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1 Introduction

In [15], the authors introduced a two-parameter deformation of the classical
gamma function which is called the (p,k)-gamma function. It is defined for
peN, k>0and z >0 as

(p + 1)RP (pk)
z(x + k)(z + 2k) ... (z + pk)’

Lpr(z) =
and satisfies the properties

pkx r
z+pk+k PF
Fp,k(k) =1.

Fp,k(x"i_k) = (x>7 (1)
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Closely related to the (p,k)-gamma function is the (p,k)-digamma function
which is defined as follows.

d 1 S
— YTy (2) = — In(pk) — 2
1 ) 1— 6—k‘(p+1)t -

By this definition, the functional equation (1) gives

1 1
k) — S S 4
%,k(ﬂf + ) wp,k(x> T T —l—pk +k ( )
Also, the (p, k)-polygamma function is defined for v € N as
W@ = L) = oty L 5)
pk drv p, ~ (nk+x)v+1
0 1 _ o—k(p+1)t
= (=1 ”‘H/ — Vet 6
where, ¢£0,3 () = Ypr(x). By successive differentiations of (4), one obtains
(v) ) B (—=1)vv! (—=1)vv!
¢p,k<$ + k) - wp,k(x) - IEU+1 - (.CC —i—pk ¥ ]{Z)v+1 (7)

for v € Ny, where Ny = NU {0} and N = {1,2,3,...}. Also, it can be deduced
from (5) and (6) that:

(a) ¥pr(x) is increasing,
(b) 1/11()”,2(33) is positive and decreasing if v € {2n+ 1 :n € Ny},
(c) w;v,g(x) is negative and increasing if v € {2n : n € N}.

Furthermore, the (p, k)-gamma and (p, k)-polygamma functions satisfy the limit
relations

Lpi(r) == T (x) U@ =0 @)
k—>1l ik—n k_ﬂl J{k—ﬂ
) e T 0 (@) gz v @)
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where, T'(z) and () (z) are the ordinary gamma and polygamma functions;
I'p(x) and zbz(,v) () are the p-gamma and p-polygamma functions (see [8],[9]);
and I'y(z) and w}({v) (x) are the k-gamma and k-polygamma functions [5].

The (p, k)-gamma and (p, k)-polygamma functions have been studied in var-
ious ways. See for instance the recent works [6], [11], [12], [13], [14], [16], [17],
[19] and [20].

In the present work, our goal is to establish some inequalities involving
the (p, k)-gamma and (p, k)-polygamma functions. Among other tools, we shall
make use of the mean value therorem, the Hermite-Hadamard’s inequality,
Petrovic’s inequality and the Holder’s inequality. Upon some parameter vari-
ations, we recover some known results as special cases of the established results.
We present our results in the following section.

2 Main Results

Theorem 1. Let p € N and k > 0. Then for 0 < x < k, the inequality

PR\ ok (k) < PE_\ (a—k)pp(ak)
= P, T k< | —— p.k
<p+2>e <Tpiplz+k) < b2 e , (8)
1s satisfied. Equality holds if and only if x = k.

Proof. The situations where = 0 and x = k are obvious. Consider the function

InT'), (x + k) on the interval (x, k). Then by the classical mean value theorem,
there exists a A € (z, k) such that

InT) ,(2k) —InT)p i (x + k)
k—x

=Py (A + k).

Since 1y (2) is increasing for all z > 0, we have

InTy 1 (2k) —InT'p p(x + k)

/l/]p7k(x +k)< P2 < wp,k(2k)7
which implies that
k
(k — 2)pp(z + k) < In <pi2> T+ k) < (k — )y (2K).

This further implies that

k k
In (1)]:—2> +(k—2)p(2k) <InTpk(z+k) <In <p}:—2> + (k—z)pp(z+k),

and by taking exponents, we obtain inequality (8). QED
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Remark 1. By letting k = 1 and p — oo in Theorem 1, we obtain

1217 < D(z+1) < e(1—2)¥(z+1)

as presented in [10] for 0 < z < 1 where ~ is the Euler-Mascheroni constant.
Theorem 2. Let p € N and k > 0. Then the inequality

e¥ri®) < [T, o(@ + k)7 < ebor@th), (9)
holds for all x > 0.

Proof. Consider the function InT', () on the interval (k,z + k). Then by the
mean value theorem, there exists a A € (k,z + k) such that

InT,(k+x2)—1InT, (k
p,k’( 3) p,k( ):/(/]p’k()\)

Similarly, since v, 1 (2) is increasing for all z > 0, we have

InTy p(x + k)
x

Yp (k) < < Ypr(x+Ek),

which upon taking exponents, gives inequality (9). QED

By applying the Hermite-Hadamard inequality, we obtain a similar inequal-
ity as shown in the following theorem.

Theorem 3. Let p € N and k > 0. Then the inequality

03 W (k)1 (z4k)) [Tz + k’)]i < e¥rk(5Hk) (10)

holds for all z > 0.

Proof. 1t is seen from (5) and (6) that, the function 1), ;(2) is concave for all
z > 0. Then by applying the Hermite-Hadamard inequality on the interval
(k,z + k), we obtain

1 1 z+k
5 Wpa(k) +pr(e + k) < 33/k Ypa(2) dz < U (5 + )

which gives

%(wp,k(k) +Ypp(r+k)) <In [ln Lpr(z+ k)]% < Py (g + k) )

Then, by taking exponents, we obtain inequality (10). QED
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Remark 2. Clearly, 1, (5 + k) < ¥ x(z + k) and also, by the arithmetic-
geometric mean inequality, we have

%(wp,k(k) + %,k(l' + k)) > \/wp,k(k)@/)p,k(x + k) > \/(wp,k(k))2 - Qbp,k(k)'

Thus, (10) is sharper than (9).
Remark 3. By letting £k = 1 and p — oo in (9), we obtain

e < [(z+ 1)]§ < ¥t

which is the same as what was established in Theorem 4.2 of [10].

Remark 4. Also, by letting ¥ = 1 and p — oo in (10), we obtain
ez (1) o F(x + 1)]% < e?GHY),

The following lemma is known in the literature as Petrovic’s inequality for
convex functions (see [1]).

Lemma 1. Suppose that f: 1 C [0,00) = R is a convex function. If x; € 1
fori=12....nandx1+x9+---+2x, €1, then

flz1) + flze) + -+ flan) < flor + 22+ -+ 20) + (0= 1) £(0),

with equality if and only ifn=1 orx1 =x9 =---=x, =0.
Theorem 4. Let p € N, k > 0 and z; > 0 fori = 1,2,...,n. Then the
nequality

( pk(z1+xo+-+xn) )
Lpr@)lpp(@a) - Tprlan) _ (@1 +a2++on)+phtk

Low(z) +axo4+- -+ = (pk)™ (x1.x2...30) ’
pk(TL+ 22 n) ((m1+pk+k)(m2+p1k+i).“(a:n+pk+k))

(11)

holds.

Proof. It has been shown in [15, Theorem 2.1] that the function f(z) = InT'), (x4
k) is convex on I = (0,00). Now let z; € (0,00) for ¢ = 1,2,...,n. Then by
Lemma 1, we obtain

InT) g (x1+k)+In Ty g (xo+k)+- - -+Inl) g (xn+k) < InTp p(x1+x2+ - +20+k),
since f(0) = 0. That is,

Lol +k)pp(za+k) .. . Tpp(en +k) <Tpp(xr +x2+ - +xn + k).
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Then by (1) we obtain

(pk)™"(z1.22 ... Tp)

r T . n

(r1 +pk+k)(xo+pk+Ek)...(xn +pk+k) po (@)1 (72) pk(Tn)
< pk;(:vl+x2—|—--~+arn)

T (w4 x4+, +Fok+k

Cpr(zr + 22 + -+ 1),

which when rearranged, gives inequality (11). QED
Remark 5. By letting k£ = 1 and p — oo in (11), we obtain

F(l’l)r(l‘g)...r(:ﬂn) < 1 +x2+ -+ 2y
Dy +xo+ - +x,) — T1.22...Tn

which gives an upper bound for the beta function of n variables [2].

Remark 6. In particular, let n = 2, x; = x and z2 = y in (11). Then we

obtain
Upr@lpry) _z+y (z+pk+k)(y+pk+Fk)

ez +y) — xy pk(x + vy + pk + k)

which gives an upper bound for the (p, k)-beta function. Moreover, if k¥ = 1 and
p — oo in (12), the we obtain

(12)

L(x)l(y) _z+y
[(z +y) = xy (13)

for z > 0 and y > 0.
Theorem 5. Let p € N and k > 0. Then the inequality

1 1
W<<1>2<$+pk+k_y+pk+k>2 "

Tpse( +y) zy pk Pk
holds for x > k and y > k, with equality if and only if x =y = k.

Proof. Consider the (p, k)-beta function, By, x(x,y) = % for z > k and
D,
y > k. With no loss of generality, let y be fixed. Then logarithmic differntiation

yields 5
= Bpk(®,y) = Bpr(x,y) (Ypr() — Ypi(z +y)) <O0.

Ox
Thus, By k(x,y) is decreasing in x. Then for x > k, we have
Lok @) _ Lpr(B)p(y) _  Tonly)  _y+pk+k (15)

Tpr(z+y) = Tprlk+y) BT, (y) pky
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Likewise, fixing x yields

Fp7k($)r‘p7k(y) < T —I—pk + k:.

16
Dprl@+y) = pka (16)
Now, (15) and (16) imply
1
Lpi(@)Tpr(y) _ (m +pk+k y+pk+ k) >
Cpr(z+y) — pka pky ’
which completes the proof. QED
Remark 7. By letting £k =1 and p — oo in (14), we obtain
1
I'(z+vy) Ty

for x > 1 and y > 1. However, this is weaker than the main result of [7].
Additional information on inequalities of type (13) and (17) can be found in [3],
[4], and the related references therein.

Theorem 6. Letp e N, k>0, u>0,s€{2n:n €Ny} andr € {2n+1:
n € No}. Then the inequalities

(k= wp @+ k) <98+ k) — 0@ +u) < (k- Wl (@ + ), (18)

(k= wpyd V(@ +u) < {4+ k) = v (@ +u) < (k= wl @+ k), (19)
are valid for all x > 0. Equality holds if and only if u = k.

Proof. The case where u = k is obvious. Now, let 0 < u < k and for s € {2n :

n € Ny}, consider the function @D;s,l(x) on the interval (x + u,z + k). Then by
the mean value theorem, there exist a A € (x + u,z + k) such that

U@+ k) -l @)
k—u = ¢p7k (/\)

Since ¢I(f,:r 1)(z:) is decreasing for all z > 0, we obtain

WO @+ k) <

@+ k) — 8 (@ + ) (1)
— <t (z+u),

which gives inequality (18). By the same procedure, the case for u > k yields
the same result. Hence we omit the details.
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Similarly, let 0 < u < k and for r € {2n+ 1 : n € Ny}, consider the function
1/11()2(:5) on the interval (z + u,x + k). The mean value theorem gives

k) — + )
e D) )

for 6 € (v + u,xz + k). Since w;rljl)(z) is increasing for all z > 0, we have

(1) U@+ k) — Ol (z + )

Yo (@ +u) < P < (@ + k),

which gives inequality (19). The case for u > k gives the same result and so, we
omit the details. QED

Corollary 1. Letp e N, k> 0,s € {2n:n € No} andr € {2n+1 : n € Ny}.
Then the inequalities

s! s!

(s+1 (s+1)
k k — k 20
! 'r'
2 'r+1) r _ i r+1 1 91
are valid for all x > 0.
Proof. By letting u = 0 in Theorem 6, we obtain
By (@ k) < (k) = (@) < ko (@), (22)
ki (@) < i@+ k) — ol @) < ko @ + k). (23)
Then by applylng (7) to (22) and (23), we obtain respectively (20) and (21).

Remark 8. By letting £ = 1 and p — oo in Theorem 6 and Corollary 1,
we obtain the results of Theorem 5.4 and Corollary 5.5 of [10].

Remark 9. If k =1, s =0 and r = 1, then (20) and (21) reduces to
1 1 ,

Pp(r+1) < v aapil < (),
1 1
Uy (@) — <Pz +1),

(x+p+1)2 =z

where, ¥, (x) is the p-digamma function.
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Lemma 2. Letp € N, k>0 andr € {2n+1:n € No}. Then, the inequality

2
Upa@p? @) = oy @] >0,

holds for x > 0.

Proof. See Corollary 2.3 of [15]. QED
Lemma 3. Letpe N, k>0 andr € {2n+1:n € Ng}. Then, the function
(m+1)
%’(kmi)(m) is increasing on (0,00).
Yy (@)

Proof. Direct differentiation yields

v @)\ @@ - P
@) [ (@) o

which follows directly from Lemma 2. QED

Theorem 7. Letp e N, k>0, u >0 andr € {2n+1:n € No}. Then the
mnequality

(r+1) (r) (r+1)
T+ u r+k x+k
exp} (k —u) %,(k;) ( ) < wf;];( ) <expy (k— u)wp’(k;) ( )
Uy (@ +u) Yy (T + ) Uy (@ + k)
(24)

valid for all x > 0. Equality holds if and only if u = k.

Proof. Suppose that 0 < u < k and consider the function In wi(f,i(x) on the
interval (z + u,z + k). Then the mean value theorem yields

my )k +2) )@ +u) o)

pr— p?k

k- u ¥ (c)

(r+1)
where, ¢ € (z + u,z + k). Then, since Z‘{i) is increasing for all z > 0, we

K \F

have (r+1) ( )p (r+1)

U (T4 ) PRI Uy (x + k) . Uy (T + k)
wl(f,l(x + u) k—u ”L/JS}Z(% + u) w}grll(x + k)

which upon taking exponents, gives inequality (24). The case where u > k gives
the same result by following a similar procedure. QED
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Remark 10. By letting &k = 1 and p — oo in (24), we recover inequality
(8.1) of [10]. However, we noticed that, the proof of inequality (8.2) of [10] has
a drawback. The expression In (> (z + 1) — Inp(®®) (z 4 \) is not defined since
Y@ (z) < 0 for even values of i.

Theorem 8. Let p € N, k > 0 and r € {2n+ 1 : n € No}. Then the
inequality

SN +y + ) — B+ )+ ) > 0, (25)

holds for positive real numbers x, y and z.

Proof. For positive real numbers z, y and z, let @ be defined as

") (4
Qo) = 22

UA)
Then
Qo= A+ e ) @]
U@ | vtz )
) . . :
since —2—— is increasing. Hence Q(z) is increasing. Therefore, Q(z+y) > Q(x)
which ggfes inequality (25). QED

Theorem 9. Letp e N, k> 0,7 € {2n+1:n € Npo} ands € {2n: n € No}.
Then the inequalities

V(@ +y) <)) + v y), (26)
PO +y) > @) + 0l ), (27)

holds for x > 0 and y > 0.

Proof. Let G be defined for x >0, y >0 and r € {2n+1:n € No} as

Ga,y) = v +y) — o) (@) — o)1)

Without loss of generality, let y be fixed. Then

d . .
5-Gla,y) = v @+ y) - v @) > 0,
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since w](;)lz (x) is increasing for v € {2n : n € Ny}. Thus, G(z,y) is increasing in
x. Furthermore, by using representation (6), we obtain

0 1 _ g~ k(p+1)t
im Glea) = — [ e <
0

T—00 1—ek

Therfore, G(z,y) < limg o0 G(x,y) < 0 which gives (26). The proof of (27)
follows a similar procedure. Hence we omit the details.

Remark 11. Theorem 9 generalizes Theorem 2.2 and Theorem 2.4 of [18]

Theorem 10. Letp e N, k> 0,7 € {2n+1:n €Ny}, a> 1 and%%—% =1
Then the inequality

o=

W +y) < (v@)" (vim) (28)
is valid for x > 0 and y > 0.

Proof. By utilizing the Hoélder’s inequality for finite sums, we obtain

p
(r) _ r!
d}p,k(l'"{'y) - Z (nk+x —|—y)7“+1

z”: (r)a (rl)s
Skt rty) T (nk+aoty)

2. (s (rl)s
: Z (nk—{—x)%l(nk

-

which completes the proof. QED
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