclic p-group
of class two, p > 2. Then M is isomorphic to the following group:

M ∼= 〈x, y | xp
r

= yp
s

= 1, [x, y] = xp
r−δ〉,

where r, s, δ ∈ N = { 1, 2, . . . }, r ≥ 2δ, s ≥ δ ≥ 1.

Lemma 1 ([8]). Let G be a p-group of class two, and let x, y, z ∈ G. Then

(i) [xy, z] = [x, z][y, z],

(ii) [xm, y] = [x, ym] = [x, y]m, for any integer m.

Now, we state the Goursat’s Lemma related to the subgroups of the direct
product of two groups.

Proposition 1 ([4, Goursat’s Lemma]). Let X and Y be arbitrary groups.
Then there is a bijection between the set of all subgroups of X × Y and the set
T of all 5-tuples (A,A′, B,B′, φ), where A′ E A ≤ X, B′ E B ≤ Y and φ :
A/A′ −→ B/B′ is an isomorphism. More precisely, the subgroup corresponding
to (A,A′, B,B′, φ) is

H = { (x, y) ∈ A×B | φ(xA′) = yB′ }. (1.1)

1.1 Subgroups of Zpr × Zps

In this subsection, we give a representation of subgroups of Zpr × Zps given
in [10]. With out loss of generality, let r ≥ s ≥ 1. With the notations used in
Proposition 1, let X = Zpr = 〈x〉 and Y = Zps = 〈y〉. Let |A| = pu, |A′| =
pv, |B| = pq, |B′| = pt.

Further, let A ≤ X,A = 〈xpr−u〉, where 0 ≤ u ≤ r, A′ ≤ A, and A′ =
〈xpr−v〉, where 0 ≤ v ≤ u. Then A/A′ = 〈xpr−uA′〉. Similarly, let B ≤ Y,B =
〈yps−q〉, where 0 ≤ q ≤ s, B′ ≤ B, and B′ = 〈yps−t〉, where 0 ≤ t ≤ q. Then
B/B′ = 〈yps−qB′〉.

Again, for |A/A′| = |B/B′| that is, u− v = q − t, the isomorphisms φl :
A/A′ → B/B′ are given by

φl(x
ipr−uA′) = yilp

s−q
B′,

where 1 ≤ l ≤ pu−v with gcd(l, p) = 1.

Using Proposition 1, one can deduce that the subgroups H of Zpr ×Zps are

of the form H = {xipr−uyjps−q ∈ A×B | (il−j)ps−q ≡ 0 mod ps−t } (for details
see [7]).
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Now, let

Spr,ps :={ (u, v, q, t, l) | 0 ≤ u ≤ r, 0 ≤ v ≤ u, 0 ≤ q ≤ s, 0 ≤ t ≤ q,
u− v = q − t, 1 ≤ l ≤ pu−v, and gcd(l, p) = 1 }.

For (u, v, q, t, l) ∈ Spr,ps , define

Hu,v,q,t,l ={xipr−uyjps−q | (il − j)ps−q ≡ 0 mod ps−t, 1 ≤ i ≤ pu, and

1 ≤ j ≤ pq }. (1.2)

Theorem 2 ([10, Theorem 3.1]). The map (u, v, q, t, l) 7→ Hu,v,q,t,l is a
bijection between the set Spr,ps and the set of subgroups of Zpr × Zps, where
r, s ∈ N.

2 Representation of Normal Subgroups of Finite Non-
Abelian Metacyclic p-Groups

In this section, first we determine the subgroups of non-abelian metacyclic
p-groups M of class two (p odd). For this, we use Baer’s trick to construct an
abelian group Mw corresponding to M . Then we show that there is a one-one
correspondence between subgroups of M and Mw.

Let G be a group. If we can define a binary operation ◦ on G by

x ◦ y = w(x, y)

where w is some fixed word in x, y ∈ G such that the set G forms a group
with operation ◦, then we say w to be a group-word for G, and we write the
corresponding group by Gw, that is, as a set Gw = G and operation of Gw is ◦.

Now if G is a p-group of class two, p odd, then we can define a group-

word w for G as follows; for x, y ∈ G, w(x, y) = x ◦ y := xy[x, y]
m−1

2 (where
[x, y] = x−1y−1xy and m is the exponent of γ2(G), the commutator subgroup

of group G). Moreover, x ◦ y = xy[x, y]
m−1

2 = yx[x, y]
m+1

2 = yx[y, x]
m−1

2 = y ◦x.
Thus the corresponding group Gw is abelian (for more details see [6, p. 142] and
[7]). Now onward by w, we mean the group word defined as above, M denotes
a non-abelian metacyclic p-group of class two (p odd), n = m−1

2 where m is the
exponent of γ2(M), and Mw is the corresponding abelian group of M defined
as above.

Proposition 2. The corresponding abelian group of M is given by

Mw
∼= 〈x, y | xp

r
= yp

s
= 1, xy = yx〉.
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Proof. Let K = 〈x, y | xpr = yp
s

= 1, xy = yx〉. As a set Mw = M . Now,

take an element g = xiyj ∈ M . So g = xi ◦ yj ◦ [xi, yj ]−n = xi−p
r−δijn ◦ yj .

Therefore, Mw = 〈x, y〉. Since powers of each element in M and Mw are same, so
xp

r
= yp

s
= 1. Also, x◦y = y◦x. Thus, the generators of Mw satisfy the relations

of K, so by Von Dyck’s Theorem [8, p. 51], there is a surjective homomorphism
φ : K −→ Mw with x → x and y → y. Moreover, |Mw| = |M | = pr+s. So,
|Mw| = |K|. Thus, Mw

∼= K. This completes the proof. QED

Note that to avoid ambiguity of operations, we write

Mw = 〈x, y | xpr = yp
s

= 1, x ◦ y = y ◦ x〉.

It is clear that Mw
∼= Zpr × Zps .

Lemma 2. A subset of M is a subgroup of M if and only if it is a subgroup
of Mw.

Proof. It is not hard to see that subgroups of M are subgroups of Mw. For
converse, consider an arbitrary subgroup H of Mw. Using equation (1.2), the
subgroup H is of the form

H = {xipr−u ◦ yjps−q | il ≡ j mod pq−t, 1 ≤ i ≤ pu, and 1 ≤ j ≤ pq },

where q > t and for q = t,

H = {xipr−u ◦ yjps−q | 1 ≤ i ≤ pu and 1 ≤ j ≤ pq }.

Now, take g1, g2 ∈ H, where g1 = xip
r−u ◦ yjps−q , and g2 = xi

′pr−u ◦ yj′ps−q . To
show that H is also a subgroup of M , it is sufficient to show that H is closed
with the operation of M , that is, g1g2 ∈ H.

We have g1g2 = g1 ◦ g2 ◦ [g1, g2]−n, where n = m−1
2 , m is the exponent

of γ2(M). Further, [g1, g2] = [xip
r−u ◦ yjps−q , xi′pr−u ◦ yj′ps−q ], that is, in turn,

equivalent to

[g1, g2] = [x, y](ij
′−ji′)pr+s−u−q (Lemma 1).

Now,

g1g2 = xip
r−u ◦ yjps−q ◦ xi′pr−u ◦ yj′ps−q ◦ [x, y]−n(ij′−ji′)pr+s−u−q

= x{ i+i
′−n(ij′−ji′)pr−δ+s−q }pr−u ◦ y{ j+j′ }ps−q ([x, y] = xp

r−δ
).

For q = t, it is evident that g1g2 ∈ H. Now, assume that q > t. Since g1, g2 ∈ H,
the following equations hold

il ≡ j mod pq−t, (2.1)
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i′l ≡ j′ mod pq−t. (2.2)

Using (2.1) & (2.2), we deduce that il+i′l ≡ j+j′ mod pq−t and (ij′−ji′)l ≡ 0
mod pq−t. Since gcd(l, p) = 1, we get (ij′−ji′) ≡ 0 mod pq−t. Thus, we conclude
that

{ i+ i′ − n(ij′ − ji′)pr−δ+s−q }l ≡ j + j′ mod pq−t.

Thus, g1g2 ∈ H. This completes the proof. QED

Now, we determine the normal subgroups of non-abelian metacyclic group
M of class two (p odd).

By Theorem 1, we have

M ∼= 〈x, y | xp
r

= yp
s

= 1, [x, y] = xp
r−δ〉, (∗)

where r, s, δ ∈ N, r ≥ 2δ, s ≥ δ ≥ 1. By subsection 1.1 and Lemma 2, the
subgroups of M are of the form

Hu,v,q,t,l
∼={xip

r−u ◦ yjps−q | (il − j)ps−q ≡ 0 mod ps−t, 1 ≤ i ≤ pu, and

1 ≤ j ≤ pq },

where, (u, v, q, t, l) ∈ Spr,ps .
Lemma 3. For (u, v, q, t, l) ∈ Spr,ps, the subgroup Hu,v,q,t,l of M is a normal

subgroup if and only if u− δ + s− q ≥ q − t and r − δ ≥ q − t.

Proof. The subgroup Hu,v,q,t,l is a normal subgroup if and only if g−1hg ∈
Hu,v,q,t,l for every g ∈M and h ∈ Hu,v,q,t,l. Take an element g = xayb ∈M and

h = xip
r−u ◦ yjps−q ∈ Hu,v,q,t,l. Now, we have g−1hg = h[h, g] = h ◦ [h, g]. Thus

g−1hg = h ◦ [h, g]

= xip
r−u ◦ yjps−q ◦ [xip

r−u ◦ yjps−q , xayb]

= xip
r−u ◦ yjps−q ◦ [x, y]ibp

r−u−ajps−q (Lemma 1)

= xip
r−u+pr−δ(ibpr−u−ajps−q) ◦ yjps−q ([x, y] = xp

r−δ
).

Let Hu,v,q,t,l be a normal subgroup of M . Now, if g−1hg ∈ Hu,v,q,t,l, then

ipr−u + pr−δ(ibpr−u − ajps−q) ≡ 0 mod pr−u,

and that is equivalent to ajpr−δ+s−q ≡ 0 mod pr−u. The latter equation must
hold for every possible a, j. Thus pr−u | pr−δ+s−q. So, r − δ + s − q ≥ r − u.
This implies u − δ + s − q ≥ 0. Now, assume that u − δ + s − q ≥ 0, then
g−1hg = x(i+ibpr−δ−ajpu−δ+s−q)pr−u◦yjps−q . Now, if g−1hg ∈ H, then [(i+ibpr−δ−



92 P. Kumar

ajpu−δ+s−q)l − j]ps−q ≡ 0 mod ps−t. For q = t, the latter equation always
holds. Now, suppose q > t, then (i+ ibpr−δ−ajpu−δ+s−q)l ≡ j mod pq−t. Since
h ∈ H, so il ≡ j mod pq−t. Thus we have that (ibpr−δ − ajpu−δ+s−q)l ≡ 0
mod pq−t. Since gcd(l, p) = 1, (ibpr−δ − ajpu−δ+s−q) ≡ 0 mod pq−t. The latter
equation must hold for every a, b and i, j such that h ∈ H, g ∈M . This implies
pu−δ+s−q ≡ 0 mod pq−t and pr−δ ≡ 0 mod pq−t. Thus u − δ + s − q ≥ q − t
and r− δ ≥ q− t. It is not hard to see that converse part holds. This completes
the proof. QED

Now, for every r, s, δ ∈ N such that r ≥ 2δ, s ≥ δ ≥ 1, let

J ′pr,ps :={ (u, v, q, t, l) | 0 ≤ u ≤ r, 0 ≤ v ≤ u, 0 ≤ q ≤ s, 0 ≤ t ≤ q, u− v = q − t,
1 ≤ l ≤ pu−v, gcd(l, p) = 1, u− δ + s− q ≥ q − t, and r − δ ≥ q − t }.

For (u, v, q, t, l) ∈ J ′pr,ps , define

Nu,v,q,t,l :={xipr−uyjps−q [x, y]nijp
r−u+s−q | (il − j)ps−q ≡ 0 mod ps−t,

1 ≤ i ≤ pu, and 1 ≤ j ≤ pq }.

Theorem 3. The map (u, v, q, t, l) 7→ Nu,v,q,t,l is a bijection between the set
J ′pr,ps and the set of normal subgroups of non-abelian metacyclic p-group M of
class two (p odd) as in (∗).

Proof. This follows from Lemmas 2, 3 and Theorem 2. QED
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