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Abstract. In [13], Talamanca introduced a normalized height on Mn(Q), which is an ana-
logue of the canonical height on elliptic curves. In this paper, we examine whether Mn(F )
has a Bogomolov type property relative to this height if a subfield F ⊂ Q has the Bogomolov
property.
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1 Introduction

Let K be an algebraic number field and OK be the ring of integers of K.
We denote the set of all field homomorphisms from K to C by M∞K , the set of
all non-zero prime ideals of OK by M0

K , and M∞K tM0
K by MK . For x ∈ K,

we set an Archimedean absolute value |x|σ := |σ(x)| for each σ ∈ M∞K and a

non-Archimedean absolute value |x|p := #(OK/p)−ordp(x) for each p ∈M0
K .

For ~x = t(x1, · · · , xn) ∈ Kn, we set

H(~x) :=

 ∏
v∈MK

max{|x1|v, . . . , |xn|v}

1/[K :Q]

.

As usual, we set H(~0) = 1. Since the value of H(~x) is independent of the choice
of K, we can consider H as a function on Qn

. The function H is called the Weil
height on Qn

. To study the height function, the following property is of main
interest.

Definition 1 (“Bogomolov property,” [4], Section 1). We say that a subfield
F ⊂ Q has the Bogomolov property if there exists a positive constant C > 1
such that for any x ∈ F , H(1, x) < C implies that H(1, x) = 1.

http://siba-ese.unisalento.it/ c© 2019 Università del Salento
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It is known that any algebraic number field has the Bogomolov property
and that there are several interesting examples of infinite extensions of Q which
have the Bogomolov property (e.g. [1], [2], [4], [9], [10], [11]).

Now for each v ∈MK , we set a norm Nv on Kn with respect to | · |v:

Nv(~x) :=

{√
|x1|2v + · · ·+ |xn|2v (v ∈M∞K ),

max{|x1|v, . . . , |xn|v} (v ∈M0
K).

Let Kv be the completion of K by the absolute value | · |v. We set

H(A) :=

 ∏
v∈MK

‖A‖v

1/[K :Q]

,

where A ∈Mn(K) and ‖ · ‖v is the operator norm on End(Kn
v ) induced by Nv.

Since the value of H(A) is also independent of the choice of K, we can consider
H as a function on Mn(Q). In [13], Talamanca introduced the normalized height

Hs(A) := lim
k→∞

H(Ak)1/k.

As usual, we set Hs(A) = 1 if A is a nilpotent matrix. This limit exists by
submultiplicativity and is an analogue of the canonical height on elliptic curves.

When we know a height function H on a set X, the following natural question
arises: is there an interesting subset S ⊂ X which has the Bogomolov property
relative to H? Here we say that a subset S ⊂ X has the Bogomolov property
relative to H if there exists a positive constant C > 1 such that for any x ∈ S,
H(x) < C implies that H(x) = 1. Indeed, in [5], Breuillard considered Hs as a
function on GLn(Q) and found subsets with group-theoretic conditions which
have the Bogomolov property relative to Hs; see Theorem 1.2 in [5]. Whereas
Breuillard group-theoretically studied Hs in [5], our interest in this paper is
different: if a subfield F ⊂ Q has the Bogomolov property, does Mn(F ) have
the Bogomolov property relative to Hs?

Theorem 1. Let Qtr be the field of all totally real numbers. Then there
exists Ak ∈Mn(Qtr) such that Hs(Ak) > 1 for any k ∈ N and lim

k→∞
Hs(Ak) = 1.

Note that Qtr has the Bogomolov property; see [10]. Therefore this theorem
especially states that there exists a subfield F ⊂ Q which has the Bogomolov
property but Mn(F ) does not have the Bogomolov property relative to Hs.

2 Proof of Theorem 1

To prove Theorem 1, we should refer to the work of Talamanca in [13].
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Fact 1 ([13], Theorem 4.2). Let A ∈Mn(Q). Then

Hs(A) = H(λ1, . . . , λn),

where t(λ1, . . . , λn) is the n-tuple formed by the eigenvalues of A.

Owing to this fact, we can explicitly compute the value of Hs(A).

Proof of Theorem 1. Note that Qtr(
√
−1) does not have the Bogomolov prop-

erty. Explicitly, αk :=
(
(2−

√
−1)/(2 +

√
−1)

)1/k ∈ Qtr(
√
−1) enjoysH(1, αk) >

1 and lim
k→∞

H(1, αk) = 1; see Theorem 5.3 in [1]. Let ak + bk
√
−1 := αk, where

ak, bk ∈ Qtr. We set

Ak :=


ak −bk 0 · · · 0
bk ak 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ∈Mn(Qtr).

Then the eigenvalues of Ak are αk, αk and 0. Therefore, by Fact 1, we have

Hs(Ak) = H(αk, αk) = H(1, αk/αk) = H(1, α1/α1)1/k.

Thus we have lim
k→∞

H(1, α1/α1)1/k = 1. On the other hand, H(1, α1/α1)1/k > 1

since α1/α1 is not a root of unity; see Theorem 1.5.9 in [3]. So Ak is what we
want. QED

3 A supplemental remark on Theorem 1

By Theorem 1, we know that even though a subfield F ⊂ Q has the Bogo-
molov property, Mn(F ) does not always have the Bogomolov property relative
to Hs. Then it is a natural problem to find a subfield F ⊂ Q such that Mn(F )
has the Bogomolov property relative to Hs.

Definition 2 (“Northcott property,” [4], Section 1). We say that a subfield
F ⊂ Q has the Northcott property if {x ∈ F | H(1, x) < C } is a finite set for
any positive constant C > 1.

We know that any subfield F ⊂ Q which has the Northcott property also
has the Bogomolov property. It is known that any algebraic number field has
the Northcott property and that there are some infinite extensions of Q which
have the Northcott property (e.g. [4], [6], [7], [14]).
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Proposition 1. Let F be a subfield of Q with the Northcott property. Then
Mn(F ) has the Bogomolov property relative to Hs.

Proof. It is known that if a subfield F ⊂ Q has the Northcott property, then
{x ∈ Q | H(1, x) < C and [F (x) : F ] ≤ d } is a finite set for any positive
constant C > 1 and d ∈ N; see Theorem 2.1 in [7]. Therefore we have the
proposition since the degree of each of eigenvalues of A ∈ Mn(F ) over F is at
most n. QED
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no. 3, 735–742.

[11] A. Schinzel: On the product of the conjugates outside the unit circle of an algebraic
number, Acta Arith. 24 (1973), 385–399.

[12] V. Talamanca: Height preserving linear transformations on linear spaces, Ph.D. thesis,
Brandeis University, 1995.

[13] V. Talamanca: A Gelfand-Beurling type formula for heights on endomorphism rings, J.
Number Theory 83 (2000), no. 1, 91–105.

[14] M. Widmer: On certain infinite extensions of the rationals with Northcott property,
Monatsh. Math. 162 (2011), no. 3, 341–353.




