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Abstract. Suppose thatM = (M,AM ) is a graded manifold and consider a direct subsheaf
D of DerAM and a graded vector field Γ onM, both satisfying certain conditions. D is used to
characterize the local expression of Γ. Thus we review some of the basic definitions, properties,
and geometric structures related to the theory of adjoint symmetries on a graded manifold and
discuss some ideas from Lagrangian supermechanics in an informal fashion. In the special case
where M is the tangent supermanifold, we are able to find a generalization of the adjoint
symmetry method for time-dependent second-order equations to the graded case. Finally, the
relationship between adjoint symmetries of Γ and Lagrangians is studied.
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1 Introduction

This paper is a continuation of the previous paper [1], dealing with adjoint
symmetries for super second order differential equations. Adjoint symmetries
are 1-forms that are the dual objects of the symmetry vector fields of a second
order differential equation field on TM. A similar situation already arises for
adjoint symmetries of time-dependent second order equations, see for example
[2], [7], [8], [13, 16].

Naturally, adjoint symmetry is a key concept for studying the geometry of
the systems of super second order differential equations. Thus it is interesting
to generalize this concept to the graded geometry and apply it to the study
of Lagrangian supermechanics. In this process, a geometrical object play an
important role, and that is the concept of a pseudo almost tangent structure.
It is essential in the Lagrangian description of analytical supermechanics.
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There are two approaches to provide supermechanics with a geometrical
base. The configuration of each case is a graded manifold M = (M,AM ) of di-
mension (m,n), but the difference in the approaches is related to a generalization
of the tangent bundle in the graded case. In the first approach, supermechanical
systems can be considered on the tangent supermanifold such that its dimension
is (2m, 2n), see [9]. In the second approach supermechanical systems considered
on the tangent superbundle with dimension (2m+n, 2n+m). Related references
are [3, 6]. Because each of the tangent superbundle or the tangent superman-
ifold is a supermanifold, we want to bring some geometric structures related
to the concept of adjoint symmetries to the configuration space M. To achieve
this, we first consider a graded vector field Γ on a (m,n)−dimensional graded
manifoldM = (M,AM ) and a direct subsheaf D of DerAM of rank (r, s), both
satisfying certain conditions. When we studied the the transformed dynamics
of Γ, we saw that the local representation of Γ is similar to a superspray. Thus
we review some of the basic definitions, properties, and geometric structures re-
lated to the theory of adjoint symmetries on a graded manifold and discuss some
ideas from Lagrangian supermechanics in an informal fashion. This is intended
to give context to apply a similar discussion on tangential structures.

We associate to D, a pseudo almost tangent structure such that in cer-
tain manifolds like the tangent supermanifold, it is often called an almost tan-
gent structure. By using the Lie bracket of Γ and graded vector fields of D,
we construct another direct subsheaf C := D + [Γ,D] of DerAM such that
rankp(C) = (r+rank[Γ,D]0, s+rank[Γ,D]1). As shown in [1], if |Γ| = 0, [Γ,D]0
and [Γ,D]1 have maximal ranks respectively r and s, and if |Γ| = 1, depending
on the dimension of the graded manifold M, there are several cases for intro-
ducing the maximal rank of [Γ,D]0 and [Γ,D]1 (which in this article, we only
consider one of them).

In this paper, we only consider the situation m = 2r + 1 and n = 2s.
As shown in [1], for each p ∈ M, there is a coordinate neighborhood U of p
and coordinates (t, xi, yi; ηµ, ζµ), for i = 1, 2, · · · , r and µ = 1, 2, · · · , s such that
D|U = 〈 ∂∂yi ;

∂
∂ζµ
〉, and the local expression of the graded vector field Γ ∈ DerAM

is

Γ =
∂

∂t
+ yi

∂

∂xi
+ Γi(t, xi, yi; ηµ, ζµ)

∂

∂yi
+ ζµ

∂

∂ηµ
+ Γ′µ(xi, yi; ηµ, ζµ)

∂

∂ζµ
.

In section 3, we introduce a new graded tensor field J̃ of type (1,1) on
M, defined using pseudo almost tangent structure J on C. J̃ allows a useful
characterization of (DerAM )Γ. We show that if X ∈ (DerAM )Γ and LΓX ∈
(DerAM )Γ, then X is a pseudo-dynamical symmetry of Γ.

In section 4, we associate to Γ a subsheaf (DerAM )∗Γ of (DerAM )∗ which
consists of those 1-forms ψ for which LΓ(J̃∗(ψ)) = ψ (see Section 3 page 12
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for the definition of J̃∗). We show that, for such a form ψ, LΓψ is a section of
(DerAM )∗Γ if and only if we have for i ∈ {1, . . . , r} and µ ∈ {1, . . . , s}

ΓΓ(ai) + Γ(aj
∂Γj
∂yi

) + Γ(bν
∂Γ′ν
∂yi

)− aj ∂Γj
∂xi
− bν ∂Γ′ν

∂xi
= 0, (1.1)

ΓΓ(bµ)− Γ(aj
∂Γj
∂ζµ

) + Γ(bν
∂Γ′ν
∂ζµ

) + aj
∂Γj
∂ηµ
− bν ∂Γ′ν

∂ηµ
= 0. (1.2)

Such a 1- form is called a pseudo-adjoint symmetry of Γ. Thus pseudo-adjoint
symmetries correspond to solutions ai and bµ of the equations (1.1) and (1.2).
We show that if ψ is a pseudo-adjoint symmetry of Γ such that ψ = LΓ(J̃∗(dG))
for some superfunction G, then, Γ(G) is a Lagrangian superfunction.

2 Preliminaries

In this section we give a brief introduction to involutive distributions, empha-
sizing aspects that apply to the study of Lagrangian supermechanics. This sec-
tion is an abbreviated version of [1]. LetM = (M,AM ) be an (m,n)−dimensional
graded manifold, the sheaf of left AM−modules of derivations of a graded man-
ifoldM is the subsheaf of EndAM whose sections are linear graded derivations
and denoted by DerAM the sheaf of graded derivations of AM . Let D be a
locally free sheaf of AM−modules. D is a direct subsheaf of DerAM of rank
(r, s), if for each point p ∈ M there is an open subset U over which any set of
generators {Di, Dµ|1 ≤ i ≤ r, 1 ≤ µ ≤ s} of the module D(U) can be enlarged
to a set {

Cu, Di, Dµ, Cα

∣∣∣∣∣ 1≤i≤r
r+1≤u≤m and 1≤µ≤s

s+1≤α≤n
|Cu|=0
|Di|=0 and

|Dµ|=1
|Cα|=1

}
of free generators of DerAM . A direct subsheaf D of DerAM is involutive if
[D,D] ⊂ D (see [12]).

Theorem 2.1. (Frobenius [12]). Let D ⊂ DerAM be a direct subsheaf of
rank (r,s). Then, D is involutive, if and only if for each p ∈ M there exist a
coordinate system {(yi; ζµ)|1 ≤ i ≤ m, 1 ≤ µ ≤ n}, defined in a neighborhood
U = (U,AU )of p, such that,

D =

〈
∂

∂yi
;
∂

∂ζµ

〉
, 1 ≤ i ≤ r, 1 ≤ µ ≤ s.

Let D be an involutive direct subsheaf of DerAM of rank (r, s) such that
2r ≤ m, 2s ≤ n and Γ a homogeneous graded vector field on M such that
Γ /∈ D. Set

C := D + [Γ,D] = {D1 + [Γ, D2] : D1, D2 ∈ D}.
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For each p ∈M, since D is involutive, according to Theorem 2.1, there is a coor-
dinate neighborhood U of p and coordinates (qu, yi; θα, ζµ), for u = 1, 2, · · · ,m−
r, i = 1, 2, · · · , r, α = 1, 2, · · · , n − s and µ = 1, 2, · · · , s such that D|U =
〈 ∂∂yi ;

∂
∂ζµ
〉. In this coordinate system, the local representation of Γ is

Γ|U = Γu
∂

∂qu
+ Γi

∂

∂yi
+ Γ′α

∂

∂θα
+ Γ′µ

∂

∂ζµ
, (2.1)

where Γu,Γi,Γ
′
µ, and Γ′α are smooth superfunctions on U . We want to find the

conditions under which two graded vector fields [Γ|U , ∂
∂yi

] and [Γ|U , ∂
∂ζµ

] are
linearly independent. The local representation of these graded vector fields are

[Γ|U ,
∂

∂yi
] ≡ −∂Γu

∂yi

∂

∂qu
− ∂Γ′α
∂yi

∂

∂θα
(mod D),

[Γ|U ,
∂

∂ζµ
] ≡ −(−1)|Γu|

∂Γu
∂ζµ

∂

∂qu
+ (−1)|Γ

′
α|∂Γ′α
∂ζµ

∂

∂θα
(mod D).

If the local coefficients of these graded vector fields are zero, then we have
[Γ,D] ⊂ D, and they are dependent vector fields. Therefore we suppose that
[Γ,D] ∩ D = {0}, i.e., if D ∈ D and [Γ, D] ∈ D then D = 0, and in the next
theorem we show that they are linearly independent. Here a brief description of
the geometry of Γ and D is given.

Theorem 2.2. Suppose that the graded vector field Γ on M is such that
[Γ,D] ∩ D = {0}.
(1) If |Γ| = 0, [Γ,D]0 and [Γ,D]1 have maximal ranks respectively r and s. Then
rankp(C) = (2r, 2s).
(2) If |Γ| = 1, then

• for m = 2r, n = 2s,

– if r ≤ s, both [Γ,D]0 and [Γ,D]1 have the same maximal rank r,

– if r > s both [Γ,D]0 and [Γ,D]1 have the same maximal rank s,

• for m = 2r + 1, n = 2s,

– if r < s, [Γ,D]0 and [Γ,D]1 have maximal ranks respectively r + 1
and r,

– if r ≥ s both [Γ,D]0 and [Γ,D]1 have the same maximal rank s,

• for m = 2r, n = 2s+ 1,

– if r ≤ s, both [Γ,D]0 and [Γ,D]1 have the same maximal rank r,
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– if r > s, [Γ,D]0 and [Γ,D]1 have maximal ranks respectively s and
s+ 1,

• for m = 2r + 1, n = 2s+ 1,

– if r = s, both [Γ,D]0 and [Γ,D]1 have the same maximal rank r,

– if r < s, [Γ,D]0 and [Γ,D]1 have maximal ranks respectively r + 1
and r,

– if r > s, [Γ,D]0 and [Γ,D]1 have maximal ranks respectively s and
s+ 1.

In each of these cases, rankp(C) = (r + rank[Γ,D]0, s+ rank[Γ,D]1).

Proof. Let p ∈M and U a coordinate neighborhood of p with local coordinates
(qu, yi; θα, ζµ), as above. Let Di(p)[Γ, ∂

∂yi
](p) + Dµ(p)[Γ, ∂

∂ζµ
](p) = 0. A simple

computation will shows that we have
Di ∂Γu

∂yi
+ (−1)|Γu|Dµ ∂Γu

∂ζµ
≡ 0 (mod D),

Di ∂Γ′α
∂yi
− (−1)|Γ

′
α|Dµ ∂Γ′α

∂ζµ
≡ 0 (mod D).

(2.2)

Let

JΓ :=

(
∂Γu
∂yi

∂Γ′α
∂yi

(−1)|Γu| ∂Γu
∂ζµ

−(−1)|Γ
′
α| ∂Γ′α
∂ζµ

)
.

If |Γ| = 0 we see that the matrices(
∂Γu
∂yi

)
1≤i≤r,1≤u≤m−r

,

(
∂Γ′α
∂ζµ

)
1≤µ≤s,1≤α≤n−s

,

have maximal ranks respectively r and s. Let rankpJΓ = (r, s). By permuting
the Γu′ and Γ′α′ , we may therefore assume that the matrices(

∂Γu′

∂yi

)
1≤i≤r,1≤u′≤r

,

(
∂Γ′α′

∂ζµ

)
1≤µ≤s,1≤α′≤s

,

are invertible at p. Then from (2.2) we conclude that Di(p) = 0 = Dµ(p).
This means that the graded vector fields [Γ, ∂

∂yi
] and [Γ, ∂

∂ζµ
], (1 ≤ i ≤ r, and

1 ≤ µ ≤ s) are linearly independent at p, thus rankp(C) = (2r, 2s).
(2) Let |Γ| = 1. We may choose m = 2r + 1, n = 2s + 1, r < s. Then the

matrices (
∂Γ′α
∂yi

)
1≤i≤r,1≤α≤n−s

,

(
∂Γu
∂ζµ

)
1≤µ≤s,1≤u≤m−r

,
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are even and have maximal ranks respectively r and r+1. A computation similar
to part (1) shows that the odd graded vector fields [Γ, ∂

∂yi
] and the even graded

vector fields [Γ, ∂
∂ζµ

], (1 ≤ i ≤ r, and 1 ≤ µ ≤ r + 1) are linearly independent

at p, so [Γ,D]0 and [Γ,D]1 have maximal ranks respectively r + 1 and r, and
rankp(C) = (2r+1, s+r). Similarly, one may choose m = 2r+1, n = 2s+1, r >
s, etc. We will therefore have twelve types of possibilities for m,n, r and s. In

each of these cases, the matrices
(
∂Γ′α
∂yi

)
,
(
∂Γu
∂ζµ

)
are even and have maximal ranks

and we have a number of odd graded vector fields [Γ, ∂
∂yi

] and a number of the

even graded vector fields [Γ, ∂
∂ζµ

] which are linearly independent at p. QED

Hereafter, unless otherwise stated, we will assume that the graded vec-
tor field Γ satisfies the conditions of Theorem 2.2, and [C, C] ⊂ C. From the
above theorem, we see that if {Di, Dµ} is a local basis of D consisting of
coordinate fileds ∂/∂yi and ∂/∂ζµ of a local coordinate system (qu, yi; θα, ζµ)
and if we set Ca = [Γ, Da] (for |Da| = 0) and Cb = [Γ, Db] (for |Db| = 1),
then {Ca, Di, Dµ, Cb} is a local basis for C, where {Ca, Cb} are generators of
[Γ,D]. Thus C is a direct subsheaf of DerAM . Moreover, Ca = [Γ, Da] and
Cb = [Γ, Db] are respectively odd and even graded vector fields whenever Γ is
odd and |Da| = 0, |Db| = 1.

Now we consider a graded tensor field on C which can be extended to a
tensor field on M as a nonlinear connection similar to the classical case, see
[17, 19]. Consider the tensor field J : C → C of type (1,1) by

J(Xa) = 0 and J(Ya) = −Xa, Xa ∈ {Di, Dµ}, Ya = [Γ, Xa]. (2.3)

It is called pseudo almost tangent structure (see also [5, 9]). Clearly J2 = 0 and
|J | = |Γ|. If |Γ| = 0 then Im J = Ker J = D.

Take a graded vector field Γ such that [Γ, C] ⊂ C and consider the morphism
−LΓJ . For any C ∈ C and D ∈ D, we have

(LΓJ)(C) := [Γ, J(C)]− (−1)|J ||Γ|J [Γ, C],

and
(−LΓJ)(D) = −[Γ, J(D)] + (−1)|J ||Γ|J [Γ, D] = −(−1)|J ||Γ|D,

thus (−LΓJ)2(D) = D. Also,

(−LΓJ)([Γ, D]) = −[Γ, J([Γ, D])] + (−1)|J ||Γ|J [Γ, [Γ, D]]

= [Γ, D] + (−1)|J ||Γ|J [Γ, [Γ, D]].

Since J [Γ, [Γ, D]] ∈ D, we have (−LΓJ)(J [Γ, [Γ, D]]) = −(−1)|J ||Γ|J [Γ, [Γ, D]],
and therefore

(−LΓJ)2
(

[Γ, D]
)

=
(

[Γ, D] + ((−1)|J ||Γ| − 1)J
[
Γ, [Γ, D]

])
.
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If |Γ| = 0, it is clear that (LΓJ)2 = Id.

Remark 2.3. Let D ⊂ DerAM be an involutive direct subsheaf with even and
odd generators {Di, Dµ}, (1 ≤ i ≤ r, and 1 ≤ µ ≤ s) such that [Xa, Xb] =
0,∀Xa, Xb ∈ {Di, Dµ}. We want to find the conditions under which for all a, b,
[Xa, Yb] ∈ D, where Ya = [Γ, Xa]. If we change basis to

D̂i = AijDj +BiνDν , D̂µ = EµjDj + FµνDν ,

where Aij , Biν , Eµj and Fµν are superfunctions and

G = (Gab) =

(
Aij Biν
Eµj Fµν

)
,

and if we again assume that X̂a, X̂b ∈ {D̂i, D̂µ}, then the necessary and sufficient

conditions for [X̂a, X̂b] = 0, is that

∀d, GacXc(Gbd) = (−1)|GbcXc||GadXd|GbcXc(Gad),

(we use the Einstein convention, that is, repeated indices denotes summation
over their range). For example, [D̂i, D̂µ] = 0 if and only if{

AijDj(Eµk) +BiνDν(Eµk) = EµjDj(Aik) + FµνDν(Aik),

AijDj(Fµω) +BiνDν(Fµω) = EµjDj(Biω) + FµνDν(Biω).

Also Ci and Cµ change to

Ĉi = Γ(Aij)Dj + Γ(Biν)Dν +AijCj + (−1)|Γ|BiνCν ,

Ĉµ = Γ(Eµj)Dj + Γ(Fµν)Dν + (−1)|Γ|EµjCj + FµνCν .

On the other hand, C is involutive, then there are superfunctions αcab, β
c
ab ∈ AM

such that

[Xa, Yb] = αcabXc + βcabYc, Xa, Xc ∈ {Di, Dµ}, Yb, Yc ∈ {Ci, Cµ}.

Therefore [Γ, [Xa, Xb]] = 0. From the graded Jacobi identity, we have

0 = [Γ, [Xa, Xb]] = −(−1)(|Γ|+|Xa|)|Xb|[Xb, Ya] + (−1)|Γ||Xa|[Xa, Yb],

and the superfunctions αcab, β
c
ab are:

• symmetric for lower case Latin indexes,
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• symmetric up to (−1)|Γ|, i.e., βcab = (−1)|Γ|βcba, if one of the lower indices
is Greek,

• antisymmetric for lower case Greek indexes.

If we change the basis of D to X̂a = GabXb, then we have

[X̂a, Ŷc] =
[
GabXb,Γ(Gcd)Xd + (−1)|Γ||Gcd|GcdYd

]
≡

{
(−1)|Γ||Gcd|GabXb(Gcd) + (−1)|Xb||Gce|+|Γ||Gce|GabGceβ

d
be

}
Yd (mod D).

Thus [X̂a, Ŷc] ∈ D if and only if for each d,

(−1)|Γ||Gcd|GabXb(Gcd) + (−1)|Gce|(|Γ|+|Xb|)GabGceβ
d
be = 0.

Theorem 2.4. Let Γ be an even graded vector field onM and let D and C
be involutive, as above. We can find local supercoordinates (tl, xi, yi; τρ, ηµ, ζµ)
onM, l = 1, · · · ,m−2r, i = 1, · · · , r, ρ = 1, · · · , n−2s, µ = 1, · · · , s, such that

Di =
∂

∂yi
, Ci ≡ −

∂

∂xi
(mod D), (2.4)

Dµ =
∂

∂ζµ
, Cµ ≡ −

∂

∂ηµ
(mod D). (2.5)

Proof. By the Frobenius theorem, we take a coordinate neighborhood U of p ∈
M, with supercoordinates (qu, yi; θα, ζµ), u = 1, · · · ,m − r, i = 1, · · · , r, α =
1, · · · , n− s, µ = 1, · · · , s, such that Di = ∂/∂yi and Dµ = ∂/∂ζµ. Let U be the
image of a product of open subsets U1 ⊂ Rm−r|n−s and U2 ⊂ Rr|s, where 0 ∈ U2

(c.f. [20]). Then yi = 0, ζµ = 0 define a graded submanifold ( in the sense of
3.2.1 of [10]) N = (N,AN ) of U of graded dimension (m− r, n− s). Denote by
pr : U → N the corresponding projection morphism, then pr∗(Di) = pr∗(Dµ) =
0. It is clear that the restrictions of Ci and Cµ to U are pr∗-projectable to N .
We denote pr∗-projections of Cj and Cν by graded vector fields C̄j and C̄ν on N
respectively. Let us denote by C̄ the graded direct subsheaf on N spanned by C̄i
and C̄µ, i.e., C̄ = 〈C̄i; C̄µ〉. Since C is involutive, C̄ is an involutive direct subsheaf
of rank (r, s). Now again repeat the Theorem 2.2 for the graded manifold N ,
the graded vector field Γ, and graded direct subsheaf C̄ of rank (r, s), then we
may choose supercoordinates (tl, xi; τρ, ηµ) on N , where l = 1, · · · ,m− 2r, ρ =
1, · · · , n − 2s, such that the rank of supermatrix J̄Γ in this case is (r, s).Then
with respect to the supercoordinates (tl, xi, yi; τρ, ηµ, ζµ) on U we have

Di =
∂

∂yi
, Ci ≡ Pij(xi; ηµ)

∂

∂xj
+Qiν(xi; ηµ)

∂

∂ην
(mod D),

Dµ =
∂

∂ζµ
, Cµ ≡ Rµj(xi; ηµ)

∂

∂xj
+ Sµν(xi; ηµ)

∂

∂ην
(mod D),
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where the coefficients Pij , Qiν , Rµj , and Sµν are the components of a nonsingular
supermatrix. Let (

Aij Biν
Eµj Fµν

)
be its inverse. If we set

D̂i = Aij(t, x; τ, η)Dj +Biν(t, x; τ, η)Dν ,

D̂µ = Eµj(t, x; τ, η)Dj + Fµν(t, x; τ, η)Dν ,

then

Ĉi = [Γ, D̂i] = Γ(Aij)Dj + (−1)|Γ|Γ(Biν)Dν +AijCj +BiνCν ,

Ĉµ = [Γ, D̂µ] = (−1)|Γ|Γ(Eµj)Dj + Γ(Fµν)Dν + EµjCj + FµνCν .

A simple computation shows that

D̂i = Aij
∂

∂yj
+Biν

∂

∂ζν
, Ĉi ≡

∂

∂xi
(mod D),

D̂µ = Eµj
∂

∂yj
+ Fµν

∂

∂ζν
, Ĉµ ≡

∂

∂ηµ
(mod D).

Therefore, a new change of the coordinates

t̂l = tl, ŷi = Pij(xi; ηµ)yj +Qiν(xi; ηµ)ζν , x̂i = −xi,
τ̂ρ = τρ, ζ̂µ = Rµj(xi; ηµ)yj + Sµν(xi; ηµ)ζν , η̂µ = −ηµ,

may be performed to bring the local basis of DerAM into the form

∂

∂t̂l
≡ ∂

∂tl
(mod D),

∂

∂x̂i
≡ − ∂

∂xi
(mod D),

∂

∂ŷi
= Aij

∂

∂yj
+ Eiν

∂

∂ζν
,

∂

∂τ̂ρ
≡ ∂

∂τρ
(mod D),

∂

∂η̂µ
≡ − ∂

∂ηµ
(mod D),

∂

∂ζ̂µ
= Bµj

∂

∂yj
+ Fµν

∂

∂ζν
,

and this completes the proof. QED

Theorem 2.5. Let D and C be involutive and assume that |Γ| = 1. We
can find local supercoordinates (tl, xa, yi; τρ, ηb, ζµ) on M, l = 1, · · · , l1, a =
1, · · · , a1, i = 1, · · · , r, ρ = 1, · · · , ρ1, b = 1, · · · , b1, µ = 1, · · · , s, such that

Di =
∂

∂yi
, Cb = [Γ,

∂

∂yb
] ≡ − ∂

∂ηb
(mod D), (2.6)

Dµ =
∂

∂ζµ
, Ca = [Γ,

∂

∂ζa
] ≡ ∂

∂xa
(mod D), (2.7)

and l1, a1, b1 and ρ1 are given as in the following table (Table 1):
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dimM = (m,n) r = s r < s r > s

(2r, 2s)
l1 = 0, a1 = r,
b1 = s, ρ1 = 0

l1 = 0, a1 = r,
b1 = r, ρ1 = s− r

l1 = r − s, a1 = s,
b1 = s, ρ1 = 0

(2r + 1, 2s)
l1 = 1, a1 = s,
b1 = s, ρ1 = 0

l1 = 0, a1 = r + 1,
b1 = r, ρ1 = s− r

l1 = r + 1− s, a1 = s,
b1 = s, ρ1 = 0

(2r, 2s+ 1)
l1 = 0, a1 = s,
b1 = s, ρ1 = 1

l1 = 0, a1 = r,
b1 = r, ρ1 = s+ 1− r

l1 = r − s, a1 = s,
b1 = s+ 1, ρ1 = 0

(2r + 1, 2s+ 1)
l1 = 1, a1 = s,
b1 = s, ρ1 = 1

l1 = 0, a1 = r + 1,
b1 = r, ρ1 = s+ 1− r

l1 = r + 1− s, a1 = s,
b1 = s+ 1, ρ1 = 0

Table 1. The range of indices l1, a1, b1 and ρ1

Proof. We consider the result in Theorem 2.4 and apply it to the case that
|Γ| = 1. There is a coordinate neighborhood U of p ∈M, with supercoordinates
(qu, yi; θα, ζµ), u = 1, · · · ,m − r, i = 1, · · · , r, α = 1, · · · , n − s, µ = 1, · · · , s,
a graded submanifold N = (N,AN ) of U of graded dimension (m − r, n − s)
and the corresponding projection morphism pr : U → N , such that pr∗(Di) =
pr∗(Dµ) = 0.

As we have seen in Theorem 2.2, we have twelve types of possibilities for
m,n, r and s. We may choose m = 2r + 1, n = 2s + 1, r < s to prove the
theorem and a similar proof can also be performed in other cases.

Since rankp(C) = (2r + 1, s+ r), we assume that

C =

〈
Ca, Di, Dµ, Cb

∣∣∣∣∣ a=1,··· ,r+1
b=1,··· ,r and

Ca=[Γ, ∂
∂ζa

]

Cb=[Γ, ∂
∂yb

]
and

|Ca|=0
|Cb|=1

〉
.

Then C̄ = 〈C̄a; C̄b〉 is an involutive direct subsheaf of DerAM and rankpC̄ =
(r+ 1, r), where C̄a and C̄b are pr∗-projections of Ca and Cb on N respectively.
We can continue the method discussed in Theorem 2.2, but there is another
way to find the local generators of C. By the Frobenius theorem, we take a local
coordinate (x′a; τ

′
ρ, η
′
b), ρ = 1, ..., s+ 1− r, on N of p̃r(p), such that

C̄a =
∂

∂x′a
, C̄b =

∂

∂η′b
.

Then there exists a coordinate neighborhood U ′ of p ∈M, with local coordinates{
pr∗x′a, y

′
i; pr

∗τ ′ρ, pr
∗η′b, ζ

′
α)

∣∣∣∣∣ a=1,··· ,r+1
b=1,··· ,r and i = 1, ..., r and α=1,...,s

ρ=1,...,s+1−r

}

such that Di = ∂
∂y′i
, Dα = ∂

∂ζ′α
, Ca ≡ ∂

∂pr∗x′a
, Cb ≡ ∂

∂pr∗η′b
(mod D). We shall

write these coordinates as {xa, yi; τρ, ηb, ζα}. Thus, a new change of the coordi-
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nates {xa, yi; τρ, ηb, ζα} 7→ {xa, yi; τρ, ηb, ζα} may be performed to complete the
proof. QED

Proposition 2.6. If both D and C are involutive, then there is a graded
commuting basis {Xa} of D such that for all a, b we have [Xa, Yb] ∈ D, where
Xa ∈ {Di, Dµ} and Ya = [Γ, Xa].

Proof. This is an immediate consequence of Theorems 2.4 and 2.5. QED

Now we want to write the local form of Γ in a local supercoordinate system.
There are two cases to consider, Γ ∈ C and Γ /∈ C.

Theorem 2.7. Let D and C be involutive and Γ ∈ C. Assume that the set
N = {z ∈M : Γ(z) ∈ D(z)} ⊂M, is nonempty.
(1) If |Γ| = 0, then we may choose supercoordinates (tl, xi, yi; τρ, ηµ, ζµ), i =
1, ..., r, l = 1, ...,m− 2r, µ = 1, ...s, ρ = 1, ..., n− 2s, with respect to which

Γ = yi
∂

∂xi
+ Γi(t, x, y; τ, η, ζ)

∂

∂yi
+ ζµ

∂

∂ηµ
+ Γ′µ(t, x, y; τ, η, ζ)

∂

∂ζµ
.

(2) If |Γ| = 1, then we may choose supercoordinates (tl, xa, yi; τρ, ηb, ζµ), as
described in Theorem 2.5, with respect to which

Γ = ζa
∂

∂xa
+ Γi(t, x, y; τ, η, ζ)

∂

∂yi
+ yb

∂

∂ηb
+ Γ′µ(t, x, y; τ, η, ζ)

∂

∂ζµ
.

Proof. Since Γ ∈ C, with respect to the basis {Ci, Di;Dµ, Cµ} for C (see Propo-
sition 2.6), we have

Γ = fiDi + f̄µDµ + giCi + ḡµCµ, (2.8)

where fi, f̄µ, gi, and ḡµ are superfunctions on M. Then from

Ci = [Γ, Di] ≡ −Di(gj)Cj −Di(ḡµ)Cµ (mod D),

Cµ = [Γ, Dµ] ≡ −(−1)|Γ|Dµ(gi)Ci − (−1)|Γ|Dµ(ḡν)Cν (mod D),

we conclude that Di(gj) = −δji , Di(ḡµ) = 0 = Dµ(gi), and Dµ(ḡν) = −(−1)|Γ|δνµ,
so (

Di(gj) Di(ḡν)
Dµ(gj) Dµ(ḡν)

)
is nonsingular. Note that in this computation we use [Xa, Yb] ∈ D, where Xa ∈
{Di, Dµ} and Ya = [Γ, Xa]. We sketch the proof of the theorem for the case (1).
By the Frobenius theorem we take a coordinate neighborhood U in M, with
supercoordinates (qu, yi; θα, ζµ) such that Di = ∂/∂yi and Dµ = ∂/∂ζµ, (see
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Theorem 2.4). Now consider the Jacobian matrix of the superfunctions gi and
ḡµ with respect to Di and Dµ, it is nonsingular of rank (r, s). Then for each
p ∈ N, Γ(p) ∈ D if and only if gi(p) = 0 and ḡµ(p) = 0. Thus we have a
closed embedded supermanifold N as a subsupermanifold of M with the base
manifold given by {g̃−1

i (0)|i = 1, ..., r}∩{g̃−1
µ (0)|i = 1, ..., s}. From Theorem 2.4

we can take supercoordinates (tl, xi, yi; τρ, ηµ, ζµ) such that

Ci ≡ −
∂

∂xi
(mod D), Cµ ≡ −

∂

∂ηµ
(mod D).

Then { ∂
∂xi
, ∂
∂ηµ

, ∂
∂yi
, ∂
∂ζµ
} evaluated at p, is another basis for C, and in this su-

percoordinates

Γ = γi
∂

∂xi
+ γ′µ

∂

∂ηµ
+ Γi

∂

∂yi
+ Γ′µ

∂

∂ζµ
,

where γi, γ
′
µ,Γi, and Γ′µ are superfunctions of (t, x, y; τ, η, ζ). Note that Γ ∈ C,

so in the local form of Γ, the coefficients of ∂
∂tl

and ∂
∂τρ

are zero. We will find the

coefficients γi and γ′µ by using Ci = [Γ, ∂
∂yi

] and Cµ = [Γ, ∂
∂ζµ

]. Thus we have

Ci ≡ −
∂γj
∂yi

∂

∂xj
−
∂γ′µ
∂yi

∂

∂ηµ
(mod D), Cµ ≡ −

(
∂γi
∂ζµ

∂

∂xi
+
∂γ′ν
∂ζµ

∂

∂ην

)
(mod D).

For each p ∈ N, γi(p) = 0 and γ′µ(p) = 0, then from

∂γj
∂yi

= δji ,
∂γ′ν
∂yi

= 0 =
∂γj
∂ζµ

,
∂γ′ν
∂ζµ

= δνµ,

we have γi(t, x, y; τ, η, ζ) = yi, γ′µ(t, x, y; τ, η, ζ) = ζµ.
(2) Let |Γ| = 1, we consider again Γ as a linear combination of {Ci, Di;Dµ, Cµ}

as (2.8). Then |gi| = 0 and |ḡµ| = 1 and the Jacobian matrix of the super-
functions gi and ḡµ with respect to Di and Dµ, is nonsingular of rank (r, s).
Repeat the above analysis for this case and using Theorem 2.5, then there ex-
ist a coordinate system (tl, xa, yi; τρ, ηb, ζµ) on M, l = 1, · · · , l1, a = 1, · · · , a1,
i = 1, · · · , r, ρ = 1, · · · , ρ1, b = 1, · · · , b1, µ = 1, · · · , s, such that

Di =
∂

∂yi
, Ca = [Γ,

∂

∂ya
] ≡ − ∂

∂ηa
(mod D), (2.9)

Dµ =
∂

∂ζµ
, Cµ = [Γ,

∂

∂ζµ
] ≡ ∂

∂xµ
(mod D), (2.10)

and l1, a1, b1 and ρ1 are given in the Table 1. According to this table, we have
twelve types of possibilities for m,n, r, s. In each of these cases we may write Γ
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in the form

Γ = γa
∂

∂xa
+ γ′b

∂

∂ηb
+ Γi

∂

∂yi
+ Γ′µ

∂

∂ζµ
,

and it is a straightforward matter to verify that

∂γa
∂ζµ

= δaµ,
∂γ′α
∂ζµ

= 0 =
∂γ′b
∂ya

,
∂γ′α
∂ya

= δαa .

For each p ∈ N, γa(p) = 0 and γ′µ(p) = 0, then γa = ζa and γ′b = yb and this
completes the proof. QED

Theorem 2.8. Let D and C be involutive. Let Γ be everywhere independent
of C and [Γ, C] ⊂ C.
(1) If |Γ| = 0, then we may choose supercoordinates (t1, xi, yi; τ1, ηµ, ζµ), i =
1, ..., r, µ = 1, ...s, such that

• (a) Γ = ∂
∂t1

+ yi
∂
∂xi

+ Γi
∂
∂yi

+ ζµ
∂
∂ηµ

+ Γ′µ
∂
∂ζµ

, if the coefficient of ∂
∂τ1

in Γ
is zero,

• (b) Γ = τ1
∂
∂τ1

+ yi
∂
∂xi

+ Γi
∂
∂yi

+ ζµ
∂
∂ηµ

+ Γ′µ
∂
∂ζµ

, if the coefficient of ∂
∂t1

in
Γ is zero,

• (c) Γ = ∂
∂t1

+ τ1
∂
∂τ1

+ yi
∂
∂xi

+ Γi
∂
∂yi

+ ζµ
∂
∂ηµ

+ Γ′µ
∂
∂ζµ

, if the coefficients of
∂
∂t1

and ∂
∂τ1

in Γ are nonzero, where Γi and Γ′µ are superfunctions on M.

(2) If |Γ| = 1, then we may choose supercoordinates (tl, xa, yi; τρ, ηb, ζµ), as
described in Theorem 2.5, with respect to which

Γ = φl
∂

∂tl
+ ζa

∂

∂xa
+ Γi(t, x, y; τ, η, ζ)

∂

∂yi
+ ϕρ

∂

∂τρ
+ yb

∂

∂ηb
+ Γ′µ(t, x, y; τ, η, ζ)

∂

∂ζµ
.

where φl and ϕρ are independent of x, y, η and ζ and Γi and Γ′µ are superfunc-
tions on M.

Proof. Using the same arguments we used in the proof of Theorem 2.4 we can
take supercoordinates (tl, xi, yi; τρ, ηµ, ζµ) such that

Γ ≡ φl(t, x, y; τ, η, ζ)
∂

∂tl
+ ϕρ(t, x, y; τ, η, ζ)

∂

∂τρ
(mod C).

= φl
∂

∂tl
+ ϕρ

∂

∂τρ
+ γi

∂

∂xi
+ γ′µ

∂

∂ηµ
+ Γi

∂

∂yi
+ Γ′µ

∂

∂ζµ
.
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From [Γ, C] ⊂ C we conclude that the derivative of φ and ϕ with respect to
x, y, η, and ζ are zero, then φ and ϕ depend only on the t and τ. According to
the procedure given in the previous theorem, we have

∂γj
∂yi

= δji ,
∂γ′ν
∂yi

= 0 =
∂γj
∂ζµ

,
∂γ′ν
∂ζµ

= δνµ.

Then

γi(t, x, y; τ, η, ζ) = yi + hi(t, x; τ, η), γ′µ(t, x, y; τ, η, ζ) = ζµ + kµ(t, x; τ, η).

Now if Γ 6= 0, since φ and ϕ are arbitrary, we may choose φ 6= 0 and ϕ = 0
to finding the local expression for Γ. Similarly, one may choose φ = 0 and ϕ 6= 0,
etc. So by a transformation of the coordinates tl we may take Γ ≡ ∂

∂t1
(mod C).

Consider the new change of supercoordinates

t̂1 = t1, ŷi = yi + hi(t, x; τ, η), x̂i = xi,

τ̂1 = τ1, ζ̂µ = ζµ + kµ(t, x; τ, η), η̂µ = ηµ.

Therefore

Γ =
∂

∂t̂1
+ ŷi

∂

∂x̂i
+

(
Γi +

∂hi
∂t1

+ ŷj
∂hi
∂xj

+ ζ̂µ
∂hi
∂ηµ

)
∂

∂ŷi

+ζ̂µ
∂

∂η̂µ
+

(
Γ′µ +

∂kµ
∂t1

+ ŷi
∂kµ
∂xi

+ ζ̂ν
∂kµ
∂ην

)
∂

∂ζ̂µ
.

Now let Γ̂i = Γi + ∂hi
∂t1

+ ŷj
∂hi
∂xj

+ ζ̂µ
∂hi
∂ηµ

and Γ̂µ = Γ′µ +
∂kµ
∂t1

+ ŷi
∂kµ
∂xi

+ ζ̂ν
∂kµ
∂ην

, this

completes the proof.
(2) The proof of this part follows simply from the above discussion and

Theorems 2.5 and 2.7. QED

3 dynamical symmetry of super SODE

As mentioned in the previous section, for a given graded vector field Γ on
M = (M,AM ) and a direct subsheaf D of DerAM of rank (r, s), we have
another direct subsheaf C := D + [Γ,D] of DerAM such that rankp(C) = (r +
rank[Γ,D]0, s+ rank[Γ,D]1). If |Γ| = 0, [Γ,D]0 and [Γ,D]1 have maximal ranks
respectively r and s, and if |Γ| = 1, depending on the dimension of the graded
manifoldM, there are several cases for introducing the maximal rank of [Γ,D]0
and [Γ,D]1 (see Theorem 2.2).

Here, we will only consider the situation |Γ| = 0, m = 2r+ 1 and n = 2s. In
this case we showed that for each p ∈M, there is a coordinate neighborhood U
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of p and coordinates (t, xi, yi; ηµ, ζµ), for i = 1, 2, · · · , r and µ = 1, 2, · · · , s such
that D|U = 〈 ∂∂yi ;

∂
∂ζµ
〉, the local expression of the graded vector field Γ ∈ DerAM

is

Γ =
∂

∂t
+ yi

∂

∂xi
+ Γi(t, xi, yi; ηµ, ζµ)

∂

∂yi
+ ζµ

∂

∂ηµ
+ Γ′µ(xi, yi; ηµ, ζµ)

∂

∂ζµ
,

and we have

dt(Γ) = 1, θi(Γ) = 0 and θµ(Γ) = 0 for i ∈ {1, · · · , r}, µ ∈ {1, · · · , s},

where
{
dt, θi = dxi − yidt, φi = dyi − Γidt; θµ = dηµ − ζµdt, φµ = dζµ − Γ′µdt

}
is

a local basis of the set of contact 1-forms.
First, we recall some basic relations from the graded tensor calculus necessary
to this paper.

Lemma 3.1. [11] Suppose X,Y ∈ DerAM . For each section ψ of (DerAM )∗

and (1, 1) tensor filed T = Z ⊗ ω, we have

ψ(T (X)) = (−1)|T ||ψ|(T (ψ))(X),

LX(ψ(Y )) = (LXψ)(Y ) + (−1)|ψ||X|ψ(LXY ),

LX(T (Y )) = (LXT )(Y ) + (−1)|X||T |T (LXY ), (3.1)

L[X,Y ] = [LX ,LY ].

In local coordinate system (t, xi, yi; ηµ, ζµ), we may define a new graded
tensor field J̃ of type (1,1) on M,

J̃ = J −∆⊗ dt

where ∆ = yi
∂

∂yi
+ ζµ

∂

∂ζµ
and J is defined by (2.3). It is clear that

(1) J̃(Γ) = J̃(
∂

∂yi
) = J̃(

∂

∂ζµ
) = 0,

(2) J̃(
∂

∂t
) = −∆.

With respect to the above contact 1-forms, it reads

J̃ =
∂

∂yi
⊗ θi −

∂

∂ζµ
⊗ θµ.
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The dual operator of J̃ , which is used for the action on 1-forms, will be denoted

by J̃∗ = θi ⊗
∂

∂yi
+ θµ ⊗

∂

∂ζµ
, i.e., (J̃∗(α))(X) = α(J̃(X)). We have

J̃2 = 0, (3.2)

(LΓJ̃)(Γ) = 0, (3.3)

LΓJ̃ ◦ J̃ = −J̃ ◦ LΓJ̃ = J̃ , (3.4)

(LΓJ̃)2 = I − Γ⊗ dt, (3.5)

LΓJ̃
∗ ◦ J̃∗ = −J̃∗ ◦ LΓJ̃

∗ = −J̃∗, (3.6)

(LΓJ̃
∗)2 = I − Γ⊗ dt. (3.7)

In local coordinate system (t, xi, yi; ηµ, ζµ) on U , yi = 0 and ζµ = 0 define a
subsupermanifold N = (N,AN ) of U of graded dimension (r + 1, s)( in the
sense of 3.2.1 of [10]). Denote by pr : U → N the corresponding projection
morphism, then pr∗(Di) = pr∗(Dµ) = 0.

For every graded vector field Z = f
∂

∂t
+ gi

∂

∂xi
+ hµ

∂

∂ηµ
on N , there is a

unique graded vector field Z(1) on U , such that Z(1) projects onto Z, also LZ(1)θi
and LZ(1)θµ are linear combinations of the basic contact 1-forms θi and θµ. In
local coordinates (t, xi, yi; ηµ, ζµ), the local expression of such a graded vector
field is:

Z(1) = f
∂

∂t
+ gi

∂

∂xi
+ hµ

∂

∂ηµ
+ (ġi − yiḟ)

∂

∂yi
+ (ḣµ − (−1)|Z|ζµḟ)

∂

∂ζµ
,

where the notation u̇, with u a superfunction of (t, xi, ηµ), means u̇ =
∂u

∂t
+

yj
∂u

∂xj
+ ζµ

∂u

∂ηµ
. A simple calculation shows that LZ(1)Γ = −ḟΓ + Z̄, where

Z̄ ∈ D.

We associate to Γ, a set of graded vector fields (DerAM )Γ defined by,

(DerAM )Γ = {X ∈ DerAM | J̃(LΓX) = 0 and dt(X) = 0}. (3.8)

The local expression for X ∈ (DerAM )Γ is

X = f i
∂

∂xi
+ Γ(f i)

∂

∂yi
+ gµ

∂

∂ηµ
+ Γ(gµ)

∂

∂ζµ
, (3.9)

where f i and gµ are smooth superfunctions on M. We have

J̃(LΓ(fX)) = J̃(Γ(f)X + fLΓX) = Γ(f)J̃(X) + fJ̃(LΓX) = Γ(f)J̃(X).
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This shows that if X ∈ (DerAM )Γ and if f ∈ AM is a superfunction satisfying
Γ(f) = 0, then fX ∈ (DerAM )Γ.

Now let X ∈ (DerAM )Γ and f ∈ AM , since J̃2 = 0, J̃ ◦ LΓJ̃ = −J̃ and
J̃(LΓX) = 0, we have

J̃(LΓ(fX + Γ(f)J̃(X))) = J̃(Γ(f)X + fLΓX + Γ2(f)J̃(X) + Γ(f)LΓ(J̃(X)))

= J̃(Γ(f)X + Γ(f)LΓ(J̃(X)) + fLΓX) = 0.

This shows that fX+Γ(f)J̃(X) ∈ (DerAM )Γ. Thus (DerAM )Γ can be endowed
with an AM -module structure by means of the product

f ? X = fX + Γ(f)J̃(X), f ∈ AM , X ∈ (DerAM )Γ.

Definition 3.2. A pseudo-dynamical symmetry of Γ is a graded vector field
X ∈ DerAM such that [Γ, X] = 0.

Proposition 3.3. If X ∈ (DerAM )Γ and LΓX ∈ (DerAM )Γ, then X is a
pseudo-dynamical symmetry of Γ.

Proof. Let X ∈ (DerAM )Γ, then J̃(LΓX) = 0 and we have θi(LXΓ) = 0,
θµ(LXΓ) = 0. Since LΓX ∈ (DerAM )Γ, so dt([Γ, X]) = 0 and

θi(L[Γ,X]Γ) = θµ(L[Γ,X]Γ) = 0.

Applying the Jacobi identity repeatedly gives

0 =θi(L[Γ,X]Γ) = θi(LΓ([X,Γ])

=LΓ(θi(LXΓ))− (LΓθi)(LXΓ) = −(LΓθi)(LXΓ)

=− φi([X,Γ]),

and

0 =θµ(L[Γ,X]Γ) = θµ(LΓ([X,Γ])

=LΓ(θµ(LXΓ))− (LΓθµ)(LXΓ) = −(LΓθµ)(LXΓ)

=− φµ([X,Γ]).

All of the 1-forms dt, θi, θµ, φi, φµ on [X,Γ] are zero, so this vector field is zero.
QED

Now we restrict ourselves to a subset of (DerAM )∗ which consists of those
1-forms α for which J̃∗(LΓα) = 0 and α(Γ) = 0. We denote this subset byM∗Γ.
Thus

M∗Γ = {α ∈ (DerAM )∗ | J̃∗(LΓα) = 0 and α(Γ) = 0}. (3.10)
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The local expression for α ∈M∗Γ is

α = αiφi + αµφµ − (Γ(αi) + αj
∂Γj
∂yi

+ αν
∂Γ′ν
∂yi

)θi − (Γ(αµ)− αj ∂Γj
∂ζµ

+ αν
∂Γ′ν
∂ζµ

)θµ,

(3.11)

where αi and αµ are smooth superfunctions on M. For α ∈MΓ∗ and f ∈ AM ,
since (J̃∗)2 = 0, J̃∗ ◦ LΓJ̃

∗ = J̃∗ and J̃∗(LΓα) = 0, (see (3.6)) we have

J̃∗(LΓ(fα− Γ(f)J̃∗(α))) = J̃∗(Γ(f)α+ fLΓα− Γ2(f)J̃∗(α)− Γ(f)LΓ(J̃∗(α))) = 0.

ThusM∗Γ can be endowed with an AM -module structure by means of the prod-
uct

f ? α = fα− Γ(f)J̃∗(α), f ∈ AM , α ∈M∗Γ.

The map p∗Γ : (DerAM )∗ → (DerAM )∗, given by

p∗Γ(α) = α− J̃∗(LΓα)− α(Γ)dt, (3.12)

is a morphisme of AM -modules that is a projection map onto M∗Γ:

pΓ∗(fα) =fα− J̃∗(LΓ(fα))− fα(Γ)dt

=(fα− Γ(f)J̃∗(α))− (fJ̃∗(LΓα)− Γ(f)(J̃∗)2(LΓα))

− (fα(Γ)dt− Γ(f)J̃∗(α(Γ)dt))

=f ? pΓ∗(α).

Also

J̃∗(LΓ(p∗Γ(α)) =J̃∗(LΓα− LΓ(J̃∗(LΓα))− LΓ(α(Γ)dt))

=J̃∗(LΓα)− (J̃∗ ◦ LΓJ̃
∗)(LΓα) = 0,

and

p∗Γ(α)(Γ) = 0.

We associate to Γ a subsheaf of graded 1-forms (DerAM )∗Γ, such that each
section ψ of (DerAM )∗Γ has the property

LΓ(J̃∗(ψ)) = ψ. (3.13)

The local expression for ψ is

ψ = aiφi + Γ(ai)θi + bµφµ + Γ(bµ)θµ, (3.14)
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where, ai and bµ are smooth superfunctions on M. Now let ψ be a section of
(DerAM )Γ∗ and f ∈ AM , since (J̃∗)2 = 0 and LΓ(J̃∗(ψ)) = ψ, we have

LΓ(J̃∗(fψ + Γ(f)J̃∗(ψ)) = LΓ(fJ̃∗(ψ) + Γ(f)(J̃∗)2(ψ))

= fψ + Γ(f)J̃∗(ψ).

Thus (DerAM )∗Γ can be endowed with an AM -module structure by means of
the product

f ? ψ = fψ + Γ(f)J̃∗(ψ), f ∈ AM , ψ ∈ (DerAM )∗Γ.

Lemma 3.4. If f ∈ AM and df is a section of (DerAM )∗Γ, then Γ(f) =

0,Γ(
∂f

∂yi
) =

∂f

∂xi
, and Γ(

∂f

∂ζµ
) =

∂f

∂ηµ
.

Proof. It suffices to take into account the local expressions for Γ. QED

Definition 3.5. The graded vector field Γ is called a pseudo-Lagrangian vector
field if there exists L ∈ AM such that iΓωL = 0, where ωL = −dθL and θL is
the Poincaré-cartan 1-form θL = Ldt+ J̃∗(dL). L is called a pseudo-Lagrangian
superfunction for Γ.

Equivalently, the graded vector field Γ is called a pseudo-Lagrangian graded
vector field if there exists L ∈ AM such that

Γ(
∂L

∂yi
) =

∂2L

∂t∂yi
+ yj

∂2L

∂xj∂yi
+ Γj

∂2L

∂yj∂yi
+ ζν

∂2L

∂ην∂yi
+ Γ′ν

∂2L

∂ζν∂yi
=
∂L

∂xi
,

(3.15)

Γ(
∂L

∂ζµ
) =

∂2L

∂t∂ζµ
+ yj

∂2L

∂xj∂ζµ
+ Γj

∂2L

∂yj∂ζµ
+ ζν

∂2L

∂ην∂ζµ
+ Γ′ν

∂2L

∂ζν∂ζµ
=

∂L

∂ηµ
.

(3.16)

Remark 3.6. If L is a pseudo-Lagrangian function for the pseudo-Lagrangian
graded vector field Γ, then iΓθL = L, thus LΓθL = dL and vice versa.

Let Γ be a pseudo-Lagrangian graded vector field. From LΓdt = 0 and
J̃∗(dt) = 0, we conclude that

LΓ(J̃∗(dL− (LΓL)dt))− dL+ LΓ(L)dt =LΓ(J̃∗(dL))− dL+ LΓ(Ldt)

=LΓ(J̃∗(dL) + Ldt)− dL
=LΓθL − dL = 0.

Thus dL− (LΓL)dt is a section of (DerAM )∗Γ. We summarize as follows:
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Lemma 3.7. If Γ is a pseudo-Lagrangian graded vector field then dL −
(LΓL)dt is a section of (DerAM )∗Γ.

Given ψ as a section of (DerAM )∗Γ, let f be an arbitrary element of AM
such that ψ+ fdt is an exact 1-form. Then there exist a superfunction L ∈ AM
such that ψ + fdt = dL. From (3.14), we have iΓψ = 0 and then iΓdL = f.
Since LΓ(J̃∗(ψ)) = ψ we have

0 =LΓ(J̃∗(dL− fdt))− dL+ fdt

=LΓ(J̃∗(dL))− dL+ (iΓdL)dt

=LΓ(J̃∗(dL))− dL+ (LΓL)dt

=LΓ(J̃∗(dL) + Ldt)− dL

therefore LΓθL = dL and L is a pseudo-Lagrangian for Γ. We summarize these
results in the following theorem.

Theorem 3.8. Let ψ be a section of (DerAM )∗Γ. Let f be an arbitrary ele-
ment of AM such that ψ+fdt is an exact 1-form, then Γ is a pseudo-Lagrangian
vector field.

Theorem 3.9. The graded vector field Γ is a pseudo-Lagrangian vector field
if and only if there exists a closed 1-form α on M such that LΓ(p∗Γ(α)) = 0.

Proof. Let L be a pseudo-Lagrangian for Γ and α a solution of the equation
iΓα = L. Then

0 =dL− LΓθL

=d(iΓα)− LΓ(α(Γ)dt+ J̃∗(LΓα))

=LΓ{α− α(Γ)dt− J̃∗(LΓα)}
=LΓ(p∗Γ(α)),

so that p∗Γ(α) is Γ-invariant. Finally, let α be a closed 1-form such that LΓ(p∗Γ(α)) =
0. If we take L = iΓα then

p∗Γ(α) = α− α(Γ)dt− J̃∗(LΓα) = α− (Ldt+ J̃∗(dL)) = α− θL,

and

LΓ(p∗Γ(α)) = LΓ(α− θL) = LΓα− LΓθL = dL− LΓθL.

then, the superfunction L is a Lagrangian for Γ. QED
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Let Γ be a Lagrangian sode vector field, that is, there exists L ∈ AM such

that iΓωL = 0, or in equivalent way LΓθL = dL. Let X = f i
∂

∂xi
+ Γ(f i)

∂

∂yi
+

gµ
∂

∂ηµ
+ Γ(gµ)

∂

∂ζµ
∈ (DerAM )Γ. If iXωL is a member of the set M∗Γ, then its

local representation in coordinates (t, xi, yi; ηµ, ζµ), is similar to (3.11) such that
the coefficients of φi and φ̄µ are given by

αi = (−1)|X||L|
∂2L

∂yj∂yi
f j − (−1)|X|(|L|+1)+|L| ∂

2L

∂ζν∂yi
gν , (3.17)

and

αµ = −(−1)|X|(|L|+1)+|L| ∂2L

∂yj∂ζµ
f j − (−1)|X||L|

∂2L

∂ζν∂ζµ
gν (3.18)

respectively. Also, if [X,Γ] = 0, then iX ◦ iΓ = iΓ ◦ iX , and from iΓωL = 0, we
have

LΓ(iXωL) = LX(iΓωL) = 0.

This means that the map %L : (DerAM )→ (DerAM )∗, given by %L(X) = iXωL
maps (DerAM )Γ inM∗Γ. Also %L maps symmetries of Γ on Γ-invariant 1-forms

inM∗Γ. If L ∈ AM is regular, i.e. the matrix

(
∂2L
∂yj∂yi

∂2L
∂ζν∂yi

∂2L
∂yj∂ζµ

∂2L
∂ζν∂ζµ

)
is nonsingular,

then %L is a surjective map.

Proposition 3.10. Let X be a pseudo-dynamical symmetry of Γ. If %L(X)
is an exact 1-form then LXωL = 0.

Proof. Let F be a superfunction on M, such that %L(X) = dF , then

LXωL = −(iX ◦ d+ d ◦ iX)(dθL) = −iΓ ◦ d(dθL)− d2F = 0.

QED

Proposition 3.11. Let X be a pseudo-dynamical symmetry of Γ. If there
exist a closed 1-form α such that %L(X) = p∗Γ(α), then iΓα is a pseudo-Lagrangian
superfunction and ωL = d(%L(X)) = LXωL.

Proof. Since X is a pseudo-dynamical symmetry of Γ, %L(X) is Γ-invariant
1-forms, then there exist a closed 1-form α such that

LΓ(p∗Γ(α)) = LΓ(%L(X)) = 0.
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So, from Proposition 3.9, the superfunction iΓα is a Lagrangian for Γ, also

d(%L(X)) = d(α− θL) = ωL,

and

d(%L(X)) = d(iXωL) = (LX − iX ◦ d)(ωL) = LXωL.

QED

4 Pseudo-adjoint symmetry

Given the graded vector field Γ.

Definition 4.1. A 1-form ψ as a section of (DerAM )∗Γ is a pseudo-adjoint
symmetry of Γ if LΓψ is a section of (DerAM )∗Γ.

It is instructive to look at the coordinate expression of the pseudo-adjoint
symmetry of Γ. If ψ = aiφi+Γ(ai)θi+bµφµ+Γ(bµ)θµ is a section of (DerAM )∗,
then we have

LΓψ =(2Γ(ai) + aj
∂Γj
∂yi

+ bν
∂Γ′ν
∂yi

)φi + (2Γ(bµ)− aj ∂Γj
∂ζµ

+ bν
∂Γ′ν
∂ζµ

)φµ

+ (ΓΓ(ai) + aj
∂Γj
∂xi

+ bν
∂Γ′ν
∂xi

)θi + (ΓΓ(bµ)− aj ∂Γj
∂ηµ

+ bν
∂Γ′ν
∂ηµ

)θµ.

Therefore, LΓψ is a section of (DerAM )∗Γ if and only if we have for i ∈ {1, . . . , r}
and µ ∈ {1, . . . , s}

ΓΓ(ai) + Γ(aj
∂Γj
∂yi

) + Γ(bν
∂Γ′ν
∂yi

)− aj ∂Γj
∂xi
− bν ∂Γ′ν

∂xi
= 0, (4.1)

ΓΓ(bµ)− Γ(aj
∂Γj
∂ζµ

) + Γ(bν
∂Γ′ν
∂ζµ

) + aj
∂Γj
∂ηµ
− bν ∂Γ′ν

∂ηµ
= 0. (4.2)

We see that this is a system of second-order differential equations for the
superfunctions ai and bµ.

Definition 4.2. A 1-form β on M is a Γ-basic if iΓβ = 0 and iΓdβ = 0.

Equivalently, β is Γ-basic if iΓβ = 0 and LΓβ = 0.
Let ψ be a pseudo-adjoint symmetry of Γ. Using the definition, straightfor-

ward computations show that

LΓ(LΓ(J̃∗(ψ))− LΓJ̃
∗(ψ)) = LΓψ,
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and
LΓ(LΓJ̃

∗(ψ)) = LΓ(LΓ(J̃∗(ψ))− ψ) = 0,

since LΓ(J̃∗(LΓψ)) = LΓψ and ψ ∈ (DerAM )∗Γ. Now, let β = LΓJ̃
∗(ψ), then

iΓ(β) = (LΓJ̃
∗(ψ))(Γ) = ψ(LΓJ̃

∗(Γ)) = 0,

so β is Γ-basic. If ψ1 and ψ2 are adjoint symmetries giving rise to the same β,
we have LΓJ̃

∗(ψ1 − ψ2) = 0, which means that ψ1 = ψ2. On the other hand, if
β is a Γ-basic form and ψ := LΓJ̃

∗(β), then we have

LΓ(J̃∗(ψ)) = LΓ(J̃∗ ◦ (LΓJ̃
∗)(β))

= LΓ(J̃∗(β)) = LΓJ̃
∗(β) + J̃∗(LΓβ) = LΓJ̃

∗(β) = ψ,

where in the above formula, we used (3.1) and (3.6). This shows that ψ is a
section of (DerAM )∗Γ. Also, from (3.7), we have

β = (LΓJ̃
∗)2(β) = LΓJ̃

∗(ψ) = LΓ(J̃∗(ψ))− J̃∗(LΓψ) = ψ − J̃∗(LΓψ).

Then
LΓβ = LΓψ − LΓ(J̃∗(LΓψ)).

β is a Γ-basic form, thus LΓψ is a section of (DerAM )∗Γ and hence ψ is a
pseudo-adjoint symmetry of Γ.

We summarize the conclusion drawn from this calculation as follows.

Proposition 4.3. The tensor field LΓJ̃
∗ determines a bijection between the

set of pseudo-adjoint symmetries and the set of Γ-basic forms.

Remark 4.4. If ψ is a pseudo-adjoint symmetry of Γ and if there exists a
superfunction G onM such that LΓJ̃

∗(ψ) = dG then dG is a Γ-basic form and
Γ(G) = 0. On the other hand, if we assume that for each G ∈ AM , Γ(G) = 0,
then dG is a Γ-basic form and from proposition 4.3, there is a pseudo-adjoint
symmetry ψ of Γ such that LΓJ̃

∗(ψ) = dG.

Proposition 4.5. Let ψ be a pseudo-adjoint symmetry of Γ such that
ψ = LΓ(J̃∗(dG)) for some superfunction G. Then, Γ(G) is a Lagrangian su-
perfunction. Conversely, if Γ(G) is a Lagrangian superfunction, LΓ(J̃∗(dG)) is
a pseudo-adjoint symmetry of Γ.

Proof. From applying LΓJ̃
∗ to both sides ψ = LΓ(J̃∗(dG)), we have

LΓJ̃
∗(ψ) = LΓJ̃

∗(LΓJ̃
∗(dG)+J̃∗(LΓ(dG))) = dG−J̃∗(LΓ(dG)) = dG−J̃∗(dΓ(G)).

So

LΓ(LΓ(J̃∗(ψ))− J̃∗(LΓψ)) = LΓ(dG− J̃∗(dΓ(G))).
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If ψ be an adjoint symmetry, then

LΓ(J̃∗(dΓ(G))) = dΓ(G).

This means that dΓ(G) is a section of (DerAM )∗Γ, and then Γ(G) is a La-
grangian superfunction. Conversely, let Γ(G) be a Lagrangian superfunction,
i.e. LΓ(J̃∗(dΓ(G))) = dΓ(G). we have

LΓ(J̃∗(LΓ(J̃∗(dG)))) =LΓ(J̃∗(LΓJ̃
∗(dG) + J̃∗(LΓdG)))

=LΓ((J̃∗ ◦ LΓJ̃
∗)(dG))

=LΓ(J̃∗(dG)),

and

LΓ(J̃∗(LΓ(LΓ(J̃∗(dG))))) =LΓ(LΓ(J̃∗(LΓ(J̃∗(dG))))− LΓJ̃
∗(LΓ(J̃∗(dG))))

=LΓ(LΓ(J̃∗(dG))− LΓJ̃
∗(LΓJ̃

∗(dG) + J̃∗(LΓdG)))

=LΓ(LΓ(J̃∗(dG)))− LΓ(dG) + LΓ(J̃∗(dΓ(G)))

=LΓ(LΓ(J̃∗(dG))),

and therefore LΓ(J̃∗(dG)) is a pseudo-adjoint symmetry of Γ. QED

5 The tangent supermanifold and an inverse problem

An example of a graded manifold M that covers many of the concepts
described in the previous sections is the supermanifold (R1|0×TM ′,AR1|0×TM ′),
where (M ′,AM ′) is a graded manifold of dimension (r, s). By choosing this,
we are able to find a generalization of the adjoint symmetry method for time-
dependent second-order equations to the graded case. In this geometrical setting,
the inverse problem is considered.

Let (t, xi, yi; ηµ, ζµ), for i = 1, 2, · · · , r and µ = 1, 2, · · · , s, be local co-
ordinates on (R1|0 × TM ′,AR1|0×TM ′), where (x, η) are local coordinates on

(M ′,AM ′) and t is referred to as the even coordinate of R1|0. Consider a graded
vector field

Γ =
∂

∂t
+ yi

∂

∂xi
+ Γi(t, xi, yi; ηµ, ζµ)

∂

∂yi
+ ζµ

∂

∂ηµ
+ Γ′µ(xi, yi; ηµ, ζµ)

∂

∂ζµ
,

which corresponds to a system of super second order ordinary differential equa-
tions on (R1|0 × TM ′,AR1|0×TM ′). Necessary and sufficient conditions for Γ to
derive from a Lagrangian superfunction are investigated in the previous sec-
tions. As we have indicated, if α is a closed 1-form on (R1|0×TM ′,AR1|0×TM ′),
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such that LΓ(p∗Γ(α)) = 0, then L = iΓα is a Lagrangian superfunction for La-
grangian graded vector field Γ. On the other hand if Γ is a Lagrangian graded
vector field, then there exists a closed 1-form α such that LΓ(p∗Γ(α)) = 0, see
Theorem 3.9.

Also, if ψ be a pseudo-adjoint symmetry of Γ such that ψ = LΓ(J̃∗(dG)) for
some superfunction G, then, Γ(G) is a Lagrangian superfunction. Conversely,
if Γ(G) is a Lagrangian superfunction, LΓ(J̃∗(dG)) is a adjoint symmetry of Γ,
see Theorem 4.5.
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