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Abstract. The aim of this short note is to prove a generation result of C0-semigroups in
L2(Rd,Cm), with the characterization of the domain of their generators, for a perturbation
of a class of matrix Schrödinger operators by symmetric potential matrices whose entries can
grow exponentially at infinity. A further perturbation by drift matrices with entries that can
grow at most linearly at infinity, is considered. Finally, suitable assumptions which guarantee
that the generated semigroups are analytic, are provided too.
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Systems of parabolic equations with unbounded coefficients appear quite
naturally in several settings, as in the study of backward-forward stochastic
differential systems, of Nash equilibria to stochastic differential games, of the
time-dependent Born-Openheimer theory and also in the study of the Navier-
Stokes equations.

In contrast to the scalar theory of second-order elliptic operators with un-
bounded coefficients, that has been widely studied by several authors (see e.g.,
the recent monograph [11] and the references quoted therein), the study of sys-
tems with unbounded coefficients is at the beginning and it still presents many
open fields of investigation.

The papers [1, 2, 3, 4, 5, 9, 10, 12, 13] study this type of systems in the
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framework of the semigroup theory with different strategies and in different
settings.

In [2, 5] systems of parabolic equations associated to Kolmogorov elliptic
operators coupled up to the first-order, are studied in the space of continuous
and bounded functions. Under suitable assumptions, a vector-valued semigroup
(T (t))t≥0 which governs the problem is constructed.

Another important setting where to study these kind of operators are the
usual Lp-spaces related to the Lebesgue measure despite the fact that, as the
scalar case shows, these are not the Lp-spaces which fit best the properties of
elliptic operators with unbounded coefficients. In particular, even if their realiza-
tions in these spaces generate strongly continuous or even analytic semigroups,
the characterization of the domain of the infinitesimal generator, which is cru-
cial to study the associated parabolic equation, is known only in a few cases.
We refer the reader e.g., to [7, 8, 14, 15, 20] for the scalar case.

In the vector-valued case, systems of parabolic equations with unbounded
coefficients are studied in the classical Lp-setting in [9, 4, 10, 11, 12, 13]. In
[4], taking advantage of the results in [2], conditions that ensure that the semi-
group (T (t))t≥0 can be extrapolated to the Lp-scale are provided. Clearly, this
approach does not give any information about the domain of the generator of
T (t) in Lp. Recently, the Lp-realization of matrix Schrödinger operators of the
type A = ∆ + V was studied in [10], where the generation of a semigroup in
Lp(Rd,Cm) and the characterization of the domain D(Ap) have been estab-
lished throughout a noncommutative version of the Dore-Venni theorem due to
S. Monniaux and J. Prüss (see [16]). The assumptions which allow to apply this
result (see (3) and (4)) force the entries of the matrix-valued function V to grow
polynomially and, more precisely, as |x|r, r ∈ [1, 2[.

In [13] the authors obtain the same generation and regularity results of [10]
for a more general class of potentials whose diagonal entries are functions of
type |x|α, α ≥ 1, or even e|x|. The idea consists in perturbing the operator Ap
by a scalar potential, i.e., considering the operator A− vI with v ∈ W 1,∞

loc (Rd)
such that |∇v| ≤ C · v, for some positive constant C. In this case by applying a
theorem due to Okazawa (see [17]), they prove that the realization of A− vI in
Lp(Rd,Cm) generates a C0-semigroup in Lp(Rd,Cm) and describe the domain
of the generator.

This note is a first preliminary step in the study of much more general sys-
tems of elliptic equations in Lp-spaces aimed at providing classes of systems for
which the realization in Lp(Rd,Cm) generates a “good” semigroup and a com-
plete characterization of the domain of the infinitesimal generator is available.
In particular, here we extend the results in [13] when p = 2 to the case of a
matrix Schrödinger operators of the type A perturbed by a first-order term,
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whose coefficients can grow at most linearly at infinity, and a zero-order term
consisting of a symmetric matrix W satisfying suitable assumptions.

We point out that, under our assumptions, diagonal matrices W which are
not of the type vI can be considered, allowing for different growth rates for
the diagonal entries of the potential matrix. We provide a concrete example of
this type which is covered neither by the results in [13] nor by results in [10],
where hypotheses (4) below is assumed. Indeed, our choice of the matrix-valued
function W (see Example 1) implies that, for each γ ∈ (0, 1/2), the function
‖Dj(V − sW )(−V + sW )−γ‖ is unbounded on Rd for any s > 0.

We observe that the L2-setting is the starting point also for the approach
in [12], based on form methods. The main difference is that the operators that
we consider here are not necessarily symmetric and that Okazawa’s theorem
permits a description of the domain of the generator.

Finally, it is worth noting that, if p 6= 2, even in the case of a diagonal
perturbation of the potential V , technical difficulties arise.

1 Notation and preliminaries

For every m, d ∈ N, we denote by | · | the Euclidean norm on Cm and by
〈·, ·〉 the Euclidean inner product on Cm. By C∞c (Rd,Cm) we denote the space
of infinitely differentiable functions with compact support and by L2(Rd,Cm)
the usual Hilbert space of Lebesgue square integrable functions endowed with
the inner product

(f, g) =

∫
Rd

m∑
j=1

〈fj(x), gj(x)〉dx, f, g ∈ L2(Rd,Cm)

and the induced norm ‖·‖2. FinallyW k,p(Rd,Cm) stands for the classical Sobolev
space of order k.

We recall that an operator L : D(L) ⊆ L2(Rd,Cm) is said to be m-accretive
if Re(Lu, u) ≥ 0 for every u ∈ D(L) and (λ+ L)(D(L)) = L2(Rd,Cm) for some
λ > 0. In this case, −L generates a contraction semigroup.

For sake of completeness, we recall the Okazawa’s perturbation theorem [17,
Theorem 1.6] in the Hilbert space setting (see also [19] for the result about
analyticity).

Theorem 1. Let A and B be linear m-accretive operators on a Hilbert space
H. Let D be a core for A and assume that there exist constants a, b, c ≥ 0 such
that for every u ∈ D and every ε > 0:

Re(Au,Bεu) ≥ −c‖u‖2 − a‖Bεu‖ ‖u‖ − b‖Bεu‖2,
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where Bε denotes the Yosida approximation of B. If s > b, then A + sB with
domain D(A) ∩ D(B) is m-accretive. If, in addition, there exists M ≥ 0 such
that

Re((A+ sB)u, u) ≥M |Im((A+ sB)u, u)| (1)

for any u ∈ D(A) ∩D(B), then A+ sB is sectorial of angle less than π/2 and
thus −(A+ sB) generates an analytic semigroup.

Consider the operator
A = ∆ + V (2)

on L2(Rd,Cm) where V = [vij ] : Rd → Rm×m is a measurable matrix-valued

function such that vij ∈W 1,∞
loc (Rd),

Re〈V (x)ξ, ξ〉 ≤ −2|ξ|2, x ∈ Rd, ξ ∈ Cm, (3)

and there exists γ ∈ [0, 1
2) such that

sup
x∈Rd

∣∣∂jV (x)(−V (x)− I)−γ
∣∣ <∞, j = 1, . . .m. (4)

Under these assumptions, the realization A of A with domain

D(A) = {u ∈W 2,2(Rd,Cm) : V u ∈ L2(Rd,Cm)}

generates a contraction semigroup. This follows from applying [10, Corollary
3.3] to the sum A2 + V2, where A2 = ∆− I and V2 = V + I. Moreover, by [13,
Proposition 2.3], C∞c (Rd,Cm) is a core for A.

It should be noted that the assumption (3) is not restrictive. We could
consider potentials Ṽ satisfying

Re〈Ṽ (x)ξ, ξ〉 ≤ β|ξ|2, x ∈ Rd, ξ ∈ Cm,

for some β > 0. Then (3) would be clearly satisfied by the shifted potential
V = Ṽ − (β + 2)I. In this more general situation, we should require that

sup
x∈Rd

∣∣∣∂j Ṽ (x)(−Ṽ (x) + (β + 1)I)−γ
∣∣∣ <∞, j = 1, . . .m.

2 Main result

Along this section let V be a matrix-valued function satisfying (3) and (4)
and let W = [wij ] : Rd → Rm×m be a measurable matrix-valued function such

that wij ∈ W 1,∞
loc (Rd), wij = wji and for all x ∈ Rd there exists c(x) > 0 such

that
Re〈W (x)ξ, ξ〉 ≥ c(x)|ξ|2, ξ ∈ Cm. (5)
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Consider on L2(Rd,Cm) the multiplication operator

Bu = Wu, u ∈ D(B) = {u ∈ L2(Rd,Cm) : Wu ∈ L2(Rd,Cm)}.

Then (B,D(B)) is m-accretive. Indeed, by (5), it is immediate to check that
Re(Bu, u) ≥ 0 for every u ∈ D(B). Moreover, for every x ∈ Rd, the matrix
I +W (x) is positive definite, hence it is invertible and

‖(I +W (x))−1‖ = sup
ξ∈Cm\{0}

|(I +W (x))−1ξ|
|ξ|

≤ 1

1 + c(x)
≤ 1.

Therefore, for any f ∈ L2(Rd,Cm), the function u = (I+W )−1f clearly belongs
to L2(Rd,Cm) and (I +B)u = f .

For every ε > 0, set Wε(x) := W (x)(I + εW (x))−1. Then the Yosida ap-
proximations of B are Bεu := B(I + εB)−1u = Wεu, for every u ∈ L2(Rd,Cm).

Observe that, since W (x) is symmetric and positive definite, also Wε(x) is
symmetric and positive definite.

Lemma 1. Assume that

Re〈V (x)ξ,W (x)ξ〉 ≤ 0, ξ ∈ Cm, x ∈ Rd. (6)

Then, for every u ∈ C∞c (Rd,Cm):

Re

∫
Rd
〈−Au(x), Bεu(x)〉dx ≥ −1

4

d∑
k=1

∫
Rd
|W−

1
2

ε (x)(DkWε(x))u(x)|2dx.

Proof. Set R = Wε, R = [rij ]. Observe that for every η ∈ Cm and every x ∈ Rd

Re〈V (x)(I + εW (x))η,W (x)η〉 ≤ 0.

Hence, for every ξ ∈ Cm and x ∈ Rd, setting η = (I + εW (x))−1ξ, we get that

Re〈V (x)ξ,Wε(x)ξ〉 ≤ 0.

Then

Re

∫
Rd
〈−Au(x), Bεu(x)〉dx

=− Re

∫
Rd
〈∆u(x), Ru(x)〉dx− Re

∫
Rd
〈V (x)u(x), R(x)u(x)〉dx

≥−
∫
Rd

Re〈∆u(x), Ru(x)〉dx =

m∑
i=1

∫
Rd

Re〈∇ui(x),∇(R(x)u(x))i〉dx.
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The assertion follows by observing that

m∑
i=1

Re〈∇ui,∇(Ru)i〉 =
d∑

k=1

Re

( m∑
i,j=1

DkuiDk(rijuj)

)

=
d∑

k=1

Re

( d∑
i,j=1

rijDkuiDkuj +
d∑

i,j=1

DkrijDkuiuj

)

=
d∑

k=1

〈RDku,Dku〉+ Re〈(DkR)u,Dku〉

=
d∑

k=1

∣∣∣∣R 1
2Dku+

1

2
R−

1
2 (DkR)u

∣∣∣∣2 − 1

4
|R−

1
2DkRu|2. �

Theorem 2. Assume that conditions (3), (4), (5) and (6) hold and that
there exist a, b ≥ 0 such that

d∑
k=1

|W−
1
2

ε (DkWε(x))ξ|2 ≤ a〈Wε(x)ξ, ξ〉+ b|Wε(x)ξ|2, ξ ∈ Cm, (7)

for all ε > 0 and x ∈ Rd. Then the operators Ls := A − sW = ∆ + V − sW ,
endowed with the domain

D(L) = {u ∈W 2,2(Rd,Cm) : V u,Wu ∈ L2(Rd,Cm)} (8)

generate contractive C0-semigroups in L2(Rd,Cm) for every s > b
4 . Moreover,

the graph norm of D(L) is equivalent to the norm u 7→ ‖u‖2 +‖∆u‖2 +‖V u‖2 +
‖Wu‖2.

Proof. Fix u ∈ C∞c (Rd,Cm). Then,

Re

∫
Rd
〈−Au(x), Bεu(x)〉dx ≥ −1

4

d∑
k=1

∫
Rd
|Wε(x)−

1
2 (DkWε)(x)u(x)|2dx

≥− a

4

∫
Rd
〈Wε(x)u(x), u(x)〉dx− b

4

∫
Rd
|Wε(x)u(x)|2dx

≥− a

4
‖Wεu‖2 · ‖u‖2 −

b

4
‖Wεu‖2.

The assertion now follows applying Theorem 1. �

Corollary 1. Assume that W is a diagonal matrix with positive entries
wi ∈W 1,∞

loc (Rd), i = 1, . . . ,m, such that Re〈V (x)ξ,W (x)ξ〉 ≤ 0 for every ξ ∈ Cm
and x ∈ Rd. Further, assume that there exists C > 0 such that

|∇wi(x)| ≤ Cwi(x)
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for all i = 1, . . . ,m and x ∈ Rd. Then (7) is satisfied with b = 0. In particular
∆+V −W , endowed with the domain D(L) generates a contractive C0-semigroup
in L2(Rd,Cm).

Proof. Note that W
− 1

2
ε (DkWε) is the diagonal matrix with entries Dkwi

w
1/2
i (1+εwi)3/2

,

(i = 1, . . . ,m). Then, for every ξ ∈ Cm and x ∈ Rd:

d∑
k=1

|W−
1
2

ε (x)(DkWε(x))ξ|2 =

d∑
k=1

m∑
i=1

(Dkwi(x))2

wi(x)(1 + εwi(x))3
|ξi|2

≤C2
d∑
i=1

wi(x)

(1 + εwi(x))3
|ξi|2 ≤ C2

d∑
i=1

wi(x)

(1 + εwi(x))
|ξi|2 = C2〈Wε(x)ξ, ξ〉

and we conclude as in the proof of Theorem 2. �

3 Further properties and examples

In this section we collect some properties of the realization of the operators
Ls := ∆ + V − sW , (s > b

4) in L2(Rd,Cm) and of the associated semigroup.
Moreover, we provide an example of perturbed Schrödinger systems to which
all our results can be applied. Here, besides hypotheses (3) and (4) we assume
that assumptions (5), (6) and (7) are satisfied. We start by proving that the
natural domain D(L) actually coincides with the maximal domain.

Proposition 1. The following equality holds true:

D(L) = {u ∈ L2(Rd,Cm) ∩W 2,2
loc (Rd,Cm) : Lsu ∈ L2(Rd,Cm)} =: D2,max(Ls).

for any s > b
4 .

Proof. From (8), it is clear that D(L) ⊂ D2,max(Ls) for any s > b
4 . On the other

hand, to show the other inclusion it suffices to prove that λ − Ls is injective
on D2,max(Ls) for some λ > 0. To this aim, let u ∈ D2,max(Ls) be such that
λu − Lsu = 0 and prove that u ≡ 0. Since the entries of the matrix-valued
functions V and W are real we can assume that u is a real valued-function.
Indeed, if u is a complex-valued solution to the previous equation, then its real
and imaginary parts solve the same equation.

Let (ϑn) be a sequence of cut-off functions such that χBn ≤ ϑn ≤ χB2n and
‖∇ϑn‖∞ ≤ Cn−1 for some positive constant C and any n ∈ N. Multiplying the
equation λu− Lsu = 0 by ϑ2

nu, using (3), (5) and integrating by parts over Rd
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we get

0 =

∫
Rd
〈λu− Lsu, ϑ2

nu〉dx

=λ

∫
Rd
ϑ2
n|u|2dx+

m∑
k=1

∫
Rd
|∇uk|2ϑ2

ndx+ 2
m∑
k=1

∫
Rd
ϑn〈∇uk,∇ϑn〉ukdx

−
∫
Rd
〈V u, u〉dx+ s

∫
Rd
〈Wu, u〉dx

≥λ
∫
Rd
ϑ2
n|u|2dx−

∫
Rd
|∇ϑn|2|u|2dx

≥λ
∫
Rd
ϑ2
n|u|2dx− ‖∇ϑn‖2∞

∫
Rd
|u|2dx

≥λ
∫
Rd
ϑ2
n|u|2dx− C2n−2

∫
Rd
|u|2dx,

where we have estimated

2

m∑
k=1

ϑn〈∇uk,∇ϑn〉uk ≥ −ϑ2
n|∇u|2 − |∇ϑn|2|u|2.

Hence, letting n tend to ∞ we deduce that λ‖u‖2 ≤ 0, whence u ≡ 0. �

Now, under suitable assumptions on the matrix-valued functions V and W ,
we are able to prove that the resolvent operator of Ls is compact in L2(Rd,Cm).

Proposition 2. Assume that there exist s > b/4 and a measurable function
% : Rd → R+ blowing up as |x| → ∞ such that |(V (x) − sW (x))ξ| ≥ %(x)|ξ|
for any x ∈ Rd and ξ ∈ Cm. Then, the operator Ls has compact resolvent in
L2(Rd,Cm). Consequently, its spectrum is discrete and consists of eigenvalues
only.

Proof. Even if the proof is rather classical, for the reader convenience we provide
the details. To prove the statement, we fix s > b/4 and show that the unit
ball B of D(L) is relatively compact in L2(Rd,Cm). Since D(L) ⊂ W 2,2(Rd),
‖u(·+ h)− u‖2 tends to zero as h→ 0, uniformly with respect to u ∈ B. So, we
just need to show that the L2-norm of functions in B is almost all concentrated in
a large ball centered at zero. Recalling that the graph norm of D(L) is equivalent
to the norm u 7→ ‖u‖2 + ‖∆u‖2 + ‖V u‖2 + ‖Wu‖2 (see Theorem 2), it follows
that ∫

Rd
|(V (x)− sW (x))u(x)|2dx ≤ C‖u‖2D(L) ≤ C
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for some positive constant C and every u ∈ B. Thus,∫
Rd\B(0,r)

|u|2dx ≤ 1

infx∈Rd\B(0,r) %
2(x)

∫
Rd
%2|u|2dx

≤ 1

infx∈Rd\B(0,r) %
2(x)

∫
Rd\B(0,r)

|(V (x)− sW (x))u(x)|2dx

≤ 1

infx∈Rd\B(0,r) %
2(x)

∫
Rd
|(V (x)− sW (x))u(x)|2dx

≤ C

infx∈Rd\B(0,r) %
2(x)

for any u ∈ B. Since % blows up at infinity, letting r tend to ∞ in the previous
chain of inequalities we conclude that ‖u‖L2(Rd\B(0,r)) vanishes, uniformly with
respect to u ∈ B and we are done. �

As it was observed in [10, Example 3.5], hypotheses (3) and (4) are not
sufficient to guarantee that the semigroup generated by the operator A in (2)
is analytic in L2(Rd,Cm). The following theorem provides a sufficient condition
in order that the perturbed operator Ls generates an analytic semigroup in
L2(Rd,Cm).

Theorem 3. Assume that there exists M ≥ 0 such that

Re〈(−V (x) + sW (x))ξ, ξ〉 ≥M |Im〈(V (x)− sW (x))ξ, ξ〉| (9)

for any x ∈ Rd, ξ ∈ Cm and some s > b
4 . Then, the strongly continuous semi-

group generated by Ls in L2(Rd,Cm) is analytic too.

Proof. First of all we recall that Re(−∆u, u) ≥ c0|Im(∆u, u)| for any u ∈ D(L) ⊂
W 2,2(Rd,Cm) and any positive constant c0 (see [18, Theorem 3.9]). Hence, for
any u ∈ D(L) we get

Re(−Lsu, u) = Re(−∆u, u) + Re(−V u+ sWu, u)

≥ c0|Im(∆u, u)|+M

∫
Rd
|Im〈(V (x)− sW (x))u(x), u(x)〉|dx

≥ min{c0,M}|Im(Lsu, u)|

and, by Theorem 1, we deduce that −Ls is sectorial of angle less than π/2 and
then Ls generates an analytic semigroup in L2(Rd,Cm). �

The result in Theorem 2 can be slightly generalized, considering a class of
elliptic systems with a drift term, i.e., systems of the type

Ls = ∆ +

d∑
j=1

FjDj + V − sW.
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Corollary 2. Under the assumptions of Theorem 3, assume that the entries
of the matrix-valued functions Fj (j = 1, . . . , d) are measurable functions, which
grow at most linearly at infinity. Further, assume that there exist s > b/4 and
a positive function φ blowing up at infinity, faster than quadratically, such that

|(V (x)− sW (x))ξ| ≥ φ(x)|ξ|, x ∈ Rd, ξ ∈ Cm. (10)

Then, the realization L̃s of the operator Ls in L2(Rd,Cm) with D(L) as domain,
generates an analytic semigroup.

Proof. To prove the assertion it is enough to show that, for every Lipschitz
continuous function ζ : Rd → R with positive infimum over Rd, there exist
ε0 > 0 and, for every ε ∈ (0, ε0), a positive constant Cε such that

‖ζ∇v‖2 ≤ ε‖∆v‖2 + Cε‖ζ2v‖2 (11)

for every v ∈ W 2,2(Rd) such that ζ2v ∈ L2(Rd). Once estimate (11) is proved,
we can apply a classical perturbation argument for generators of analytic semi-
groups (see [6, Theorem III 2.10]) and complete the proof. Indeed, from our
assumptions on φ, we can infer that

|x|2 ≤ δ|x|4 + C ′δ ≤ δφ(x)2 + C ′′δ , x ∈ Rd,

for any δ > 0 and some positive constants C ′δ and C ′′δ , blowing up as δ tends to
0+. Therefore, taking (10) into account and choosing ζ(x) = |x|+ 1 in (11), we
get that

‖FjDju‖2 ≤ε‖∆u‖2 + Cε(δ‖φu‖2 + C ′′δ ‖u‖2)

≤ε‖∆u‖2 + Cε(δ|(V − sW )u‖2 + C ′′δ ‖u‖2)

for every j = 1, . . . , d, ε ∈ (0, ε0), δ > 0 and u ∈ D(L). Choosing δ such that
Cεδ = ε, we immediately conclude that

‖FjDju‖2 ≤ ε (‖∆u‖2 + ‖(V − sW )u‖2) + C ′′′ε ‖u‖2 ≤ K(ε‖u‖D(L) + C ′′′ε ‖u‖2)

for every j = 1, . . . , d, ε ∈ (0, ε0) and u ∈ D(L), the constant K, being inde-
pendent of v and ε.

So, let us prove (11). First of all, we note that C∞c (Rd) is dense in the set
D = {v ∈ W 2,2(Rd) : ζ2v ∈ L2(Rd)}. This property can be easily checked first
observing that the function in W 2,2(Rd) with compact support are dense in
D and, then, by approximating any such function by a sequence of C∞c (Rd)-
function through a convolution argument.

Based on this remark, we can limit ourselves to proving (11) for functions
in C∞c (Rd). We fix such a function v, x0 ∈ Rd and a cut-off function ϑ : Rd → R
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such that χB(0,1) ≤ ϑ ≤ χB(0,2). By integrating by parts and applying the
Cauchy-Schwarz inequality we get

‖ζ(x0)∇(ϑx0v)‖2 ≤‖∆(ϑx0v)‖
1
2
2 ‖ζ

2(x0)ϑx0v‖
1
2
2

≤ε‖∆(ϑx0v)‖2 +
1

4ε
‖ζ2(x0)ϑx0v‖2, (12)

where, ϑx0(x) = ϑ((x− x0)/%(x0)) for every x ∈ Rd, and % = (2‖∇ζ‖∞)−1ζ.
A direct computation shows that 2−1ζ(x0) ≤ ζ(x) ≤ 3 · 2−1ζ(x0) for every

x ∈ B(x0, 2ρ(x0)). Hence, we can estimate

‖ζ∇v‖L2(B(x0,ρ(x0))) ≤‖ζ∇(ϑx0v)‖L2(B(x0,2ρ(x0)))

≤3

2
‖ζ(x0)∇(ϑx0v)‖L2(B(x0,2ρ(x0))) (13)

and
‖ζ2(x0)ϑx0v‖2 ≤ 4‖ζ2v‖L2(B(x0,2ρ(x0))). (14)

Replacing (13) and (14) into (12), and using that

||ϑx0 ||C2
b (Rd) ≤ C

for some positive constant C, we get

‖ζ∇v‖L2(B(x0,ρ(x0))) ≤ C ′
(
ε‖∆v‖L2(B(x0,2ρ(x0))) + ε‖∇v‖L2(B(x0,2ρ(x0)))

+ ε‖v‖L2(B(x0,2ρ(x0))) +
1

4ε
‖ζ2v‖L2(B(x0,2ρ(x0)))

)
.

Since ζ has positive infimum over Rd, we can estimate

‖v‖L2(B(x0,2ρ(x0))) + ‖∇v‖L2(B(x0,2ρ(x0)))

≤C1

(
‖ζ2v‖L2(B(x0,2ρ(x0))) + ‖ζ∇v‖L2(B(x0,2ρ(x0)))

)
for some positive constant C1, independent of v. Moreover, since ζ is Lips-
chitz continuous, there exists a countable covering of Rd consisting of the balls
B(xn, ρ(xn)) such that only a finite number of the doubled balls B(xn, 2ρ(xn))
overlap. As a byproduct, we can infer that

‖ζ∇v‖L2(Rd) ≤ C ′′
(
ε‖∆v‖2 + ε‖ζ∇v‖2 + ε‖ζ2v‖2 +

1

4ε
‖ζ2v‖2

)
Choosing properly ε > 0, we can complete the proof. �

Finally we provide an example of perturbed Schrödinger system to which all
our results can be applied.



136 L. Angiuli, L. Lorenzi, E. Mangino

Example 1. Let r ∈ [1, 2) and α, β ∈ W 1,∞
loc (Rd) be two positive functions

such that |∇α(x)| ≤ Cα(x), |∇β(x)| ≤ Cβ(x) for every x ∈ Rd and some
positive constant C. For example, we could consider α and β of type |x|δ + 1,
with δ > 1, or ea|x| with a > 0. Consider the matrix-valued functions Ṽ and W
defined by

Ṽ (x) =

 0 0 |x|r
0 −|x|r 0
−|x|r 0 0

 , W (x) =

α(x) 0 0
0 β(x) 0
0 0 α(x)

 , x ∈ Rd.

Since Re〈Ṽ (x)ξ, ξ〉 = −|x|r|ξ2|2 ≤ 0 for every x ∈ Rd and every ξ ∈ C3, the
matrix valued function V = Ṽ − 2I satisfies the assumption (3).

The matrix Ṽ (x) has eigenvalues ±|x|ri and −|x|r; hence there exists a
matrix P (independent of x) such that

−V (x)− I = P−1

i|x|r + 1 0 0
0 −i|x|r + 1 0
0 0 |x|r + 1

P

Then, for every γ > 0

‖(−V (x)− I)−γ || =

∥∥∥∥∥∥∥P−1

i|x|r + 1 0 0
0 −i|x|r + 1 0
0 0 |x|r + 1

−γ P
∥∥∥∥∥∥∥

≤C̃(|x|r + 1)−γ

for every x ∈ Rd and some positive constant C̃. Since

DjV (x) = r|x|r−2xj

 0 0 1
0 −1 0
−1 0 0

 ,

choosing γ ∈] r−1
r , 1

2 [ we get that DjV (x)(−V (x) − I)−γ is uniformly bounded.
Hence V satisfies also the assumption (4). Moreover,

Re〈V (x)ξ,W (x)ξ〉 =Re

〈 0 0 α(x)|x|r
0 −β(x)|x|r 0

−α(x)|x|r 0 0

 ξ, ξ

〉
− 2〈Wξ, ξ〉

≤ − β(x)|x|r|ξ2|2 ≤ 0

for every x ∈ Rd. Hence, by Theorem 2 and Corollary 1, for any s > 0, the
operator Ls, endowed with the domain D(L), generates a strongly continuous
semigroup of contractions in L2(Rd,C3).
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It should be observed that, if |x|r = O(α(x)) and |x|r = O(β(x)), then
Wu ∈ L2(Rd,C3) implies that also V u ∈ L2(Rd,C3). Hence, in this case, the
domain of Ls is D(L) = {W 2,2(Rd,C3) : Wu ∈ L2(Rd,C3)}.

Moreover, since |V (x)ξ| ≥
√
|x|2r + 4|ξ| for any x ∈ Rd and ξ ∈ C3, Propo-

sition 2 can be applied to deduce that, for any s > 0, the operator ∆ +V − sW
has compact resolvent in L2(Rd,C3).

Further, if α(x) ≥ C0|x|r for any x ∈ Rd and some positive constant C0,
then condition (9) is satisfied for any s > 0 and M = 2C−1

0 . Indeed,

Re〈W (x)ξ, ξ〉 = α(x)(|ξ1|2 + |ξ3|2) + β(x)|ξ2|2

whereas

|Im〈(V (x)− sW (x))ξ, ξ〉| =s |Im〈V (x)ξ, ξ〉|
=2s|x|r|Im(ξ3)Re(ξ1)− Im(ξ1)Re(ξ3)|

for any x ∈ Rd and any ξ = (ξ1, ξ2, ξ3) ∈ C3. Recalling that Re〈−V (x)ξ, ξ〉 =
|x|r|ξ2|2 + 2|ξ|2, we infer that, for any x ∈ Rd, ξ ∈ C3 and s > 0,

|Im〈(V (x)− sW (x))ξ, ξ〉| ≤ 4s|x|r|ξ1||ξ3| ≤ 2s|x|r(|ξ1|2 + |ξ3|2)

≤ 2sC−1
0 α(x)(|ξ1|2 + |ξ3|2)

≤ 2C−1
0 Re〈(−V (x) + sW (x))ξ, ξ〉,

as claimed. Hence, for any s > 0, the operator −(∆ + V − sW ) is sectorial
in L2(Rd,C3) of angle less than π/2, then ∆ + V − sW generates an analytic
semigroup in L2(Rd,C3). Finally, if the function min{α, β} blows up at infinity
faster than quadratically, then we can apply Corollary 2 and perturb the op-
erator A + v − sW by a drift term of the type

∑d
j=1 FjDj , where the entries

of the matrix-valued functions Fj grow at most linearly at infinity. Indeed, in
this case α(x) ≥ C0|x|r for any x ∈ Rd and some positive constant C0 and also
assumption (10) is satisfied with φ(x) ' min{α(x), β(x)} as |x| → ∞ since, it
is easy to show that

|(V (x)− sW (x))ξ|2 ≥ min{|x|2r + (2 + sα(x))2, (|x|r + 2 + sβ(x))2}|ξ|2,

for any x ∈ Rd and ξ ∈ C3.
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