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1 Motivation and preliminaries

Cohomology theories of various algebraic structures have been investigated
by several authors. The most noteworthy are due to Hochschild, MacLance and
Eckmann, Chevalley and Eilenberg, who developed the theory of cohomology
groups of associative algebras, abstract groups, and Lie algebras respectively
(see [3], [4], [5], and [10] for more information).
The theory of Lie algebras is one of the important parts of algebras. Many
papers in the literature make an attempt to generalize the results on finite p-
groups to the theory of Lie algebras. On the other hand there are same sporadic
results for the Lie algebra that does not coincide with the results for groups. In
fact, there are analogies between groups and Lie algebras, but the analogies are
not completely identical and most of them should be checked carefully (see [2]
and [6] for examples).

The theory of group extensions and their interpretation in terms of coho-
mology is well known ( see [7] and [9] for example).

Over the years there has been an interest in studying the second cohomology
of Lie algebras (see [2],[12]).

Let A and B be Lie algebras over a field F , where A is abelian. We say that
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A is a left B-module if there is a F -linear transformation B ⊗ A → A, written
as b⊗ a 7→ ba, such that

[b1, b2]a = b1(b2a)− b2(b1a) for all b1, b2 ∈ B and a ∈ A.

Let Der(A) be the derivations of A equipped with the Lie bracket

[f, g] = fg − gf for all f, g ∈ Der(A).

Then a left B-module structure on A is equivalent to the existence of a Lie
algebra homomorphism

B → Der(A).

Let A and B be Lie algebras. Then an extension of B by A is a short exact
sequence of Lie algebras

0→ A
i→ L

π→ B → 0,

where L is a Lie algebra. Without loss of generality, we may assume that i is the
inclusion map, and we omit it from the notation. It follows from the exactness
that A is an ideal of L. If A is abelian, then such an extension is called an
abelian extension. This together with the Jacobi identity gives a left L-module
structure on A given by

xa := [x, a] for x ∈ L and a ∈ A.

Let t : B → L be a section of π; that is, t is a F -linear map such that πt = 0.
If A is abelian, then this induces a left B-module structure on A given by

ba := [t(b), a] for b ∈ B and a ∈ A.

We denote the above B-module structure on A by

α : B → Der(A).

Our aim in this paper is to construct three exact sequences on derivation algebra
of abelian Lie algebra extensions which relate derivations with cohomology of
Lie algebras.
The sequences resemble well-known Wells exact sequence for group extensions
which relate automorphisms with group cohomology (see [11] and [17] for more
information).

Let Der(A), Der(L), and Der(B) denote the derivations of A, L, and B,
respectively.
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Let I and J be two ideals of L. We introduce below some further notation
to be used in this paper:

DerI(L) = {γ ∈ Der(L)|γ(x) ∈ I for all x ∈ L}
DerJ(L) = {γ ∈ Der(L)|γ(x) = 0 for all x ∈ J}
DerIJ(L) = DerI(L) ∩DerJ(L)

Der(L :I) = {γ ∈ Der(L)|γ(x) ∈ I for all x ∈ I} .

Various aspect of derivations of Lie algebras has been investigated in the liter-
ature (see, for example, [13, 14, 15]).
Let 0→ A→ L

π→ B → 0 be an abelian extension of Lie algebras over a field F ,
and let t : B → L be a section of π; so that every element of L can be written
uniquely as t(b) + a for some b ∈ B and a ∈ A.
Observe that a derivation γ ∈ Der(L :A) induces derivations θ ∈ Der(A) and
ϕ ∈ Der(B), given by θ(a) = γ

∣∣
A

(a) for all a ∈ A and ϕ(b) = π(γ(t(b))) for all
b ∈ B. This gives a Lie homomorphism

τ : Der(L :A)→ Der(A)⊕Der(B)

by setting
τ(γ) = (θ, ϕ)

We denote the restrictions of τ to DerA(L) and DerA(L) by τ1 and τ2, respec-
tively.

Remark 1.1. To set notation, we briefly recall the definition of cohomology of
Lie algebras.
Let B be a Lie algebra, and let A be a left B-module. For each 0 ≤ k ≤ dimB,
define Ck(B;A) = Hom(ΛkB,A) and ∂k : Ck(B;A) −→ Ck+1(B;A) by

∂k(ν)(b0, . . . , bk) =

k∑
i=0

(−1)i bi ν(. . . , b̂i, . . . )

+
∑

0≤i<j≤k
(−1)i+jν([bi, bj ], . . . , b̂i, . . . , b̂j , . . . )

for all ν ∈ Ck(B;A). It is straightforward to verify, using the Jacobi Identity
and the B-action on A, that ∂k+1∂k = 0. Let Zk(B;A) = ker(∂k) be the group
of k-cocycles, and let Bk(B;A) = image(∂k−1) be the group of k-coboundaries.
Then Hk(B;A) = Zk(B;A)/Bk(B;A) is the kth Lie algebra cohomology group
of B with values in A.
Recently, Bardakov and Singh[1] gave an explicit description of a certain se-
quence for automorphisms of Lie algebras. We continue in the present work this
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line of investigation for derivations of Lie algebras. In Section 2 we establish our
exact sequences.

Theorem 1.2 (Main Theorem). Let 0 → A → L
π→ B → 0 be an abelian

extension of Lie algebras. Then there exist the following three exact sequences

0→ DerAA(L)→ DerA(L)
τ1→ C1

λ1→ H2(B;A), (1.1)

0→ DerAA(L)→ DerA(L)
τ2→ C2

λ2→ H2(B;A), (1.2)

0→ DerAA(L)→ Der(L :A)
τ→ Cα

λε→ H2(B;A). (1.3)

The maps λ1, λ2, λε and notations C1, C2 and Cα will be defined in the next
section.

2 Description of exact sequences

Let α : B → Der(A) be the B-module structure on A, and let Extα(B,A)
denote the set of equivalence classes of extensions of B by A inducing α.
Let ε : 0 → A → L

π→ B → 0 be an abelian extension of Lie algebras inducing
α.
We fix a section t : B → L. For any two elements b1, b2 ∈ L, we have

π(t[b1, b2]) = [b1, b2] = [πt(b1), πt(b2)] = π[t(b1), t(b2)].

Thus there exists a unique element, say δ(b1, b2) ∈ A, such that δ(b1, b2) =
[t(b1), t(b2)]− t([b1, b2]).
Observe that δ is a F -bilinear map from B ⊕ B to A such that δ(b, b) = 0 for
all b ∈ B.
Then it is easy to see that δ is a two-cocycle and two-coycles corresponding to
different sections differ by a two-coboundary. Thus the map [ε] 7→ [δ] gives a
bijection Extα(B,A)↔ H2(B;A) (see [8, p. 238]).
In the following we present an important lemma used for proving theorems.

Lemma 2.1. Let 0 → A → L
π→ B → 0 be an abelian extension of Lie

algebras over a field F . If γ ∈ Der(L : A), then there is a triplet (θ, ϕ, χ) ∈
Der(A)⊕Der(B)⊕Hom(B,A) such that

(i ) δ(b, ϕ(b′)) + δ(ϕ(b), b′)− θ(δ(b, b′)) = [t(b′), χ(b)]− [t(b), χ(b′)] + χ([b, b′])

(ii ) θ([t(b), a]) = [t(ϕ(b)), a] + [t(b), θ(a)] for all a ∈ A and b, b′ ∈ B.
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Conversely, if (θ, ϕ, χ) ∈ Der(A) ⊕ Der(B) ⊕ Hom(B,A) is a triplet satisfying
equations (i) and (ii), then, for all a ∈ A and b ∈ B, γ defined by

γ(t(b) + a) = t(ϕ(b)) + χ(b) + θ(a)

is a derivation of L lying in Der(L :A).

[Here δ is the two-cocycle corresponding to the extension 0→ A→L π→ B →
0, t : B → L is a section of π, and Hom(B,A) is the group of all F -linear maps
from B to A ].

Proof. Every derivation γ ∈ Der(L : A) determines a pair(θ, ϕ) ∈ Der(A) ⊕
Der(B) such that γ restricts to θ on A and induces ϕ on B. For any b ∈ B, we
have ϕ(b) = π(γ(t(b))). Thus γ(t(b)) = t(ϕ(b))+χ(b) for some element χ(b) ∈ A.
Since all the maps involved are F -linear, it follows that χ ∈ Hom(B,A).
To prove (i), let b, b′ ∈ B. We have

δ(b, b′) + t([b, b′]) = [t(b), t(b′)].

By applying γ and using the definition of χ, we get

θ(δ(b, b′)) + χ([b, b′]) + t(ϕ([b, b′])) = [γ(t(b)), t(b′)] + [t(b), γ(t(b′))].

Since ϕ is a derivation, we have

θ(δ(b, b′)) + χ([b, b′]) + t([ϕ(b), b′]) + t([b, ϕ(b′)])

= [t(ϕ(b)) + χ(b), t(b′)] + [t(b), t(ϕ(b′)) + χ(b′)]

= δ(ϕ(b), b′) + t([ϕ(b), b′]) + [χ(b), t(b′)]

+ δ(b, ϕ(b′)) + t([b, ϕ(b′)]) + [t(b), χ(b′)].

Thus we obtain condition (i).
To derive condition (ii), we use the fact that γ is a derivation. Let b ∈ B, a ∈ A.
Then we have

θ([t(b), a]) = γ([t(b), a])

= [γ(t(b)), a] + [t(b), γ(a)]

= [t(ϕ(b) + χ(b), a] + [t(b), θ(a)]

= [t(ϕ(b), a] + [t(b), θ(a)].

Conversely, let (θ, ϕ, χ) ∈ Der(A)⊕Der(B)⊕Hom(B,A) be a triplet satisfying
equations of (i) and (ii). To see γ is a derivation of L, first we note that every
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element of L can be uniquely written as l = t(b) + a, where b = π(l) and a ∈ A.
Let l1 = t(b1) + a1 and l2 = t(b2) + a2, where b1, b2 ∈ B and a1, a2 ∈ A. Then

(1) γ([l1, l2]) = γ([t(b1), t(b2)]) + γ([t(b1), a2]) + γ([a1, t(b2)])

= θ(δ(b1, b2)) + χ([b1, b2]) + t(ϕ([b1, b2]))

+ θ([t(b1), a2])− θ([t(b2), a1])

= δ(b1, ϕ(b2)) + δ(ϕ(b1), b2) + [t(b1), χ(b2)]

− [t(b2), χ(b1)] + [t(ϕ(b1)), a2] + [t(b1), θ(a2)]

− [t(ϕ(b2)), a1]− [t(b2), θ(a1)] + t[ϕ(b1), b2]

+ t[b1, ϕ(b2)]

and

(2) [γ(l1), l2] + [l1, γ(l2)] = [t(ϕ(b1)) + χ(b1) + θ(a1), t(b2) + a2]

+ [t(b1) + a1, t(ϕ(b2)) + χ(b2) + θ(a2)]

= [t(ϕ(b1)), t(b2)] + [t(ϕ(b1)), a2] + [χ(b1), t(b2)]

+ [θ(a1), t(b2)] + [t(b1), t(ϕ(b2))] + [t(b1), χ(b2)]

+ [t(b1), θ(a2)] + [a1, t(ϕ(b2))]

By comparing (1) and (2), we have γ ∈ Der(L), and clearly, γ(a) = θ(a) for all
a ∈ A. Therefore γ ∈ Der(L :A). QED

Remark 2.2. If 0→ A→ L
π→ B → 0 is a central extension (that is A ≤ Z(L)),

then the action B on A becomes trivial, and therefore Lemma 2.1 takes the
following simpler form which we will use in the proof of one of the next theorems.

Lemma 2.3. Let 0 → A → L
π→ B → 0 be a central extension of Lie al-

gebras over a field F . If γ ∈ Der(L : A), then there is a triplet (θ, ϕ, χ) ∈
Der(A)⊕Der(B)⊕ Hom(B,A) such that, for all b, b′ ∈ B, the following condi-
tion is satisfied:

δ(b, ϕ(b′)) + δ(ϕ(b), b′)− θ(δ(b, b′)) = χ([b, b′])

Conversely, if (θ, ϕ, χ) ∈ Der(A) ⊕ Der(B) ⊕ Hom(B,A) is a triplet satisfying
above equation, then γ defined by γ(t(b) + a) = t(ϕ(b)) + χ(b) + θ(a) is a
derivation of L lying in Der(L :A).

Remark 2.4. A pair (θ, ϕ) ∈ Der(A) ⊕ Der(B) is called compatible if αϕ(b) =
[θ, α(b)] for all b ∈ B. Equivalently, the following diagram commutes.

B
ϕ //

α
��

B

α
��

Der(A)
f 7→[θ,f ]// Der(A)
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Note that αϕ also gives a B-module structure on A. Then the compatibility
condition is equivalent to saying that θ : A→ A is a B-module homomorphism
from the B-module structure α to the B-module structure αϕ on A.

Let Cα denote the Lie algebra of all compatible pairs; It is clear that Cα is
a subalgebra of Der(A)⊕Der(B). Let

C1 = {θ ∈ Der(A)|(θ, 0) ∈ cα}

and
C2 = {ϕ ∈ Der(B)|(0, ϕ) ∈ cα} .

For θ ∈ C1 and ϕ ∈ C2, we define maps kθ, kϕ, kθ,ϕ : B ⊕B → A by setting, for
b, b′ ∈ B,

kθ(b, b
′) = θ(δ(b, b′)),

kϕ(b, b′) = δ(ϕ(b), b′) + δ(b, ϕ(b′)),

kθ,ϕ(b, b′) = δ(ϕ(b), b′) + δ(b, ϕ(b′))− θ(δ(b, b′)).

Lemma 2.5. The maps kθ, kϕ, and kθ,ϕ are two-cocycles.

Proof. For b0, b1, b2 ∈ B, by the fact that θ ∈ c1 and δ ∈ Z2(B;A), we have

[t(b0), kθ(b1, b2)]− [t(b1), kθ(b0, b2)] + [t(b2), kθ(b0, b1)]− kθ([b0, b1], b2)

+kθ([b0, b2], b1)− kθ([b1, b2], b0) = [t(b0), θδ(b1, b2)]− [t(b1), θδ(b0, b2)]

+ [t(b2), θδ(b0, b1)]− θδ([b0, b1], b2)

+ θδ([b0, b2], b1)− θδ([b1, b2], b0)

= θ([t(b0), δ(b1, b2)]− [t(b1), δ(b0, b2)]

+ [t(b2), δ(b0, b1)]− δ([b0, b1], b2)

+ δ([b0, b2], b1)− δ([b1, b2], b0))

= θ(0) = 0

Hence kθ is a two-cocycle.
We next show that kϕ is a two-cocycle. For b0, b1, b2 ∈ B, we have

[t(b0), kϕ(b1, b2)]− [t(b1), kϕ(b0, b2)] + [t(b2), kϕ(b0, b1)]− kϕ([b0, b1], b2)

+kϕ([b0, b2], b1)− kϕ([b1, b2], b0) = [t(b0), δ(ϕ(b1), b2) + δ(b1, ϕ(b2))]

− [t(b1), δ(ϕ(b0), b2) + δ(b0, ϕ(b2))]

+ [t(b2), δ(ϕ(b0), b1) + δ(b0, ϕ(b1))]

− δ(ϕ([b0, b1], b2)− δ([b0, b1], ϕ(b2))

+ δ(ϕ([b0, b2]), b1)) + δ([b0, b2], ϕ(b1))
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− δ(ϕ([b1, b2]), b0)− δ([b1, b2], ϕ(b0))

= [t(b0), δ(ϕ(b1), b2)] + [t(b0), δ(b1, ϕ(b2))]

− [t(b1), δ(ϕ(b0), b2)]− [t(b1), δ(b0, ϕ(b2)]

+ [t(b2), δ(ϕ(b0), b1)] + [t(b2), δ(b0, ϕ(b1)]

− δ([ϕ(b0), b1], b2)− δ([b0, ϕ(b1)], b2)

+ δ([b0, b1], ϕ(b2)) + δ([ϕ(b0), b2], b1)

+ δ([b0, ϕ(b2)], b1) + δ([b0, b2], ϕ(b1))

− δ([ϕ(b1), b2], b0)− δ([b1, ϕ(b2)], b0)

− δ([b1, b2], ϕ(b0)) = 0

Note that ϕ ∈ c2; therefore [t(ϕ(b)), a] = 0 for b ∈ B and a ∈ A.
Since kθ,ϕ = kθ + kϕ, we conclude that kθ,ϕ ∈ Z2(B;A). QED

Define λ1 : C1 → H2(B;A) by setting for θ ∈ C1,

λ1(θ) = [kθ], the cohomology class of kθ

Similarly define λ2 : C2 → H2(B;A) by setting, for ϕ ∈ C2,

λ2(ϕ) = [kϕ], the cohomology class of kφ

and define λε(θ, ϕ) : Cα → H2(B;A) by setting λε(θ, ϕ) = [kθ,ϕ].
To justify these definitions, we need the following.

Lemma 2.6. The maps λ1, λ2, and λε are well defined.

Proof. To show that the maps λ1 and λ2 are well defined, we need to show that
these maps are independent of the choice of sections. Let t, t

′
: B → L be two

sections. Then there exist maps δ, δ
′

: B ⊕B → A such that, for b1, b2 ∈ B,

δ(b1, b2) = [t(b1), t(b2)]− t([b1, b2]),

δ
′
(b1, b2) = [t

′
(b1), t

′
(b2)]− t′([b1, b2)].

For b ∈ B, since t(b) and t
′
(b) satisfy π(t(b)) = b = π(t

′
(b)), there exists a

unique element k(b) ∈ A such that t(b) = k(b) + t
′
(b).

We thus have a map k : B → A by setting k(b) = t(b) − t′(b) for b ∈ B. For
b1, b2 ∈ B, k([b1, b2]) + t

′
([b1, b2]) = t([b1, b2]). This gives

δ(b1, b2)− δ′(b1, b2) = [t(b1), t(b2)]− t([b1, b2])− [t
′
(b1), t

′
(b2)] + t

′
([b1, b2])

= [t(b1), t(b2)]− [t(b1)− k(b1), t(b2)− k(b2)]− k([b1, b2])

= [t(b1), k(b2)]− [t(b2), k(b1)]− k([b1, b2]) ∈ B2(B;A).
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Therefore

θ(δ(b1, b2))− θ(δ′(b1, b2)) =[t(b1), θk(b2)]− [t(b2), θk(b1)]

− θk([b1, b2])[t(b1), k
′
(b2)]

= [t(b2), k
′
(b1)]− k′([b1, b2]) ∈ B2(B;A),

where k
′

= θk. This proves that λ1 is independent of the choice of a section.
Next we prove that λ2 is well defined. It is sufficient to show that

δ(ϕ(b1), b2) + δ(b1, ϕ(b2))− δ′(ϕ(b1), b2)− δ′(b1, ϕ(b2)) ∈ B2(B;A).

Proceed just as above and note that ϕ ∈ C2 and ϕ is derivation, we have

[t(b1), kϕ(b2)]− [tϕ(b2), k(b1)]− k([b1, ϕ(b2)]) + [tϕ(b1), k(b2)]− [t(b2), kϕ(b1)]

− k([ϕ(b2), b1]) = [t(b1), kϕ(b2)]− [t(b2), kϕ(b1)]− kϕ([b1, b2]).

Putting kϕ = k
′′

[t(b1), k
′′
(b2)]− [t(b2), k

′′
(b1)]− k′′([b1, b2]) ∈ B2(B;A).

This proves that λ2 is also independent of the choice of a section.
Since λ1 and λ2 are well defined, λε is well defined too, and the proof of the
lemma is complete. QED

Note that the maps λ1 and λ2 are not homomorphisms of Lie algebra.
We are now in position to prove the main theorem.

Proof of Main Theorem. Let 0 → A → L
π→ B → 0 be an abelian extension.

Clearly all the sequences (1.1), (1.2), and (1.3) are exact at the first two terms.
To complete the proof it only remains to show the exactness at the third term
of the respective sequences. First consider the sequence (1.1). We show that
Imτ1 = Kerλ1. Let γ ∈ DerA(L). Then θ ∈ C1, where θ is the restriction of γ to
A. Lemma 2.1 implies that, for b1, b2 ∈ B,

kθ(b1, b2) = θ(δ(b1, b2)) = [t(b1), χ(b2)]− [t(b2), χ(b1)]− χ([b1, b2]) ∈ B2(B;A).

Thus kθ ∈ B2(B;A), and hence λ1(θ) = 0. Conversely, if θ ∈ C1 is such that
λ1(θ) = 0, then kθ ∈ B2(B;A). Therefore there exists χ ∈ Hom(B;A) such that

θ(δ(b1, b2)) = [t(b1), χ(b2)]− [t(b2), χ(b1)]− χ(b1, b2),

since θ ∈ C1 and γ, defined by converse Lemma 2.1, is an element of DerA(L).
Hence the sequence (1.1) is exact.
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Next let us consider the sequence (1.2). We show that Imτ2 = Kerλ2. Let
γ ∈ DerA(L). Then ϕ ∈ C2, where ϕ is induced by γ on B. By Lemma 2.1,
for b1, b2 ∈ B we have,

kϕ(b1, b2) = δ(ϕ(b1), b2)+δ(b1, ϕ(b2)) = [t(b2), χ(b1)]−[t(b1), χ(b2)]+χ([b1, b2]) ∈ B2(B;A).

Thus kϕ ∈ B2(B;A), and hence λ2(ϕ) = 0. Conversely, if ϕ ∈ C2 with λ2(ϕ) =
0, then kϕ ∈ B2(B;A). Therefore there exists χ ∈ Hom(B,A) such that

δ(ϕ(b1), b2) + δ(b1, ϕ(b2) = [t(b1), χ(b2)]− [t(b2), χ(b1)] + χ([b1, b2]),

since ϕ ∈ C2 and γ, defined by converse Lemma 2.1, is an element of DerA(L).
Hence the sequence (1.2) is exact. Similarly one can prove (1.3) . QED

We construct a more general exact sequence.

Theorem 2.7. If 0→ A→L π→ B → 0 is a central extension, then there exists

an exact sequence 0→ DerAA(L)→ Der(L :A)
τ→ Der(A)⊕Der(B)

λ→ H2(B,A).

Proof. The sequence is clearly exact at DerAA(L) and Der(L :A). We construct
the map λ and show the exactness at Der(A) ⊕ Der(B). Consider (θ, ϕ) ∈
Der(A)⊕Der(B). Define kθ,ϕ : B ⊕B → A by setting, for b1, b2 ∈ B,

kθ,ϕ(b1, b2) = δ(b1, ϕ(b2)) + δ(ϕ(b1), b2)− θ(δ(b1, b2)).

It is clearly kθ,ϕ ∈ Z2(B,A). Define λ(θ, ϕ) = [kθ,ϕ], the cohomology class of
kθ,ϕ in H2(B,A). Similar to Lemma 2.6 one can prove that λ is well defined.
If (θ, ϕ) ∈ Der(A) ⊕ Der(B) is induced by some γ ∈ Der(L : A), then, by
Lemma 2.3, we have kθ,ϕ(b1, b2) = χ([b1, b2]). Therefore kθ,ϕ ∈ B2(B,A). Hence
λ(θ, ϕ) = 0. Conversely, if (θ, ϕ) ∈ Der(A) ⊕ Der(B) is such that [kθ,ϕ] = 0,
then kθ,ϕ(b1, b2) = χ([b1, b2]), for some χ : B → A. By Lemma 2.3, there exists
γ ∈ Der(L : A) inducing θ and ϕ. Thus the sequence is exact. QED

3 Splitting of sequences

Let 0→ A→ L
π→ B → 0 be an abelian extension. Let C∗1 = {θ ∈ C1|λ1(θ) = 0} ,

C∗2 = {ϕ ∈ C2|λ2(ϕ) = 0} , and C∗α = {(θ, ϕ) ∈ Cα|λε(θ, ϕ) = 0}. Then it follows
from Theorem 1.2 that the sequences

0→ DerAA(L)→ DerA(L)
τ1→ C∗1 → 0, (3.1)

0→ DerAA(L)→ DerA(L)
τ2→ C∗2 → 0, (3.2)

and
0→ DerAA(L)→ Der(L :A)

τ→ C∗α → 0 (3.3)
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are exact similarly. Let 0 → A → L
π→ B → 0 be a central extension, and let

C∗ = {(θ, ϕ) ∈ Der(A)⊕Der(B)|λ(θ, ϕ) = 0}. Then it follows from Theorem
2.7 that the sequence

0→ DerAA(L)→ Der(L :A)
τ→ C∗ → 0 (3.4)

is exact.

Theorem 3.1. Let L be a finite dimensional Lie algebra, and let A an abelian
ideal of L such that the sequence 0 → A → L

π→ B → 0 splits. Then the se-
quences (3.1),(3.2), and (3.3) split. Furthermore, if A ≤ Z(L), then the sequence
(3.4) also splits.

Proof. We prove that the sequence (3.3) is split. Let AoB = A⊕B be a vector
space, equipped with the Lie algebra structure given by [(a1, b1), (a2, b2)] =
(b1a2 − b2a1, [b1, b2]) for a1, a2 ∈ A and b1, b2 ∈ B.
Then the split extension 0→ A→ L→ B → 0 is equivalent to the extension

0→ A
a→(a,0)−→ AoB (a,b)→b−→ B → 0,

and hence Der(A o B : A) ∼= Der(L :A). Note that, for a split extension, the
corresponding two-cocycle is zero, and hence C∗α = Cα. Now we define a section
β : C∗α → Der(AoB : A) by β(θ, ϕ) = γ, where γ(a, b) = (θ(a), ϕ(b)) for a ∈ A
and b ∈ B. So γ is F -linear. Furthermore, for a1, a2 ∈ A and b1, b2 ∈ B, we have

γ[(a1, b1), (a2, b2)] = γ(b1a2 − b2a1, [b1, b2])

= (θ(b1a2)− θ(b2a1), ϕ([b1, b2]))

=
(
ϕ(b1)(a2) + b1θ(a2)− ϕ(b2)a1 − b2θ(a1),

[ϕ(b1), b2] + [b1, ϕ(b2)]
)

(by compatibility of (θ, ϕ))

= [(θ(a1), ϕ(b1)), (a2, b2)] + [(a1, b1), (θ(a2), ϕ(b2))]

= [γ(a1, b1), (a2, b2)] + [(a1, b1), γ(a2, b2)];

hence γ ∈ Der(AoB).
It is clear that β is a Lie homomorphism, and hence the sequence (3.3) splits.

QED

We show that the converse of Theorem 3.1 is not true, in general.
For this purpose we focus on derivation of Lie algebra of free two-step nilpo-

tent the Lie algebras. Let

Ln,2 = 〈x1, · · · , xn|[[xi, xj ], xk] = 0 for all 1 ≤ i, j, k ≤ n〉
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be the free two-step nilpotent Lie algebra of rank n ≥ 2.

Let L
(1)
n,2 = 〈[xi, xj ]|1 ≤ j < i ≤ n〉 be the derived subalgebra of Ln,2.

Set Z = {zi,j |zi,j = [xi, xj ] for 1 ≤ j < i ≤ n}. We see that L
(1)
n,2 is a free

abelian Lie algebra with basis Z and rank
n(n− 1)

2
. If we take the lexicographic

order on the basis Z given by

z2,1 < z3,1 < z3,2 < · · · < zn,n−1,

then Der(L
(1)
n,2) ∼= gl(

n(n− 1)

2
, F ). Let θ ∈ Der(L

(1)
n,2) be given by

θ :



z2,1 7−→ b2,1;2,1z2,1 + b2,1;3,1z3,1 + · · ·+ b2,1;n,n−1zn,n−1,
...

zi,j 7−→
∑

1≤l<k≤n bi,j;k,lzk,l,
...

zn,n−1 7−→ bn,n−1;2,1z2,1 + bn,n−1;3,1z3,1 + · · ·+ bn,n−1;n,n−1zn,n−1.

Then the matrix [θ] ∈ gl(n(n−1)
2 , F ). Similarly, Labn,2 = Ln,2/L

(1)
n,2 = 〈x̄1, · · · , x̄n〉

is also a free abelian Lie algebra of rank n, and hence Der(Labn,2) ∼= gl(n, F ). Let

ϕ ∈ Der(Lab2,2) be given by

ϕ :



x̄1 7−→ a11x̄1 + · · ·+ a1nx̄n,
...

x̄i 7−→ ai1x̄1 + · · ·+ ainx̄n,
...

x̄n 7−→ an1x̄1 + · · ·+ annx̄n.

Then the matrix [ϕ] ∈ gl(n, F ).
Let 0→ A→ L

π→ B → 0 be an abelian extension of Lie algebras over a field F .
A pair of derivation (θ, ϕ) ∈ Der(A)⊕Der(B) is called inducible if there exists
γ ∈ Der(L :A) such that τ(γ) = (θ, ϕ).
We prove now the following theorem.

Theorem 3.2. Let (θ, ϕ) ∈ Der(L
(1)
n,2) ⊕ Der(Labn,2). If [θ] = (bi,j;k,l) and [ϕ] =

(aij) are the corresponding matrices, then the pair (θ, ϕ) is inducible if and only
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if

bi,j;k,l =



aii + ajj , i = k, j = l,

ajl, i = k, j 6= l,

−ail, j = k, i 6= l,

ajk, i = l, j 6= k,

aik, j = l, i 6= k,

0, otherwise.

(3.5)

Proof. For the free nilpotent Lie algebra Ln,2, we have the following central

extension 0→ L
(1)
n,2 → Ln,2 → Labn,2 → 0.

Let t : Labn,2 → Ln,2 be the section given by t(x̄i) = xi on the generators. Then
δ(x̄i, x̄j) = [xi, xj ] for all 1 ≤ i, j ≤ n. Since Ln,2 is two-step nilpotent, it follows
that RHS of Lemma 2.3 is zero. Hence, we have

θ(δ(x̄i, x̄j)) = δ(x̄i, ϕ(x̄j)) + δ(ϕ(x̄i), x̄j).

In what follows, we show that this is precisely the condition (3.5).
Ln,2 is generated as a Lie algebra by {x1, x2, . . . , xn}. Moreover, the set

{x1, x2, . . . , xn, z2,1, z3,1, . . . , zn,n−1}

is an ordered basis for Ln,2 as a vector space over F . Thus, if γ ∈ Der(Ln,2),
then γ is given by

γ :


x1 7−→ a

′

11x1 + a
′

12x2 + · · ·+ a
′

1nxn + β1;2,1z2,1 + β1;3,1z3,1 + · · ·+ β1;n,n−1zn,n−1,
...

xn 7−→ a
′

n1x1 + a
′

n2x2 + · · ·+ a
′

nnxn + βn;2,1z2,1 + βn;3,1z3,1 + · · ·+ βn;n,n−1zn,n−1.

for some a
′
ij , βi;k,l ∈ F . Now, suppose that (θ, ϕ) is inducible by γ. Then

γ̄ :


x̄1 7−→ a

′
11x̄1 + a

′
12x̄2 + · · ·+ a

′
1nx̄n,

...

x̄n 7−→ a′n1x̄1 + a′n,2x̄2 + · · ·+ a′n,nx̄n.

Since γ̄ = ϕ, we obtain

a
′
ij = aij for all 1 ≤ i, j ≤ n. (3.6)

Next, we consider γ|
L
(1)
n,2

as follows:
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γ(zi,j) = γ([xi, xj ]) = [γ(xi), xj ] + [xi, γ(xj)]

= [a
′
i1x1 + a

′
i2x2 + · · ·+ a

′
inxn + βi;2,1z2,1 + · · ·+ βi;n,n−1zn,n−1, xj ]

+ [xi, α
′
j1x1 + a

′
j2x2 + · · ·+ a

′
jnxn + βj;2,1z2,1 + · · ·+ βj;n,n−1zn,n−1]

= a′i1[x1, xj ] + a′i2[x2, xj ] + · · ·+ a′in[xn, xj ] + a′j1[xi, x1] + a′j2[xi, x2]

+ · · ·+ a′jn[xi, xn] (since Ln,2 is two-step nilpotent)

= −a′i1zj,1 − a′i2zj,2 − · · · − a′i(j−1)zj,(j−1) + 0 + a′i(i+1)z(j+1),j + · · ·+ a′iizi,j

+ · · ·+ a′inzn,j + a′j1zi,1 + a′i2zi,2 + · · ·+ a′jjzi,j + · · ·+ a′j(i−1)zi,(i−1)

+ 0− a′j(i+1)z(i+1),i − · · · − a′jnzn,i (3.7)

By explicit computation and combining equations (3.7) and (3.6), we get (3.5).
QED

Corollary 3.3. Let (θ, ϕ) ∈ Der(L
(1)
2,2) ⊕ Der(Lab2,2) and (r, [ϕ]) be the cor-

responding pair of matrices. Then the pair (r, ϕ) is inducible if and only if
r = a11 + a22.

Proof. In this case, the derived subalgebra L
(1)
2,2 is a one-dimensional free abelian

algebra generated by [x2, x1] and the abelianization Lab2,2 is a two-dimensional
free abelian algebra with basis {x̄1, x̄2}. The proof now follows from (3.3).

QED

We conclude with the following examples to show that the converse of The-
orem 3.1 is not true in general.

Recall that a Lie algebra L is called Heisenberg provided that L2 = Z(L)
and dim L2 = 1. A Lie algebra H is called generalized Heisenberg of rank n if
H2 = Z(H) and dimH2 = n.

1) Let 0 → Z(L) → L
π→ L/Z(L) → 0 be an exact sequence, where L is

a non-abelian finite dimensional generalized Heisenberg Lie algebra. No-
tice that this sequence does not split under the natural action of L/Z(L)
on Z(L). If the sequence splits, then L is a direct sum of Z(L) and
L/Z(L). This implies that L is abelian, which is a contraction. In this

case, DerZ(L)(L) = Der
Z(L)
Z(L)(L) = Derz(L), where Derz(L) is the set of all

central derivations of L (see [14, 16]). Thus, from the exactness of sequence
(3.1), C∗1 = 0 and the sequence splits.

2) For the free nilpotent Lie algebra Ln,2, we consider the central of Lie
algebras



Derivations of abelian Lie algebra extensions 85

0→ L
(1)
2,2 → L2,2 → Lab2,2 → 0.

Since L2,2 is nonabelian, the sequence does not split. We show that the
associated short exact sequence

0→ Der
L
(1)
2,2

L
(1)
2,2

(L2,2)→ Der(L2,2 : L
(1)
2,2)

τ−→ C∗α → 0 (3.8)

splits. We define a section µ : C∗α → Der(L2,2 : L
(1)
2,2), which is a Lie algebra

homomorphism, showing that the sequence (3.8) splits. Define µ(θ, ϕ) = γ,
where

γ :


x1 7−→ t(ϕ(x̄1)),

x2 7−→ t(ϕ(x̄2)),

[x1, x2] 7−→ θ([x1, x2]).

Then

[γ(x1), x2] + [x1, γ(x2)] = [t(ϕ(x̄1)), x2] + [x1, t(ϕ(x̄2))]

= [t(a11x̄1 + a12x̄2), x2] + [x1, t(a21x̄1 + a22x̄2)]

= [a11x1 + a12x2, x2] + [x1, a21x1 + a22x2]

= (a11 + a22)[x1, x2]

= θ([x1, x2]) (by Corollary 3.3, since (θ, ϕ) is inducible)

= γ([x1, x2])

It follows that γ ∈ Der(L2,2 : L
(1)
2,2). Since τ(γ) = (θ, ϕ), µ is a section. It

is easy to see that µ is a Lie algebra homomorphism. This show that the
sequence (3.3) splits while 0 → A → L

π→ B → 0 does not split. For the
sequence (3.2) is enough let θ = 0 in the exact sequence of example (2)
above.
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