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Abstract. This manuscript presents the Ulam stability results of non–linear Volterra integro–
dynamic equation and its adjoint equation on time scales. First, we obtain the Ulam stability
of adjoint equation by using the integrating factor method. Then, the Ulam stability of the
corresponding equation is proved by means of the property of the exponential function and
related results that are proved in adjoint equation with the help of integrating factor method.
At the end, an example is given that shows the validity of our main results.
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Introduction

In 1940, in a talk before the mathematics club at the university of Wis-
consin, Ulam [25, 26] presented a famed question related to the stability of
homomorphisms: “With which requirements does an additive mapping near an
approximate additive mapping exists?”.

This question was answered by Hyers [9], for the case of Banach spaces, by
using direct method. So this interesting stability initiated by Ulam and Hyers
is called Hyers–Ulam(HU) stability. In 1978, Rassias [20] extended HU stabil-
ity concept by introducing new function variables and after that it famed for
the Hyers–Ulam–Rassias(HUR) stability. For further details and discussions, we
recommend the book by Jung [11].

At the end of 19th century, a large number of researchers contributed to the
stability idea of Ulam’s type for various types of differential equations. There
are many advantages of Ulam’s type stability in tackling problems, related to,
optimization techniques, numerical analysis, control theory and many more, in
such situations to get an exact solution is challenging. Ob loza sounds to be
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the first mathematician for investigating the HU stability of linear differential
equations (DEs), (see [17, 18]). Thereafter, Alsina and Ger [2] published their
results that holds the HU stability of the differential equation ξ

′
(t) = ξ(t). Jung

in [10] investigated HU stability of first order linear DEs. Then Li and Shen [13]
extended HU stability concept for DEs of second order. Jung and Roh [12], in
2016, generalized the HU stability concept for linear DEs with complex constant
coefficients. For more details on HU stability, see [10, 13, 14, 15, 17, 18, 21, 22,
23, 24, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 41, 42, 43].

The theory of dynamic equations on time scales has been rising fast and has
acknowledged a lot of interest in recent years. This theory was introduced by
Hilger [8] in 1988, with the inspiration to provide a unification of continuous
and discrete calculus. The time scale analysis is giving an opportunity to study
the differential and difference equations in a unified way. For the basics of time
scales calculus, the reader is referred to see the excellent monographs written
by Bohner and Peterson [4, 5].
Nowadays, the Ulam’s type stability idea is also getting attention for dynamic
equations on time scales. András and Mészáros [3], in 2013, discussed the HU
stability of some integral equations on time scale by using Picard operators.
Recently, Shah and Zada [24] obtained very interesting results about the exis-
tence, uniqueness and stability of solution to mixed integral dynamic systems
with instantaneous and non–instantaneous impulses on time scales. For more
details on time scales, see [1, 3, 6, 7, 16, 19, 22, 23, 24, 33, 39, 40].

The utmost purpose of this manuscript is to find the Ulam stability for the
following non–linear Volterra integro–dynamic equation

ϕ∆(t) = p(t)ϕ(t) +

∫ t

t0

K(t, s, ϕ(s))∆s, t ∈ T 0
S = [t0,∞)TS , (0.1)

and its adjoint equation

ϑ∆(t) = −p(t)ϑΘ(t) +

∫ t

t0

K(t, s, ϑ(s))∆s, t ∈ T 0
S , (0.2)

where p ∈ R+
T 0
S

and K(t, s, z(s)) is continuous operator on Γ = {(t, s, z) : 0 =

t0 ≤ s ≤ t <∞, z ∈ R}.

1 Preamble

In this section, we recall the main definitions and some basic notations of
time scales calculus.
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An arbitrary non–empty closed subset of real numbers TS is called a time
scale. The forward jump operator Θ : TS → TS , backward jump operator ρ :
TS → TS and graininess operator µ : TS → [0,∞), are defined by:

Θ(s) = inf{t ∈ TS : t > s}, ρ(s) = sup{t ∈ TS : t < s}, µ(s) = Θ(s)− s,

respectively. An arbitrary t ∈ TS is called left scattered (resp. left dense) when
t > ρ(t) (resp. t = ρ(t)). While, in case of t < Θ(t) (resp. Θ(t) = t), we call t
is right scattered (resp. right dense). For a time scale TS , the set of all limiting
points T zS is called the derived set and illustrated as follows:

T zS =

{
TS\(ρ(supTS), supTS ], if supTS <∞,
TS , if supTS =∞.

Let W : TS → R be a real valued function, then WΘ : TS → R is defined as
WΘ(t) = W (Θ(t)), ∀ t ∈ TS . The real valued function W : TS → R is called
right–dense continuous if it is continuous at every right–dense point on TS and
its left–sided limit exists at every left–dense point on TS . The set of all right–
dense(rd) continuous functions will be denoted by CRD(TS ,R). The functionW :
TS → R is called regressive (resp. positively regressive) if 1+µ(t)W(t) 6= 0, (resp.
1 + µ(t)W(t) > 0) ∀ t ∈ T zS . The set of all right–dense continuous regressive
functions (resp. right–dense continuous positively regressive functions) will be
denoted by RTS (resp. R+

TS ). If G,H ∈ RTS , then for all s ∈ T zS ,

(G⊕H)(s) = G(s) +H(s) + µ(s)G(s)H(s),

(	G)(s) = − G(s)

1 + µ(s)G(s)
,

G	H = G⊕ (	H).

The delta derivative of the function W : TS → R on t ∈ T zS , is given by

W∆(t) = lim
s→t, s 6=Θ(t)

W (Θ(t))−W (s)

Θ(t)− s
.

For a rd–continuous function W : TS → R, the ∆−integral is defined to be∫ b

a
W (t)∆t = w(b)− w(a), for all a, b ∈ TS ,

where w is the anti–derivative of W , i.e., w∆ = W on T zS .
For p ∈ RTS , the generalized exponential function is defined by

ep(a, b) = exp

(∫ b

a
αµ(s)p(s)∆s

)
for all a, b ∈ TS ,
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while,

αµ(t)p(t) =


Log(1 + µ(t)p(t))

µ(t)
, if µ(t) 6= 0,

p(t), if µ(t) = 0,

is the cylindrical transformation.

The unique solution to the dynamic equation z∆(t) = p(t)z(t), z(t0) =
1, t ∈ TS , is given by ep(t, t0).

Theorem 1. [4] Let p, q ∈ RTS , then:

(1) e0(t, s) = 1 and ep(t, t) = 1.

(2) ep(Θ(t), s) = (1 + µ(t)p(t))ep(t, s).

(3) ep(t, s) = 1
ep(s,t) = e	p(s, t).

(4) (ep(t, s))
∆ = p(t)ep(t, s).

(5) ep(t, s)ep(s, r) = ep(t, r).

(6) If r, u, v ∈ TS, then∫ u

r
p(η)ep(v,Θ(η))∆η = ep(v, r)− ep(v, u).

Theorem 2. (Properties of Differentiation)[4] Let g,h : TS → R be the
differentiable functions at t ∈ TSz. Then

(1) (g + h)∆(t) = g∆(t) + h∆(t).

(2) For any constant c,

(ch)∆(t) = ch∆(t).

(3) (gh)∆(t) = g∆(t)h(t) + g(Θ(t))h∆(t) = g(t)h∆(t) + g∆(t)h(Θ(t)).

(4) If g(Θ(t))g(t) 6= 0, then(
1

g

)∆

(t) = − g∆(t)

g(t)g(Θ(t))
.

(5) If h(t)h(Θ(t)) 6= 0, then(
g

h

)∆

(t) =
g∆(t)h(t)− h∆(t)g(t)

h(t)h(Θ(t))
.
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Theorem 3. [4] Let t0 ∈ TS and u0, v0 ∈ R. The unique solutions of the
initial value problems

ϑ∆(t) = −p(t)ϑΘ(t) + g(t), ϑ(t0) = u0,

and

ϕ∆(t) = p(t)ϕ(t) + g(t), ϕ(t0) = v0,

are given by

ϑ(t) = e	p(t, t0)u0 +

∫ t

t0

e	p(t, η)g(η)∆η,

and

ϕ(t) = ep(t, t0)v0 +

∫ t

t0

ep(t,Θ(η))g(η)∆η.

Lemma 1. [7] If λ ∈ R+
TS , then for dynamic equation, ψ∆(t) = λψ(t) the

following inequality holds

eλ(t, s) ≤ eλ(t−s), ∀ t, s ∈ TS .

2 Main Results

Now we state our major results. The first result is to establish the Ulam
stablity of the adjoint Eq. (0.2) of Eq. (0.1).

Theorem 4. For p ∈ R+
T 0
S

and a given ε > 0, if a rd-continuous differen-

tiable function ϑ : T 0
S → R satisfies the inequality∣∣∣∣ϑ∆(t) + p(t)ϑΘ(t)−

∫ t

t0

K(t, s, ϑ(s))∆s

∣∣∣∣ ≤ ε, ∀ t ∈ T 0
S , (2.1)

then there exists a solution h ∈ CRD(T 0
S ,R) of Eq. (0.2) such that

|ϑ(t)− h(t)| ≤ ε
∫ t

t0

|ep(υ, t)|∆υ,∀ t ∈ T 0
S .

Proof. From (2.1), we get

−ε ≤ ϑ∆(t) + p(t)ϑΘ(t)−
∫ t

t0

K(t, s, ϑ(s))∆s ≤ ε, (2.2)
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since p ∈ R+
T 0
S
, it is obvious that the exponential function ep(t, t0) > 0, ∀ t ∈

T 0
S . Multiplying (2.2) by ep(t, t0), we have

−εep(t, t0) ≤ ϑ∆(t)ep(t, t0) + p(t)ϑΘ(t)ep(t, t0)

−ep(t, t0)

∫ t

t0

K(t, s, ϑ(s))∆s ≤ ep(t, t0)ε.

Integrating from t0 to t with respect to υ, we get

−ε
∫ t

t0

ep(υ, t0)∆υ ≤
∫ t

t0

(
ϑ∆(υ)ep(υ, t0) + p(υ)ϑΘ(υ)ep(υ, t0)

)
∆υ

−
∫ t

t0

ep(υ, t0)

∫ υ

υ0

K(t, s, ϑ(s))∆s∆υ ≤ ε
∫ t

t0

ep(υ, t0)∆υ.

This implies

−ε
∫ t

t0

ep(υ, t0)∆υ ≤
∫ t

t0

(
ϑ(υ)ep(υ, t0)

)∆

∆υ

−
∫ t

t0

ep(υ, t0)

∫ υ

υ0

K(t, s, ϑ(s))∆s∆υ ≤ ε
∫ t

t0

ep(υ, t0)∆υ.

Equivalently,

−ε
∫ t

t0

ep(υ, t0)∆υ ≤ ϑ(t)ep(t, t0)− ϑ(t0)

−
∫ t

t0

ep(υ, t0)

∫ υ

υ0

K(t, s, ϑ(s))∆s∆υ ≤ ε
∫ t

t0

ep(υ, t0)∆υ.

Multiplying both sides of the above inequality by e	p(t, t0), we get

−ε
∫ t

t0

ep(υ, t0)e	p(t, t0)∆υ ≤ ϑ(t)ep(t, t0)e	p(t, t0)− ϑ(t0)e	p(t, t0)

−
∫ t

t0

ep(υ, t0)e	p(t, t0)

∫ υ

υ0

K(t, s, ϑ(s))∆s∆υ ≤ ε
∫ t

t0

ep(υ, t0)e	p(t, t0)∆υ.

By using the property 3 and property 5 of Theorem 1, we get

−ε
∫ t

t0

ep(υ, t)∆υ ≤ ϑ(t)− ϑ(t0)e	p(t, t0)

−
∫ t

t0

ep(υ, t)

∫ υ

υ0

K(t, s, ϑ(s))∆s∆υ ≤ ε
∫ t

t0

ep(υ, t)∆υ.
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This implies∣∣∣∣ϑ(t)− ϑ(t0)e	p(t, t0)−
∫ t

t0

ep(υ, t)

∫ υ

υ0

K(t, s, ϑ(s))∆s∆υ

∣∣∣∣ ≤ ∣∣∣∣ε∫ t

t0

ep(υ, t)∆υ

∣∣∣∣
≤ ε

∫ t

t0

|ep(υ, t)|∆υ.

By putting h(t) = ϑ(t0)e	p(t, t0) +
∫ t
t0
ep(υ, t)

∫ υ
υ0
K(t, s, ϑ(s))∆s∆υ, it can be

easily verified that h(t) is a solution of Eq. (0.2). so we get,

|ϑ(t)− h(t)| ≤ ε
∫ t

t0

|ep(υ, t)|∆υ,

which is the required inequality. QED

Remark 1. If ε
∫ t
t0
|ep(υ, t)|∆υ is a positive constant function, then Eq. (0.2)

has HU stability on T 0
S and if ε

∫ t
t0
|ep(υ, t)|∆υ is a positive increasing function,

then Eq. (0.2) has HUR stability on T 0
S .

In the following theorem, we state about the Ulam stability of Eq. (0.1).

Theorem 5. For p ∈ R+
T 0
S

and a given ε > 0, if a rd-continuous differen-

tiable function ϕ : T 0
S → R satisfies the inequality∣∣∣∣ϕ∆(t)− p(t)ϕ(t)−

∫ t

t0

K(t, s, ϕ(s))∆s

∣∣∣∣ ≤ ε, ∀ t ∈ T 0
S , (2.3)

then there exists a solution g ∈ CRD(T 0
S ,R) of Eq. (1.1) such that

|ϕ(t)− g(t)| ≤ ε
∫ t

t0

|ep(t,Θ(υ))|∆υ,∀ t ∈ T 0
S .

Proof. Replacing ϕ(t) in (2.3) by the formula,

ϕΘ(t) = ϕ(t) + µ(t)ϕ∆(t),

we get∣∣∣∣(1 + µ(t)p(t))ϕ∆(t)− p(t)ϕΘ(t)−
∫ t

t0

K(t, s, ϕ(s))∆s

∣∣∣∣ ≤ ε, ∀ t ∈ T 0
S ,

since p ∈ R+
T 0
S
, we obtain that 1 + µ(t)p(t) > 0, multiply both sides of the

above inequality by 1
1+µ(t)p(t) , we get∣∣∣∣ϕ∆(t)+(	p)(t)ϕΘ(t)− 1

1 + µ(t)p(t)

∫ t

t0

K(t, s, ϕ(s))∆s

∣∣∣∣ ≤ ε 1

1 + µ(t)p(t)
, ∀ t ∈ T 0

S ,
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Note that p ∈ R+
T 0
S

implies 	p ∈ R+
T 0
S
. By multiplying both sides of the above

inequality by e	p(t, t0), we get∣∣∣∣ϕ∆(t)e	p(t, t0) + (	p)(t)e	p(t, t0)ϕΘ(t)

− e	p(t, t0)

1 + µ(t)p(t)

∫ t

t0

K(t, s, ϕ(s))∆s

∣∣∣∣ ≤ ε e	p(t, t0)

1 + µ(t)p(t)
, ∀ t ∈ T 0

S .

By using the property 2 and property 3 of Theorem 1 in above inequality, we
get∣∣∣∣ϕ∆(t)e	p(t, t0) + (	p)(t)e	p(t, t0)ϕΘ(t)

−e	p(Θ(t), t0)

∫ t

t0

K(t, s, ϕ(s))∆s

∣∣∣∣ ≤ εe	p(Θ(t), t0), ∀ t ∈ T 0
S .

By the same calculation and process as in above Theorem 4, we can obtain∣∣∣∣ϕ(t)− ϕ(t0)ep(t, t0)−
∫ t

t0

ep(t,Θ(υ))

∫ υ

υ0

K(t, s, ϕ(s))∆s∆υ

∣∣∣∣ ≤ ∣∣∣∣ε ∫ t

t0

ep(t,Θ(υ))∆υ

∣∣∣∣
≤ ε

∫ t

t0

|ep(t,Θ(υ))|∆υ.

By putting g(t) = ϕ(t0)ep(t, t0)+
∫ t
t0
ep(t,Θ(υ))

∫ υ
υ0
K(t, s, ϕ(s))∆s∆υ. It can be

easily checked that g(t) is a solution of Eq. (0.1), so we have

|ϕ(t)− g(t)| ≤ ε
∫ t

t0

|ep(t,Θ(υ))|∆υ,∀ t ∈ T 0
S ,

which is the required inequality. QED

Remark 2. If ε
∫ t
t0
|ep(t,Θ(υ))|∆υ is a positive constant function, then Eq.

(0.1) has HU stability on T 0
S and if ε

∫ t
t0
|ep(t,Θ(υ))|∆υ is a positive increasing

function, then Eq. (1.1) has HUR stability on T 0
S .

Example 1. Consider the following non–linear Volterra integro–dynamic
equation

ϕ∆(t) = ϕ(t) +

∫ t

t0

eq(t, s)eq(s, ϕ(s))∆s, t ∈ T 0
S , (2.4)

and its adjoint equation

ϑ∆(t) = −ϑΘ(t) +

∫ t

t0

eq(t, s)eq(s, ϑ(s))∆s, t ∈ T 0
S , (2.5)
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where p(t) = 1 is a positively regressive constant function, q ∈ CRD(T 0
S ,R) and

K(t, s, ϕ(s)) = eq(t, s)eq(s, ϕ(s)). If ϕ, ϑ ∈ CRD(T 0
S ,R) satisfies the following

inequalities ∣∣∣∣ϑ∆(t) + ϑΘ(t)−
∫ t

t0

K(t, s, ϑ(s))∆s

∣∣∣∣ ≤ 1

2
= ε, ∀ t ∈ T 0

S , (2.6)

∣∣∣∣ϕ∆(t)− ϕ(t)−
∫ t

t0

K(t, s, ϕ(s))∆s

∣∣∣∣ ≤ 1 = ε, ∀ t ∈ T 0
S , (2.7)

then concerning to inequality (2.6), by using Theorem 4, ∀ t ∈ T 0
S , we get

|ϑ(t)− h(t)| ≤ 1

2

∫ t

t0

|ep(υ, t)|∆υ

≤ 1

2

∫ t

t0

|ep(υ−t)|∆υ

=
1

2
e−t
∫ t

t0

eυ∆υ

=
1

2
e−t(et − et0)

≤ 1

2
.

So by Remark 1, Eq. (2.5) is HU stable. Now concerning to inequality (2.7), by
using Theorem 5, ∀ t ∈ T 0

S , we get

|ϕ(t)− g(t)| ≤
∫ t

t0

|ep(t,Θ(υ))|∆υ

=

∫ t

t0

|e	p(Θ(υ), t)∆|υ

=

∫ t

t0

(1 + µ(t)	 p(t))e	p(υ, t)∆υ

=

∫ t

t0

(
1 + µ(t)

( −1

1 + µ(t)

))
ep(t, υ)∆υ

≤
(

1−
( µ(t)

1 + µ(t)

))∫ t

t0

ep(t−υ)∆υ

=

(
1−

( µ(t)

1 + µ(t)

))
et
∫ t

t0

e−υ∆υ

=

(
1−

( µ(t)

1 + µ(t)

))
et(−e−t + e−t0)
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=

(
1−

( µ(t)

1 + µ(t)

))
(et−t0 − 1)

≤
(

1−
( µ(t)

1 + µ(t)

))
(et−t0)

=

(
et−t0 −

(
et−t0

µ(t)

1 + µ(t)

))
≤ ete−t0 .

As et is a positive increasing function. So by Remark 2, Eq. (2.4) is HUR stable.

3 Conclusion

This manuscript is about the establishment of Ulam stability results of non–
linear Volterra integro–dynamic equation and its adjoint equation on time scales.
Our results were proved by using the integrating factor method. In fact, our
results are important, when finding exact solution is quite difficult, and hence
they are important in approximation theory etc [22, 23, 24].
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[3] S. András, A. R. Mészáros: Ulam–Hyers stability of dynamic equations on time scales
via Picard operators, Appl. Math. Comput. 209 (2013), 4853–4864.

[4] M. Bohner, A. Peterson: Dynamic equations on time scales: an introduction with
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