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Abstract. A particular class of graphs, called ”nearly ĈP -graphs”, extending the class
of ĈP -graphs is introduced. From Barioli’s characterization of completely positive matrices
with a book-graph, two equivalent characterizations of completely positive matrices with a
nearly ĈP -graph are deduced. By means of these results, new characterizations of completely
positive matrices of order 5 with a book-graph and some alternative demonstrations of known
results are derived. A new characterization of completely positive matrices of order 5 with a
ĈP -graph and a new elementary proof of the main result obtained by Cedolin-Salce, regarding
this particular class of matrices, are shown. It is also attempted to clarify some results obtained
by Xu on completely positive matrices of order 5, and it is shown by a counterexample that
one of them is incorrect.
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1 Introduction

All matrices considered in this paper are real matrices. If A is an n x n
matrix, and α, β are sets of indices α, β ⊆ {1, ..., n}, then A[α|β] is the submatrix
of A with rows indexed by the elements of α and columns indexed by the
elements of β (both index sets in increasing order); and A(α|β) is the submatrix
of A with rows indexed by {1, ..., n} \ α and columns indexed by {1, ..., n} \ β
(both index sets in increasing order). Using these notations we often omit the
{·} (e.g., we write A[1, 2|2, 3] instead of A[{1, 2} | {2, 3}]).

A matrix A is called completely positive if it can be written in the form A =
BBT , where B is a (not necessarily square) non-negative matrix. A completely
positive matrix is necessarily doubly non-negative, i.e., positive semidefinite
and non-negative. The classes of completely positive and doubly non-negative
matrices of order n are denoted, respectively, by CPn and DNNn, therefore
CPn ⊆ DNNn for every n. It is well known that this inclusion is actually
an equality for n ≤ 4, and that for n ≥ 5 it is a proper inclusion. Another
known fact is that CPn and DNNn are closed convex cones in the Euclidean
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space of all symmetric matrices of order n, where the inner product is given by
〈A,B〉 = trace(AB) (see, e.g., [2]).

Given a symmetric matrix A of order n, the undirected graph associated
with A, G(A), is the graph with n vertices (1, 2, . . ., n) that contains the edge
(i, j), with i 6= j, if and only if aij 6= 0.

A graph G is called completely positive if every doubly non-negative matrix,
whose associated graph is isomorphic to G, is completely positive. In 1993, after
contributions by many authors, completely positive graphs were characterized.

Theorem 1 (Kogan-Berman [5]). A graph G is completely positive if and
only if it does not contain cycles of odd length > 3.

It follows that there are graphs with 5 vertices that are not completely posi-
tive, and those are the ones that contain a cycle of length 5, namely Hamiltonian
graphs with 5 vertices.

Corollary 1. Every doubly non-negative matrix of order 5 whose graph is
not Hamiltonian is completely positive.

There are, up to isomorphisms, eight different types of Hamiltonian graphs
with 5 vertices. We follow the notation in [6], where these graphs are denoted
by Gi (1 ≤ i ≤ 8).

It is clear that G1, G2, G3, G4, G6 are book-graphs. Book-graphs were
defined by Barioli in [1].

Definition 1 (Barioli [1]). Let G be a graph with set of vertices V (G). We
say that G is a book-graph with r completely positive pages if V (G) is the union
of subsets C1, C2,..., Cr and:

(1) ∃u, v ∈ V (G) such that, ∀i 6= j, Ci ∩ Cj = {u, v};
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(2) there are no edges connecting vertices in different Ci’s, in case except the
edge (u, v);

(3) ∀i the induced subgraph generated by Ci is completely positive.

It is also clear that G1, G2, G3 are ĈP -graphs (originally called in [1] excel-
lent graphs), i.e., they are graphs G containing a vertex w, called a hat-vertex,
adjacent only to two other vertices u, v which are not each other adjacent, such
that G \ {w} is a completely positive graph. Completely positive matrices with

book-graphs and ĈP -graphs were characterized by Barioli in [1].

Completely positive matrices with graphs from G1 up to G6 are also studied
in [6]. Howewer Cedolin and Salce showed in [3] that Xu’s characterizations
of completely positive matrices whose graph is G2 or G3 are wrong. A doubly
non-negative matrix whose graph is G1, G2 or G3 can be assumed without loss
of generality to be in the following forms, respectively (it is understood that an
entry aij denotes a positive real number):

1 a12 0 0 a15

a12 1 a23 0 0
0 a23 1 a34 0
0 0 a34 1 a45

a15 0 0 a45 1

 ; (1.1)


1 a12 a13 0 a15

a12 1 a23 0 0
a13 a23 1 a34 0
0 0 a34 1 a45

a15 0 0 a45 1

 ; (1.2)


1 a12 a13 0 a15

a12 1 a23 a24 0
a13 a23 1 a34 0
0 a24 a34 1 a45

a15 0 0 a45 1

 . (1.3)

For completely positive matrices in these forms, Cedolin and Salce obtained
the following characterization.

Theorem 2 (Cedolin-Salce [3]). For a doubly non-negative matrix A whose
associated graph is G1, G2 or G3 in the form (1.1), (1.2) or (1.3), the following
conditions are equivalent:

(1) A is completely positive.

(2) detA ≥ 4VA(5).

The quantity VA(5) in Theorem 2 is the total weight of the hat-vertex 5 in
G(A) introduced in [3]; for its definition see next Section 2. We remark that
in [3] total weights of hat-vertices are indicated with the letter W . We have
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decided to change this notation here to avoid misunderstandings, since W in [3]
indicates also corrected weights of cycles.

Completely positive matrices of order 5 whose graph is G4, G5 or G6 are
studied in [6]. Howewer the characterizations that Xu obtains for these cases
are not totally clear. In [6], Xu gives the following definitions:

Definition 2 (Xu [6]). Let A be a doubly non-negative matrix, and C =
{j1 → j2 → · · · → jk → j1} be a cycle in G(A).

• the weight A|C| of the cycle C in G(A) is the following quantity:

A|C| := (−1)k−1aj1j2aj2j3 · · · ajk−1jkajkj1 ;

• the quantity A|k| is the algebraic sum of weights of all cycles of length k
in G(A).

In the definition above j1, j2,. . ., jk are distinct vertices.
A doubly non-negative matrix whose graph is G4, G5 or G6 can be assumed

without loss of generality to be in the following forms, respectively (it is under-
stood that an entry aij denotes a positive real number):

1 a12 a13 a14 a15

a12 1 a23 0 0
a13 a23 1 a34 0
a14 0 a34 1 a45

a15 0 0 a45 1

 ; (1.4)


1 a12 a13 a14 a15

a12 1 a23 0 a25

a13 a23 1 a34 0
a14 0 a34 1 a45

a15 a25 0 a45 1

 ; (1.5)


1 a12 a13 0 0
a12 1 a23 a24 a25

a13 a23 1 a34 a35

0 a24 a34 1 a45

0 a25 a35 a45 1

 . (1.6)

In [6], Xu states the following theorems (where Eij indicates the matrix
with all zeroes except the (i, j)-element which is equal to 1, and In denotes the
identity matrix of order n).

Theorem 3 ([6]). Let A ∈ DNN5 in the form (1.4) . Then A ∈ CP5 if and
only if one of the following holds:

(1) a13 ≥ a12a23;

(2) a14 ≥ a15a45;

(3) Neither 1. nor 2. holds, but detA ≥ 4A|(3,4)|.
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Theorem 4 ([6]). Let A ∈ DNN5 in the form (1.5), and

a12 = min

{
a1j

a2j
| a2j > 0

}
.

Then A ∈ CP5 if and only if one of the following holds:

(1) a13 ≥ a12a23 + a14a43 and a15 ≥ a12a25 + a14a45; or

(2) detA ≥ 4Ã|2|, where Ã = SAST , S = I5 − a12E12.

Theorem 5 ([6]). Let A ∈ DNN5 in the form (1.6). Then A ∈ CP5 if and
only if:

(1) a23 ≥ a12a13; or

(2) a23 < a12a13 and detA ≥ 4Ã|1|, where Ã = SAST , S = I5 − a23
a13
E21.

The quantity A|(3,4)| appearing in Theorem 3 is never defined in [6], and the

quantity Ã|1| appearing in Theorem 5 seems to have no meaning, since there
are no cycles of length 1.

This paper has several goals. In Section 2 a new characterization of com-
pletely positive matrices of order 5 with a ĈP -graph and an elementary proof
of Cedolin-Salce’s Theorem 2 are given. In Section 3, from Barioli’s characteri-
zation of completely positive matrices with a book-graph in [1], we deduce two
characterizations of completely positive matrices with particular book-graphs,
that we will call ”nearly ĈP -graphs” (see Section 3 for their precise definition).
In Section 4 various characterizations of completely positive matrices of order
5 whose graph is G4 or G6 are presented, which are obtained by applying the
results of Section 3; it is also attempted to clarify Xu’s results for those two
cases. In Section 5 it is shown that Xu’s Theorem 4 is not correct.

2 Completely positive matrices of order 5 with a ĈP -
graph

In this section we are going to show a new characterization of completely
positive matrices of order 5 with a ĈP -graph, and also an elementary proof of
a Cedolin-Salce’s theorem ([3], Theorem 2 ).

We start recalling the definition of a corrected weight of a cycle, given by
Cedolin-Salce in [3]. This definition uses the weight of a cycle in Definition 2.

Definition 3 (Cedolin-Salce [3]). Let A be a doubly non-negative matrix.
Given a cycle C = {j1 → j2 → · · · → jk → j1} in G(A), its corrected weight is
WA(C) = A|C| ·

∏
i/∈C aii.
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We remark that, in [3], the weight of a cycle C in G(A) is denoted by wA(C).
We now give the definition of the weight and the total weight of a set of

vertices J . This definition generalizes the one given by Cedolin-Salce in [3] re-
garding the total weight of a hat-vertex.

Definition 4. Let A be a doubly non-negative matrix, and let J be a set
of vertices in G(A).

(1) The weight vA(J) of J in G(A) is the sum of the weights of all cycles with
length > 2 in G(A) that contain the set of vertices J .

(2) The total weight VA(J) of J in G(A) is the sum of the corrected weights
of all cycles with length > 2 in G(A) that contain the set of vertices J .

It is important to note that, given any set of vertices J , if all the diagonal
elements of A are equal to 1, VA(J) = vA(J).

A crucial tool for our purposes is the Cauchy’s interlacing theorem for Her-
mitian matrices.

Theorem 6 (Cauchy). Let A be an Hermitian matrix of order n, and let
B be a principal submatrix of A of order n − 1. Let λ1 ≤ λ2 ≤ · · · ≤ λn and
µ1 ≤ µ2 ≤ · · · ≤ µn−1 be, respectively, the eigenvalues of A and B. Then:

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λk ≤ µk ≤ λk+1 ≤ · · · ≤ µn−1 ≤ λn.

We now consider the graphs G1, G2, G3 with the following numeration of
vertices:

A doubly non-negative matrix A whose graph is G1, G2 or G3 can be as-
sumed, without loss of generality, to be in the following form:

A =


a11 a12 0 0 a15

a12 a22 a23 a24 0
0 a23 a33 a34 a35

0 a24 a34 a44 a45

a15 0 a35 a45 a55

 . (2.1)
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In the case G(A) = G3 all elements aij in (2.1) are positive, in the case
G(A) = G2 we have a35 = a53 = 0, and in the case G(A) = G1 we have
a24 = a42 = a35 = a53 = 0.

Since G1, G2, G3 are ĈP -graphs, we can write:

A− =


a11 a12 0 0 −a15

a12 a22 a23 a24 0
0 a23 a33 a34 a35

0 a24 a34 a44 a45

−a15 0 a35 a45 a55

 . (2.2)

The matrix A− is defined by Barioli in Section 3 of [1].
We can now state the main result of this section.

Theorem 7. Let A ∈ DNN5 whose associated graph is G1, G2 or G3 in
the form (2.1), and let A− be the matrix defined by (2.2). Then the following
statements are equivalent:

(1) A is completely positive.

(2) A− is positive semidefinite.

(3) detA ≥ 4VA({1}).

(4) detA− ≥ 0.

We remark that the equivalence of statements 1 and 3 of the previous the-
orem corresponds, after a suitable cogredience, to Cedolin-Salce’s Theorem 2.
However, in the proof of Theorem 7, we are going to show a new elementary
proof that statements 1 and 3 are equivalent.

Proof. The equivalence of statements 1 and 2 derives directly from Barioli’s
characterization of completely positive matrices with a ĈP -graph ([1], Section
3).

Now we want to show the equivalence of statements 3 and 4. From simple
calculations we obtain:

detA = a11detA (1|1)− a2
12detA (1, 2|1, 2) + 2a12a15detA (1, 2|1, 5)

− a2
15detA (1, 5|1, 5) .

detA− = a11detA (1|1)− a2
12detA (1, 2|1, 2)− 2a12a15detA (1, 2|1, 5)

− a2
15detA (1, 5|1, 5) .
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So we obtain:
detA− detA− = 4a12a15detA (1, 2|1, 5) .

Another simple calculation shows that the quantity 4a12a15detA (1, 2|1, 5) is
equal, in all three cases G1, G2, G3, to the quantity 4VA({1}), and from that
follows the equivalence of statements 3 and 4.

Statement 2 obviously implies statement 4, so the last thing we need to
prove is that statement 3 (or 4) implies 1 (or 2). From now on we’ll assume that
detA− ≥ 0. We have three cases:

Case 1: VA({1}) > 0. In this case detA > 0, A is positive definite and so
it is the matrix A(1|1). This last matrix is also a principal submatrix of A−.
Now let λ1 ≤ λ2 ≤ · · · ≤ λ5 be the eigenvalues of A−, and µ1 ≤ µ2 ≤ · · · ≤ µ4

the eigenvalues of A(1|1). By applying Theorem 6 we obtain: λ1 ≤ µ1 ≤ λ2 ≤
· · · ≤ µ4 ≤ λ5. Since A(1|1) is positive definite, µ1 > 0, so λ2,. . ., λ5 > 0. But
detA− ≥ 0, then λ1 ≥ 0. Therefore A− is positive semidefinite, and A ∈ CP5.

Case 2: VA({1}) < 0. In this case we have detA− = detA − 4VA({1}) > 0,
since A is by hypothesis doubly non-negative. Using the notations introduced
in Case 1, by applying Theorem 6 we obtain: λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µ4 ≤ λ5.
The matrix A(1|1) is positive semidefinite because A is, then µ1 ≥ 0. But
detA− > 0, so λ2,. . ., λ5 > 0. That implies λ1 > 0, therefore A− is positive
definite and A ∈ CP5.

Case 3: VA({1}) = 0. Since if G(A) = G1 the quantity VA({1}) is necessarily
positive (the only cycle containing vertex 1 is the Hamiltonian cycle), in this
case G(A) must be G2 or G3, and so a24 > 0.

For all d > 0 we define Ad := A+ dI5 and A−d = A−+ dI5. For all d > 0, Ad
is doubly non-negative and G(Ad) = G(A). Simple calculations show:

detAd − detA−d =4VAd({1}) = 4 (a12a23a34a45a15 − a12a24a45a15(a33 + d)+

− a12a23a35a15(a44 + d) + a12a24a43a35a15) =

= 4VA({1})− 4a12a15(a45a24 + a35a23)d =

= −4a12a15(a45a24 + a35a23)d.

Since a24 > 0, we have detAd − detA−d < 0, for all d > 0. It follows that
detA−d > 0. For Case 2 applied to Ad, we obtain that this matrix is completely
positive, for all d > 0. But CP5 is a closed convex cone, therefore lim

d→0+
Ad = A

is completely positive.
QED

We remark that statement 4 of the previous theorem is a new characteri-
zation of completely positive matrices of order 5 whose graph is G2 or G3. For
completely positive matrices whose graph is G1 the equivalence of statements 1
and 4 was already known (see [1], Section 4).
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3 Nearly ĈP -graphs

Barioli in [1] obtained a characterization of completely positive matrices
whose associated graph is a book-graph, and then simplified this character-
ization for completely positive matrices with particular book-graphs, namely
ĈP -graphs. We recall that a ĈP -graph is a graph G that contains a vertex w,
adjacent only to two other vertices u, v which are not each other adjacent, such
that G \ {w} is a completely positive graph.

Using the notations introduced above, we note that the definition of a ĈP -
graph requires that the vertex u is not adjacent to the vertex v. In this section
we are going to deduce two equivalent characterizations of completely positive
matrices whose associated graph is a ”nearly” ĈP -graph, meaning that the
non-adjacency of u and v it is not specifically required. We start giving a formal
definition of these particular graphs.

Definition 5. A graph G is called a nearly ĈP -graph if there exists a vertex
w of degree 2 such that G \ {w} is a completely positive graph.

The following are examples of nearly ĈP -graphs:

Note that a ĈP -graph is also a nearly ĈP -graph.
A nearly ĈP -graph is obviously a book-graph, therefore from Barioli’s char-

acterization of completely positive matrices with a book-graph we want to de-
duce a characterization of completely positive matrices with a nearly ĈP -graph.

A doubly non-negative matrix realization A of a nearly ĈP -graph can be
written, without loss of generality, in the following form:

A =


a h x1 xT2
h b y1 yT2
x1 y1 a1 0T

x2 y2 0 A2

 , (3.1)

where x1, y1 are positive real numbers. Since A is doubly non-negative, we note
that also a1 > 0. Sometimes (3.1) will be written in the following more compact
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form:

A =

a h xT

h b yT

x y A

 , (3.2)

where obviously xT =
[
x1 xT2

]
, yT =

[
y1 yT2

]
and A =

[
a1 0T

0 A2

]
.

Since a nearly ĈP -graph is a book-graph with two completely positive pages,
one on three vertices, we can write Barioli’s characterization of completely pos-
itive matrices with a book-graph in the following way.

Theorem 8 (Barioli [1]). Let A ∈ DNNn whose associated graph is a book-
graph in the forms (3.1) and (3.2). Then A is completely positive if and only
if:

(1) xT2 A
†
2y2 ≥ 0; or

(2) xT2 A
†
2y2 < 0 and √

a⊥b⊥ + h⊥ ≥ −2xT2 A
†
2y2, (3.3)

where

[
a⊥ h⊥
h⊥ b⊥

]
:= A/A, A/A is the generalized Schur complement of A in

A and the symbol A†2 denotes the Moore-Penrose pseudo-inverse of the matrix
A2. We can now state the main result of this section.

Theorem 9. Let A ∈ DNNn whose associated graph is a nearly ĈP -graph
in the forms (3.1) and (3.2). Then the following statements are equivalent:

(1) A is completely positive.

(2) a. xT2 A
†
2y2 ≥ 0; or

b. xT2 A
†
2y2 < 0 and

det
(
A/A

)
≥ 4xT2 A

†
2y2

detA [1, 3|2, 3]

a1
.

(3) a. detA [1, 3|2, 3] ≥ 0; or

b. detA [1, 3|2, 3] < 0 and

det
(
A/A

)
≥ 4xT2 A

†
2y2

detA [1, 3|2, 3]

a1
.

Proof. We observe that the matrix A is in the canonical forms introduced in
Section 2 of [1]. We start by proving the equivalence of statements 1 and 2.
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From Theorem 8 we observe that the only thing we need to prove is that, when
xT2 A

†
2y2 < 0, inequality (3.3) is equivalent to the one stated at point 2, (b) of

Theorem 9.
So now we assume xT2 A

†
2y2 < 0. Since A/A is positive semidefinite, we have:

−
√
a⊥b⊥ ≤ h⊥ ≤

√
a⊥b⊥.

From the previous inequality it follows that:

−2xT2 A
†
2y2 − h⊥ ≥ −

√
a⊥b⊥.

Taking also into account inequality (3.3), we obtain:

−
√
a⊥b⊥ ≤ −2xT2 A

†
2y2 − h⊥ ≤

√
a⊥b⊥.

That means that inequality (3.3) is satisfied if and only if:

a⊥b⊥ ≥
(

2xT2 A
†
2y2 + h⊥

)2
.

Since det
(
A/A

)
= a⊥b⊥ − h2

⊥, the previous inequality is equivalent to the
following:

det
(
A/A

)
≥ 4xT2 A

†
2y2

(
xT2 A

†
2y2 + h⊥

)
.

Finally, noticing that h⊥ = h − x1y1a
−1
1 − xT2 A

†
2y2, and that h − x1y1a

−1
1 =

detA [1, 3|2, 3] /a1, we obtain that inequality (3.3) is equivalent to:

det
(
A/A

)
≥ 4xT2 A

†
2y2

detA [1, 3|2, 3]

a1
,

and that proves the equivalence of statements 1 and 2.
Now, taking into account that det

(
A/A

)
≥ 0 always, simple calculations

show that also statements 1 and 3 are equivalent.

QED

It is important to note that, in case the matrix A2 is nonsingular, the previ-
ous characterizations can be further simplified. In particular, the issue of calcu-
lating Schur’s complement A/A disappears, as stated by the following corollary
of Theorem 9.

Corollary 2. Let A ∈ DNNn whose associated graph is a nearly ĈP -graph
in the forms (3.1) and (3.2), and let’s assume that A2 is nonsingular. Then the
following statements are equivalent:

(1) A is completely positive.
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(2) a. xT2 A
−1
2 y2 ≥ 0; or

b. xT2 A
−1
2 y2 < 0 and

detA ≥ 4xT2 A
−1
2 y2 detA [1, 3|2, 3] detA2.

(3) a. detA [1, 3|2, 3] ≥ 0; or

b. detA [1, 3|2, 3] < 0 and

detA ≥ 4xT2 A
−1
2 y2 detA [1, 3|2, 3] detA2.

Proof. It follows directly from Theorem 9 and from the formula: det
(
A/A

)
=

detA/detA, that is a known property of Schur’s complements.
QED

4 Completely positive matrices with G4, G6

In this section we are going to deduce, from the results obtained in the
previous section, various characterizations of completely positive matrices of
order 5 whose graph is G4 or G6. We will also try to clarify Xu’s Theorems 3,
5, since we have seen in Section 1 that some quantities that appear in those
theorems are not defined or don’t have meaning.

We start with G4:

We observe that G4 is not a ĈP -graph, but it is a nearly ĈP -graph.
A doubly non-negative matrix realization of G4 can be assumed, without

loss of generality, in the following form:

A =


a11 a12 a13 a14 a15

a12 a22 a23 a24 0
a13 a23 a33 0 0
a14 a24 0 a44 a45

a15 0 0 a45 a55

 . (4.1)
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The main result we obtained for this case is the following.

Theorem 10. Let A ∈ DNN5 whose associated graph is G4 be in the form
(4.1). Then the following statements are equivalent:

(1) A is completely positive.

(2) a. detA [1, 5|4, 5] ≥ 0; or

b. detA [1, 5|4, 5] < 0 and detA ≥ 4VA({2, 4}).

(3) a. detA [1, 3|2, 3] ≥ 0; or

b. detA [1, 3|2, 3] < 0 and detA ≥ 4VA({2, 4}).

In the proof of this theorem we use the set of notations introduced in Section
3.

Proof. We start observing that the matrix A is in the canonical forms (3.1),
(3.2). Since A is positive semidefinite by hypothesis and columns 4 and 5 of A

are linearly independent by their sign pattern, the matrix A2 =

[
a44 a45

a45 a55

]
is

necessarily nonsingular.

Now simple calculations show that:

(1) xT2 A
−1
2 y2 ≥ 0 ⇐⇒ detA [1, 5|4, 5] ≥ 0;

(2) xT2 A
−1
2 y2 · detA [1, 3|2, 3] detA2 = VA({2, 4}).

At this point the equivalence of statements 1, 2 and 3 follows directly from
Corollary 2.

QED

We now focus our attention to G6:

Like G4, the graph G6 is not a ĈP -graph, but it is a nearly ĈP -graph.
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A doubly non-negative matrix realization of G6 can be assumed, without
loss of generality, in the following form:

A =


a11 a12 a13 a14 a15

a12 a22 a23 a24 a25

a13 a23 a33 0 0
a14 a24 0 a44 a45

a15 a25 0 a45 a55

 . (4.2)

The main result we obtained for this case is the following.

Theorem 11. Let A ∈ DNN5 whose associated graph is G6 be in the form
(4.2). Let S := I5− a12

a13
E23, and Ã := SAST . Then the following statements are

equivalent:

(1) A is completely positive.

(2) a. detA [1, 5|4, 5] ≥ a25
a24
· detA [1, 4|4, 5]; or

b. detA [1, 5|4, 5] < a25
a24
· detA [1, 4|4, 5] and detA ≥ 4VÃ({3}).

(3) a. detA [1, 3|2, 3] ≥ 0; or

b. detA [1, 3|2, 3] < 0 and detA ≥ 4VÃ({3}).

In the proof of this theorem we use the set of notations introduced in Section
3.

Proof. The matrix A is in the canonical forms (3.1), (3.2). After simple calcu-
lations, we obtain that:

Ã =


a11 0 a13 a14 a15

0 a22 − 2a23
a12
a13

+ a33
a212
a213

a23 − a33
a12
a13

a24 a25

a13 a23 − a33
a12
a13

a33 0 0

a14 a24 0 a44 a45

a15 a25 0 a45 a55

 .

The graph associated with Ã is the following:
One can also check that:

VÃ({3}) = detA [1, 3|2, 3] (a14a24a55 − a15a24a45 + a15a25a44 − a14a45a25) =

= detA [1, 3|2, 3] (a24detA [1, 5|4, 5]− a25detA [1, 4|4, 5]) .

(4.3)

Now let’s assume that A2 =

[
a44 a45

a45 a55

]
is nonsingular. Simple calculations

show that:
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(1) xT2 A
−1
2 y2 ≥ 0 ⇐⇒ detA [1, 5|4, 5] ≥ a25

a24
· detA [1, 4|4, 5];

(2)

xT2 A
−1
2 y2detA [1, 3|2, 3] detA2 =

(a24detA [1, 5|4, 5]− a25detA [1, 4|4, 5])detA [1, 3|2, 3] = VÃ({3}),

by (4.3). In the case A2 nonsingular, the equivalence of statements 1, 2 and 3
follows from Corollary 2.

Now let’s assume A2 singular. Since a44 and a55 are positive, A2 has rank
1. But A is positive semidefinite by hypothesis, therefore column 5 of A is a
positive multiple of column 4. Then there exists λ > 0 such that:

A = STA
′
S,

where A
′

= A (5|5), S =
[
I4 λe4

]
and e4 is the vector in R4 whose only nonzero

entry is the last, which is equal to 1. Since A
′ ∈ DNN4 it is completely positive,

therefore A
′

= BBT with B ≥ 0. It follows that A = STB(STB)T is also
completely positive, since S ≥ 0. Now simple calculations show that

detA [1, 5|4, 5] = detA [1, 4|4, 5] = 0,

and then detA [1, 5|4, 5] ≥ a25
a24
· detA [1, 4|4, 5], which proves the equivalence of

statements 1 and 2.
Moreover, since in the case A2 singular detA = 0 and VÃ({3}) = 0 by (4.3),

detA ≥ 4VÃ({3}). Therefore also statements 1 and 3 are equivalent.
QED

Since graphs G1, G2, G3 are ĈP -graphs, they are also nearly ĈP -graphs.
Therefore it is possible to characterize completely positive matrices of order 5
with G1, G2 or G3 with Theorem 9 and Corollary 2. Actually one can check that
applying the above mentioned results in a similar way to what we did in cases
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G4, G6, it is possible to obtain an alternative proof of Cedolin-Salce’s Theorem
2.

In the last part of this section we are going to try to clarify Xu’s results for
completely positive matrices with G4 and G6 (Theorems 3, 5).

Let’s start with Xu’s Theorem 3. In this theorem, the quantity A|(3,4)|
appears. This quantity, as already explained, has never been defined in [6].
Howewer Xu, in the proof of this theorem, uses the above mentioned quantity
like it is the weight vA({3, 4}) of the set of vertices {3, 4} in G(A). To confirm
that, look at [6], page 554. Since Xu in [6] studied completely positive matrices
with all diagonal elements equal to 1, one can check that, after replacing the
quantity A|(3,4)| with vA({3, 4}) in Theorem 3, Xu’s result follows directly from
Theorem 10 (after a suitable cogredience).

Now let’s analyze Xu’s Theorem 5. In this theorem, the quantity Ã|1| ap-
pears. This quantity doesn’t have meaning, since there are no cycles of length
1 in G(Ã). The proof of this theorem is just sketched in [6], and Xu’s usage of
the quantity Ã|1| it is not totally clear. However, like we have seen in the case

G4, the quantity Ã|1| could be interpreted as the weight vÃ({1}) of the vertex 1

in G(Ã). Now if we replace the quantity Ã|1| with vÃ({1}) in Theorem 5, after
a suitable cogredience one can check that Xu’s result matches the equivalence
between statements 1 and 3 of Theorem 11.

5 Completely positive matrices with G5

In this section we are going to analyze Xu’s Theorem 4. In this theorem, the
quantity Ã|2| appears. This quantity is, by Xu’s definition, the algebraic sum

of weights of all cycles of length 2 in G(Ã). However, the weight of a cycle of
length 2 is always < 0. Therefore Ã|2| < 0, regardless of how Ã is defined.

Now suppose we have a doubly non-negative matrix A in the form (1.5).
Since detA ≥ 0, we have that detA ≥ 4Ã|2| always. Then by Xu’s Theorem
4, we could state that every doubly non-negative matrix in the form (1.5) is
completely positive, but this statement is obviously wrong, since G5 is not a
completely positive graph.

In the proof of Theorem 4, Xu’s usage of the quantity Ã|2| is not totally clear.
Like we did in cases G4, G6, we see that this quantity could be interpreted as
the weight vÃ({2}) of the vertex 2 in G(Ã). So now let’s replace the quantity

Ã|2| with vÃ({2}) in Theorem 4, and consider the following matrices:
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B :=


1 1 1 3 5
1 6 0 0 0
0 6 1 0 0
0 0 6 1 0
6 0 0 1 0

 ,

A :=
1

37
BBT =

1

37


37 7 7 9 9
7 37 36 0 6
7 36 37 6 0
9 0 6 37 1
9 6 0 1 37

 .
The matrix A is completely positive in the form (1.5), and

a12 = min

{
a1j

a2j
| a2j > 0

}
.

The matrix Ã, defined in Theorem 4, is:

Ã =
1

37


1320
37 0 7

37 9 291
37

0 37 36 0 6
7
37 36 37 6 0
9 0 6 37 1

291
37 6 0 1 37

 .

Now simple calculations show that:

(1) a13 < a12a23 + a14a43;

(2) detA < 4vÃ({2}).

Therefore, even if we replace the quantity Ã|2| with vÃ({2}), Theorem 4 is
not correct.

In the counterexample above note that, since not all the diagonal elements
of Ã are equal to 1 (in particular ã11 6= 1), the weight vÃ({2}) is not equal to
the total weight VÃ({2}).

However in this case one can also check that detA < 4VÃ({2}).
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