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Abstract. We show that the ultragraph C∗-algebra C∗(G1×G2) can be embedded in C∗(G1)⊗
C∗(G2) as a ∗-subalgebra. We then use this fact to investigate the existence of a conditional
expectation on the tensor product of Exel-Laca algebras onto a certain subalgebra.
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Introduction

The Cuntz-Krieger algebras were introduced and studied in [3] for binary-
valued matrices with finite index. A direct extension of these algebras is the Exel-
Laca algebras of infinite matrices with {0, 1}-entries [4]. Another generalization
of the Cuntz-Krieger algebras is the C∗-algebras of directed graphs [6, 1, 5]. It is
shown in [5] that for directed graph G with no sinks and sources, the C∗-algebra
C∗(G) is canonically isomorphic to the Exel-Laca algebra OAG , where AG is the
edge matrix of G.

The motivation of the definition of ultragraphs C∗-algebras is to unify the
theory of graph C∗-algebras and Exel-Laca algebras [9]. In ultragraphs, the
range of each edge is allowed to be a nonempty set of vertices. Any C∗-algebra
of a directed graph can be considered as an ultragraph C∗-algebra and the C∗-
algebras of ultragraphs with no singular vertices are precisely the Exel-Laca
algebras. Furthermore, the class of ultragraph C∗-algebras are strictly larger
than this class of directed graphs as well as the class of Exel-Laca algebras.

This paper is motivated by a natural question, which is the existence of a con-
ditional expectation from Od1 ⊗Od2 onto a subalgebra of Od1 ⊗Od2 isomorphic
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26 M. Imanfar, A. Pourabbas

to Od1d2 [2]. We extend this question to Exel-Laca algebras. For ultragraphs
G1 and G2, we show that C∗(G1 × G2) is isomorphic to a certain subalgebra
of C∗(G1) ⊗ C∗(G2). By setting some conditions on G1 and G2, we see that

C∗(G1×G2) is isomorphic to the fixed point algebra
(
C∗(G1)⊗C∗(G2)

)β
, where

β is an action from the unit circle. Finally, we show that there is a conditional
expectation from the tensor product OA ⊗OB onto OAB.

1 Preliminaries

In this section, we briefly review the basic definitions and properties of ul-
tragraph C∗-algebras which will be used in the next section. For more details
about the ultragraph C∗-algebras, we refer the reader to [9, 7].

An ultragraph G = (G0,G1, r, s) consists of countable sets G0 of vertices and
G1 of edges, the source map s : G1 → G0 and the range map r : G1 → P(G0)\{∅},
where P(G0) is the collection of all subsets of G0. A vertex v ∈ G0 is called a
sink if |s−1(v)| = 0 and an infinite emitter if |s−1(v)| =∞. A singular vertex is
a vertex that is either a sink or an infinite emitter. The ultragraph is row-finite
if each vertex emits at most finitely many edges.

For a set X, a subcollection of P(X) is called an algebra if it is closed under
the set operations ∪ and ∩. If G is an ultragraph, we write G0 for the smallest
algebra in P(G0) containing {v, r(e) : v ∈ G0 and e ∈ G1}.

Definition 1. Let G be an ultragraph. A Cuntz-Krieger G-family consists
of projections {pA : A ∈ G0} and partial isometries {se : e ∈ G1} with mutually
orthogonal ranges such that

(1) p∅ = 0, pApB = pA∩B and pA∪B = pA + pB − pA∩B for all A,B ∈ G0;

(2) s∗ese = pr(e) for e ∈ G1;

(3) ses
∗
e ≤ ps(e) for e ∈ G1;

(4) pv =
∑

s(e)=v ses
∗
e whenever 0 < |s−1(v)| <∞.

The C∗-algebra C∗(G) is the universal C∗-algebra generated by a Cuntz-Krieger
G-family.

A path in ultragraph G is a sequence α = e1e2 · · · en of edges with s(ei+1) ∈
r(ei) for 1 ≤ i ≤ n−1. We say that the path α has length |α| := n and we write
G∗ for the set of finite paths. The maps r, s extend to G∗ in an obvious way.

By [9, Remark 2.13], we have

C∗(G) = span
{
sαpAs

∗
β : α, β ∈ G∗, A ∈ G0, and r(α) ∩ r(β) ∩A 6= ∅

}
,
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where sα := se1se2 · · · sen if α = e1e2 · · · en and sα := pA if α = A.
The universal property of C∗(G) gives an action γ : T → AutC∗(G), which

is characterized on generators by γz(pA) = pA and γz(se) = zse for A ∈ G0,
e ∈ G1 and z ∈ T. It is called the gauge action for C∗(G). The ∗-subalgebra
{a ∈ C∗(G) :

∫
T γz(a)dz = a}, denoted C∗(G)γ , is called the fixed-point algebra

of C∗(G).

2 Tensor Product

A C∗-algebra A is called nuclear if both the injective and projective C∗-cross
norms on A⊗B are equal for every C∗-algebra B. In [8, Theorem 30] it is shown
that all ultragraph C∗-algebras are nuclear. Let G1 and G2 be two ultragraphs.
If C∗(G1) = C∗(s, p) and C∗(G2) = C∗(t, q), then one can show that

C∗(G1)⊗ C∗(G2) = span
{
sαpAs

∗
β ⊗ tµqBt∗ν

}
,

where α, β ∈ G∗1 , A ∈ G0
1 , µ, ν ∈ G∗2 and B ∈ G0

2 .

Definition 2. The Cartesian product of ultragraphs G1 and G2, denoted
by G := G1 × G2, is the ultragraph G = (G0,G1, r, s), where G0 := G0

1 × G0
2,

G1 := G1
1 × G1

2 and s : G1 → G0 and r : G1 → P(G0
1 ×G0

2) are the maps defined
by s(e, f) :=

(
s1(e), s2(f)

)
and r(e, f) := r1(e)× r2(f), respectively.

Remark 1. Let G1 and G2 be two ultragraphs. If G = G1 × G2, then by [9,
Lemma 2.12], we have

G0 =

{ k⋃
j=1

nj⋂
ij=1

Aij : Aij ∈
{

(v, w), r(e, f) : (v, w) ∈ G0, (e, f) ∈ G1
}}

.

We see in the next theorem that there exist a Cuntz-Krieger G-family {S, P}
in the tensor product C∗(G1)⊗ C∗(G2) such that C∗(S, P ) = C∗(G).

Theorem 1. Let G1 and G2 be ultragraphs and let G = G1×G2. Then C∗(G)
can be embedded in C∗(G1)⊗ C∗(G2) as a ∗-subalgebra.

Proof. Let C∗(G1) = C∗(s, p) and C∗(G2) = C∗(s̃, p̃). We begin by construct a
Cuntz-Krieger G-family {S, P} in C∗(G1)⊗C∗(G2). Define P(v,w) = pv⊗ p̃w and
Pr(e,f) = pr1(e) ⊗ p̃r2(f) for every (v, w) ∈ G0 and (e, f) ∈ G1. By Remark 1, we
generate the projections {PA : A ∈ G0} by defining

PA∩B := PAPB and PA∪B := PA + PB − PAPB,

for every A,B ∈
{

(v, w), r(e, f) : (v, w) ∈ G0, (e, f) ∈ G1
}

. Also, we naturally
define S(e,f) := se ⊗ s̃f for every (e, f) ∈ G1.
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We show that {S, P} is a Cuntz-Krieger G-family in C∗(G1) ⊗ C∗(G2). By
Remark 1, {PA : A ∈ G0} is a set of projections satisfies Condition (1) of
Definition 1.

To verify Condition (2) suppose that (e, f) ∈ G1. Then

S∗(e,f)S(e,f) = (se ⊗ s̃f )∗(se ⊗ s̃f ) = s∗ese ⊗ s̃∗f s̃f
= pr1(e) ⊗ p̃r2(f) = Pr1(e)×r2(f) = Pr(e,f).

The Condition (3) of Definition 1 may be verified as Condition (2). Sup-
pose that 0 <

∣∣s−1(v, w)
∣∣ < ∞. Since s−1(v, w) = s−1

1 (v) × s−1
2 (w), we have

0 < |s−1
1 (v)|, |s−1

2 (w)| <∞. Hence∑
(e,f)∈s−1(v,w)

S(e,f)S
∗
(e,f) =

∑
(e,f)∈s−1(v,w)

(se ⊗ s̃f )(se ⊗ s̃f )∗

=
∑

(e,f)∈s−1
1 (v)×s−1

2 (w)

ses
∗
e ⊗ s̃f s̃∗f

=
∑

f∈s−1(w)

∑
e∈s−1(v)

ses
∗
e ⊗ s̃f s̃∗f = pv ⊗ p̃w = P(v,w).

Thus {S, P} is a Cuntz-Krieger G-family in C∗(G1)⊗C∗(G2). Now we show that
C∗(G) ∼= C∗(S, P ). Let γ1 be the gauge action on C∗(G1). Define the action
γ2 : T → C∗(G2) by γ2(z) = Id for every z ∈ T. Also, let β := γ1 ⊗ γ2 be the
action of compact group T on C∗(G1)⊗C∗(G2) defined by β(z) = γ1(z)⊗ γ2(z).
We have βz(PA) = PA and βz(S(e,f)) = (γ1)z(se)⊗ (γ2)z s̃f = zse ⊗ s̃f = zS(e,f)

for every A ∈ G0 and (e, f) ∈ G1. If {T,Q} is the universal Cuntz-Krieger G-
family, then there is a homomorphism φ : C∗(G)→ C∗(G1)⊗ C∗(G2) such that
φ(QA) = PA and φ(T(e,f)) = S(e,f) for every A ∈ G0 and (e, f) ∈ G1. Since
βz ◦ φ = φ ◦ γz, it follows from the gauge-invariant Uniqueness Theorem [9,
Theorem 6.8] that φ is injective and C∗(S, P ) ∼= C∗(G). QED

2.1 Conditional Expectation

By setting some conditions on ultragraphs G1 and G2, we show that there
exists a conditional expectation from C∗(G1)⊗C∗(G2) onto C∗(G1×G2). In the
following we recall the definition of conditional expectation.

Let A be a C∗-algebra and let B be a C∗-subalgebra of A. A linear map
E : A → B is called a projection if E(b) = b for every b ∈ B. A conditional
expectation from A onto B is a projection E : A → B such that ‖E(a)‖ ≤ ‖a‖
for all a ∈ A.
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Lemma 1. Let G1 and G2 be range-finite ultragraphs with no singular vertex
and let G = G1×G2. If C∗(G1) = C∗(s, p) and C∗(G2) = C∗(s̃, p̃), then C∗(G) is
isomorphic to the subalgebra

A := span
{
sαpAs

∗
β ⊗ s̃µp̃B s̃∗ν : |α| − |β| = |µ| − |ν|

}
.

Proof. Let {S, P} be the Cuntz-Krieger G-family as defined in Theorem 1 and
let C∗(G) = C∗(S, P ). We note that α := (e1, f1)(e2, f2) · · · (en, fn) is a path in
G if and only if α := e1e2 · · · en and µ := f1f2 · · · fn are paths in G1 and G2,
respectively. Thus C∗(G) ⊆ A.

Conversely, suppose that sαpAs
∗
β ⊗ s̃µp̃B s̃∗ν ∈ A. Since G1 and G2 are range-

finite pA1⊗ p̃A2 ∈ C∗(G) for every A1 ∈ G0
1 and A2 ∈ G0

2 . Suppose that |µ| > |α|.
Decompose µ = µ′µ′′ and ν = ν ′ν ′′, where |µ′| = |α| and |ν ′| = |β|. Due to
the fact that |α| − |β| = |µ| − |ν| we have |µ′′| = |ν ′′|. Since G1 is a row-finite
ultragraph without sinks, for every v ∈ G0

1 we have

pv ⊗ s̃µ′′ p̃B s̃∗ν′′ =
∑

{η∈G∗1 :|η|=|µ′′|, s1(η)=v}

sηpr(η)s
∗
η ⊗ s̃µ′′ p̃B s̃∗ν′′ ∈ C∗(G).

Due to the fact that G1 is range-finite pA ⊗ s̃µ′′ p̃B s̃∗ν′′ ∈ C∗(G). Hence

(sα ⊗ s̃µ′)(pA ⊗ s̃µ′′ p̃B s̃∗ν′′)(s∗β ⊗ s̃∗ν′) = sαpAs
∗
β ⊗ s̃µp̃B s̃∗ν ∈ C∗(G).

Suppose that |µ| < |α|. Then a similar argument as before and the as-
sumption that G2 is range-finite ultragraph with no singular vertices imply that
sαpAs

∗
β ⊗ s̃µp̃B s̃∗ν ∈ C∗(G). Thus A ⊆ C∗(G), as desired. QED

By using the above lemma, we construct a conditional expectation from
C∗(G1)⊗ C∗(G2) onto C∗(G1 × G2).

Proposition 1. Let G1 and G2 be range-finite ultragraphs with no singular
vertex and let G = G1 × G2. Then there exists a conditional expectation from
C∗(G1)⊗ C∗(G2) onto C∗(G). In particular,

C∗(G) =
(
C∗(G1)⊗ C∗(G2)

)β
,

where β is an action from the unit circle T on C∗(G1)⊗ C∗(G2).

Proof. Let C∗(G1) = C∗(s, p) and C∗(G2) = C∗(s̃, p̃). Also, let γ1 and γ2 be the
gauge actions of C∗(G1) and C∗(G2), respectively. Define the action β of T on
C∗(G1) ⊗ C∗(G2) by β(z) = γ1(z) ⊗ γ2(z) for all z ∈ T. For every sαpAs

∗
β ⊗
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s̃µp̃B s̃
∗
ν ∈ C∗(G1)⊗ C∗(G2) we have∫

T
βz(sαpAs

∗
β ⊗ s̃µp̃B s̃∗ν) dz =

∫
T
(γ1)z(sαpAs

∗
β)⊗ (γ2)z(s̃µp̃B s̃

∗
ν) dz

=

∫
T
z|α|−|β|sαpAs

∗
β ⊗ z−(|µ|−|ν|)s̃µp̃B s̃

∗
ν dz

=

∫
T
z|α|−|β|−(|µ|−|ν|)(sαpAs∗β ⊗ s̃µp̃B s̃∗ν) dz

=

∫ 1

0
e2πit

(
|α|−|β|−(|µ|−|ν|)

)(
sαpAs

∗
β ⊗ s̃µp̃B s̃∗ν

)
dz.

So if we define E : C∗(G1)⊗C∗(G2)→ C∗(G1)⊗C∗(G2) by E(x) =
∫
T βz(x) dz,

then

E(sαpAs
∗
β ⊗ s̃µp̃B s̃∗ν) =

{
sαpAs

∗
β ⊗ s̃µp̃B s̃∗ν if |α| − |β| = |µ| − |ν|,

0 otherwise.

Thus, by Lemma 1, E is onto C∗(G) and consequently E : C∗(G1)⊗ C∗(G2)→
C∗(G) is a conditional expectation. QED

2.2 Exel-Laca algebras

The Exel-Laca algebras, denoted by OA, are generated by a set of par-
tial isometries whose relations are determined by a countable binary-valued
matrix A with no identically zero rows [4, Definition 8.1]. The C∗-algebras
of ultragraphs with no singular vertices are precisely the Exel-Laca algebras.
More precisely, for matrix A the ultragraph GA := (G0

A,G1
A, r, s) is defined by

G0
A := {vi : i ∈ I}, G1

A := I, s(i) := vi and r(i) := {vj : A(i, j) = 1} for every
i ∈ I. By [9, Theorem 4.5], the Exel-Laca algebra OA is canonically isomorphic
to ultragraph C∗-algebra C∗(GA).

For some square matrices A and B, we show that there is a conditional ex-
pectation from OA⊗OB onto OAB. To do this we recall the following definition.

Definition 3 ([9]). Let G be an ultragraph. The edge matrix of an ultra-
graph G is the G1 × G1 matrix AG given by

AG(e, f) :=

{
1 if s(f) ∈ r(e),
0 otherwise.

Definition 4. Let A1 and A2 be infinite matrices with entries in {0, 1} and
having no identically zero rows. We define A1A2 := AGA1

×GA2
. If A = [1]n×n,

then we have the Cuntz algebra On. For B = [1]m×m we have AB = [1]nm×nm.
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Now we give the main result of this paper.

Theorem 2. Let A and B be infinite matrices with entries in {0, 1} and
having no identically zero rows. Then OAB can be embedded in OA⊗OB as a ∗-
subalgebra. If any row in A and B has at most finitely many non-zero elements,
then there is a conditional expectation from OA ⊗OB onto OAB. In particular,
there is a conditional expectation from Om ⊗On onto Omn.

Proof. By [9, Theorem 4.5] C∗(GA) ∼= OA and C∗(GB) ∼= OB. Also, we have
OAB = OAGA1

×GA2

∼= C∗(GA ⊗GB). So the first assertion follows from Theorem

1. Now suppose that any row in A and B has at most finitely many non-zero
elements. Then one can see that GA and GB are range-finite ultragraphs with
no singular vertex. By Proposition 1 there is a conditional expectation from
OA ⊗OB onto OAB. QED

References

[1] T. Bates, D. Pask, I. Raeburn and W. Szymański: The C∗-algebras of row-finite
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