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1 Introduction

In [15], the authors introduced a two-parameter deformation of the classical
gamma function which is called the (p, k)-gamma function. It is defined for
p ∈ N, k > 0 and x > 0 as

Γp,k(x) =

∫ p

0
tx−1

(
1− tk

pk

)p
dt,

or

Γp,k(x) =
(p+ 1)!kp+1(pk)

x
k
−1

x(x+ k)(x+ 2k) . . . (x+ pk)
,

and satisfies the properties

Γp,k(x+ k) =
pkx

x+ pk + k
Γp,k(x), (1)

Γp,k(k) = 1.
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Closely related to the (p, k)-gamma function is the (p, k)-digamma function
which is defined as follows.

ψp,k(x) =
d

dx
ln Γp,k(x) =

1

k
ln(pk)−

p∑
n=0

1

nk + x
(2)

=
1

k
ln(pk)−

∫ ∞
0

1− e−k(p+1)t

1− e−kt
e−xt dt. (3)

By this definition, the functional equation (1) gives

ψp,k(x+ k)− ψp,k(x) =
1

x
− 1

x+ pk + k
. (4)

Also, the (p, k)-polygamma function is defined for v ∈ N as

ψ
(v)
p,k(x) =

dv

dxv
ψp,k(x) = (−1)v+1v!

p∑
n=0

1

(nk + x)v+1
(5)

= (−1)v+1

∫ ∞
0

1− e−k(p+1)t

1− e−kt
tve−xt dt, (6)

where, ψ
(0)
p,k(x) ≡ ψp,k(x). By successive differentiations of (4), one obtains

ψ
(v)
p,k(x+ k)− ψ(v)

p,k(x) =
(−1)vv!

xv+1
− (−1)vv!

(x+ pk + k)v+1
(7)

for v ∈ N0, where N0 = N ∪ {0} and N = {1, 2, 3, . . . }. Also, it can be deduced
from (5) and (6) that:

(a) ψp,k(x) is increasing,

(b) ψ
(v)
p,k(x) is positive and decreasing if v ∈ {2n+ 1 : n ∈ N0},

(c) ψ
(v)
p,k(x) is negative and increasing if v ∈ {2n : n ∈ N}.

Furthermore, the (p, k)-gamma and (p, k)-polygamma functions satisfy the limit
relations

Γp,k(x)

k→1
��

p→∞ // Γk(x)

k→1
��

Γp(x) p→∞
// Γ(x)

ψ
(v)
p,k(x)

k→1
��

p→∞ // ψ
(v)
k (x)

k→1
��

ψ
(v)
p (x) p→∞

// ψ(v)(x)
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where, Γ(x) and ψ(v)(x) are the ordinary gamma and polygamma functions;

Γp(x) and ψ
(v)
p (x) are the p-gamma and p-polygamma functions (see [8],[9]);

and Γk(x) and ψ
(v)
k (x) are the k-gamma and k-polygamma functions [5].

The (p, k)-gamma and (p, k)-polygamma functions have been studied in var-
ious ways. See for instance the recent works [6], [11], [12], [13], [14], [16], [17],
[19] and [20].

In the present work, our goal is to establish some inequalities involving
the (p, k)-gamma and (p, k)-polygamma functions. Among other tools, we shall
make use of the mean value therorem, the Hermite-Hadamard’s inequality,
Petrovic’s inequality and the Holder’s inequality. Upon some parameter vari-
ations, we recover some known results as special cases of the established results.
We present our results in the following section.

2 Main Results

Theorem 1. Let p ∈ N and k > 0. Then for 0 ≤ x ≤ k, the inequality(
pk

p+ 2

)
e(x−k)ψp,k(2k) ≤ Γp,k(x+ k) ≤

(
pk

p+ 2

)
e(x−k)ψp,k(x+k), (8)

is satisfied. Equality holds if and only if x = k.

Proof. The situations where x = 0 and x = k are obvious. Consider the function
ln Γp,k(x+ k) on the interval (x, k). Then by the classical mean value theorem,
there exists a λ ∈ (x, k) such that

ln Γp,k(2k)− ln Γp,k(x+ k)

k − x
= ψp,k(λ+ k).

Since ψp,k(z) is increasing for all z > 0, we have

ψp,k(x+ k) <
ln Γp,k(2k)− ln Γp,k(x+ k)

k − x
< ψp,k(2k),

which implies that

(k − x)ψp,k(x+ k) < ln

(
pk

p+ 2

)
− ln Γp,k(x+ k) < (k − x)ψp,k(2k).

This further implies that

ln

(
pk

p+ 2

)
+(k−x)ψp,k(2k) < ln Γp,k(x+k) < ln

(
pk

p+ 2

)
+(k−x)ψp,k(x+k),

and by taking exponents, we obtain inequality (8). QED



96 K. Nantomah

Remark 1. By letting k = 1 and p→∞ in Theorem 1, we obtain

e(1−x)(1−γ) ≤ Γ(x+ 1) ≤ e(1−x)ψ(x+1),

as presented in [10] for 0 ≤ x ≤ 1 where γ is the Euler-Mascheroni constant.

Theorem 2. Let p ∈ N and k > 0. Then the inequality

eψp,k(k) < [Γp,k(x+ k)]
1
x < eψp,k(x+k), (9)

holds for all x > 0.

Proof. Consider the function ln Γp,k(x) on the interval (k, x + k). Then by the
mean value theorem, there exists a λ ∈ (k, x+ k) such that

ln Γp,k(k + x)− ln Γp,k(k)

x
= ψp,k(λ).

Similarly, since ψp,k(z) is increasing for all z > 0, we have

ψp,k(k) <
ln Γp,k(x+ k)

x
< ψp,k(x+ k),

which upon taking exponents, gives inequality (9). QED

By applying the Hermite-Hadamard inequality, we obtain a similar inequal-
ity as shown in the following theorem.

Theorem 3. Let p ∈ N and k > 0. Then the inequality

e
1
2

(ψp,k(k)+ψp,k(x+k)) < [Γp,k(x+ k)]
1
x < eψp,k(x

2
+k), (10)

holds for all x > 0.

Proof. It is seen from (5) and (6) that, the function ψp,k(z) is concave for all
z > 0. Then by applying the Hermite-Hadamard inequality on the interval
(k, x+ k), we obtain

1

2
(ψp,k(k) + ψp,k(x+ k)) <

1

x

∫ x+k

k
ψp,k(z) dz < ψp,k

(x
2

+ k
)

which gives

1

2
(ψp,k(k) + ψp,k(x+ k)) < ln [ln Γp,k(x+ k)]

1
x < ψp,k

(x
2

+ k
)
.

Then, by taking exponents, we obtain inequality (10). QED
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Remark 2. Clearly, ψp,k(
x
2 + k) < ψp,k(x+ k) and also, by the arithmetic-

geometric mean inequality, we have

1

2
(ψp,k(k) + ψp,k(x+ k)) >

√
ψp,k(k)ψp,k(x+ k) >

√
(ψp,k(k))2 = ψp,k(k).

Thus, (10) is sharper than (9).

Remark 3. By letting k = 1 and p→∞ in (9), we obtain

e−γ < [Γ(x+ 1)]
1
x < eψ(x+1),

which is the same as what was established in Theorem 4.2 of [10].

Remark 4. Also, by letting k = 1 and p→∞ in (10), we obtain

e
1
2

(−γ+ψ(x+1)) < [Γ(x+ 1)]
1
x < eψ(x

2
+1).

The following lemma is known in the literature as Petrovic’s inequality for
convex functions (see [1]).

Lemma 1. Suppose that f : I ⊆ [0,∞)→ R is a convex function. If xi ∈ I
for i = 1, 2, . . . , n and x1 + x2 + · · ·+ xn ∈ I, then

f(x1) + f(x2) + · · ·+ f(xn) ≤ f(x1 + x2 + · · ·+ xn) + (n− 1)f(0),

with equality if and only if n = 1 or x1 = x2 = · · · = xn = 0.

Theorem 4. Let p ∈ N, k > 0 and xi > 0 for i = 1, 2, . . . , n. Then the
inequality

Γp,k(x1)Γp,k(x2) . . .Γp,k(xn)

Γp,k(x1 + x2 + · · ·+ xn)
≤

(
pk(x1+x2+···+xn)

(x1+x2+···+xn)+pk+k

)
(

(pk)n(x1.x2...xn)
(x1+pk+k)(x2+pk+k)...(xn+pk+k)

) , (11)

holds.

Proof. It has been shown in [15, Theorem 2.1] that the function f(x) = ln Γp,k(x+
k) is convex on I = (0,∞). Now let xi ∈ (0,∞) for i = 1, 2, . . . , n. Then by
Lemma 1, we obtain

ln Γp,k(x1+k)+ln Γp,k(x2+k)+· · ·+ln Γp,k(xn+k) ≤ ln Γp,k(x1+x2+· · ·+xn+k),

since f(0) = 0. That is,

Γp,k(x1 + k)Γp,k(x2 + k) . . .Γp,k(xn + k) ≤ Γp,k(x1 + x2 + · · ·+ xn + k).
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Then by (1) we obtain

(pk)n(x1.x2 . . . xn)

(x1 + pk + k)(x2 + pk + k) . . . (xn + pk + k)
Γp,k(x1)Γp,k(x2) . . .Γp,k(xn)

≤ pk(x1 + x2 + · · ·+ xn)

(x1 + x2 + · · ·+ xn) + pk + k
Γp,k(x1 + x2 + · · ·+ xn),

which when rearranged, gives inequality (11). QED

Remark 5. By letting k = 1 and p→∞ in (11), we obtain

Γ(x1)Γ(x2) . . .Γ(xn)

Γ(x1 + x2 + · · ·+ xn)
≤ x1 + x2 + · · ·+ xn

x1.x2 . . . xn

which gives an upper bound for the beta function of n variables [2].

Remark 6. In particular, let n = 2, x1 = x and x2 = y in (11). Then we
obtain

Γp,k(x)Γp,k(y)

Γp,k(x+ y)
≤ x+ y

xy
· (x+ pk + k)(y + pk + k)

pk(x+ y + pk + k)
(12)

which gives an upper bound for the (p, k)-beta function. Moreover, if k = 1 and
p→∞ in (12), the we obtain

Γ(x)Γ(y)

Γ(x+ y)
≤ x+ y

xy
, (13)

for x > 0 and y > 0.

Theorem 5. Let p ∈ N and k > 0. Then the inequality

Γp,k(x)Γp,k(y)

Γp,k(x+ y)
≤
(

1

xy

) 1
2
(
x+ pk + k

pk
· y + pk + k

pk

) 1
2

(14)

holds for x ≥ k and y ≥ k, with equality if and only if x = y = k.

Proof. Consider the (p, k)-beta function, Bp,k(x, y) =
Γp,k(x)Γp,k(y)

Γp,k(x+y) for x ≥ k and

y ≥ k. With no loss of generality, let y be fixed. Then logarithmic differntiation
yields

∂

∂x
Bp,k(x, y) = Bp,k(x, y) (ψp,k(x)− ψp,k(x+ y)) < 0.

Thus, Bp,k(x, y) is decreasing in x. Then for x ≥ k, we have

Γp,k(x)Γp,k(y)

Γp,k(x+ y)
≤

Γp,k(k)Γp,k(y)

Γp,k(k + y)
=

Γp,k(y)
pky

y+pk+kΓp,k(y)
=
y + pk + k

pky
. (15)
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Likewise, fixing x yields

Γp,k(x)Γp,k(y)

Γp,k(x+ y)
≤ x+ pk + k

pkx
. (16)

Now, (15) and (16) imply

Γp,k(x)Γp,k(y)

Γp,k(x+ y)
≤
(
x+ pk + k

pkx
· y + pk + k

pky

) 1
2

,

which completes the proof. QED

Remark 7. By letting k = 1 and p→∞ in (14), we obtain

Γ(x)Γ(y)

Γ(x+ y)
≤
(

1

xy

) 1
2

, (17)

for x ≥ 1 and y ≥ 1. However, this is weaker than the main result of [7].
Additional information on inequalities of type (13) and (17) can be found in [3],
[4], and the related references therein.

Theorem 6. Let p ∈ N, k > 0, u ≥ 0, s ∈ {2n : n ∈ N0} and r ∈ {2n+ 1 :
n ∈ N0}. Then the inequalities

(k − u)ψ
(s+1)
p,k (x+ k) ≤ ψ(s)

p,k(x+ k)− ψ(s)
p,k(x+ u) ≤ (k − u)ψ

(s+1)
p,k (x+ u), (18)

(k − u)ψ
(r+1)
p,k (x+ u) ≤ ψ(r)

p,k(x+ k)− ψ(r)
p,k(x+ u) ≤ (k − u)ψ

(r+1)
p,k (x+ k), (19)

are valid for all x > 0. Equality holds if and only if u = k.

Proof. The case where u = k is obvious. Now, let 0 ≤ u < k and for s ∈ {2n :

n ∈ N0}, consider the function ψ
(s)
p,k(x) on the interval (x + u, x + k). Then by

the mean value theorem, there exist a λ ∈ (x+ u, x+ k) such that

ψ
(s)
p,k(x+ k)− ψ(s)

p,k(x+ u)

k − u
= ψ

(s+1)
p,k (λ).

Since ψ
(s+1)
p,k (z) is decreasing for all z > 0, we obtain

ψ
(s+1)
p,k (x+ k) <

ψ
(s)
p,k(x+ k)− ψ(s)

p,k(x+ u)

k − u
< ψ

(s+1)
p,k (x+ u),

which gives inequality (18). By the same procedure, the case for u > k yields
the same result. Hence we omit the details.
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Similarly, let 0 ≤ u < k and for r ∈ {2n+ 1 : n ∈ N0}, consider the function

ψ
(r)
p,k(x) on the interval (x+ u, x+ k). The mean value theorem gives

ψ
(r)
p,k(x+ k)− ψ(r)

p,k(x+ u)

k − u
= ψ

(r+1)
p,k (δ),

for δ ∈ (x+ u, x+ k). Since ψ
(r+1)
p,k (z) is increasing for all z > 0, we have

ψ
(r+1)
p,k (x+ u) <

ψ
(r)
p,k(x+ k)− ψ(r)

p,k(x+ u)

k − u
< ψ

(r+1)
p,k (x+ k),

which gives inequality (19). The case for u > k gives the same result and so, we
omit the details. QED

Corollary 1. Let p ∈ N, k > 0, s ∈ {2n : n ∈ N0} and r ∈ {2n+1 : n ∈ N0}.
Then the inequalities

kψ
(s+1)
p,k (x+ k) <

s!

xs+1
− s!

(x+ pk + k)s+1
< kψ

(s+1)
p,k (x), (20)

kψ
(r+1)
p,k (x) <

r!

(x+ pk + k)r+1
− r!

xr+1
< kψ

(r+1)
p,k (x+ k), (21)

are valid for all x > 0.

Proof. By letting u = 0 in Theorem 6, we obtain

kψ
(s+1)
p,k (x+ k) < ψ

(s)
p,k(x+ k)− ψ(s)

p,k(x) < kψ
(s+1)
p,k (x), (22)

kψ
(r+1)
p,k (x) < ψ

(r)
p,k(x+ k)− ψ(r)

p,k(x) < kψ
(r+1)
p,k (x+ k). (23)

Then by applying (7) to (22) and (23), we obtain respectively (20) and (21).
QED

Remark 8. By letting k = 1 and p → ∞ in Theorem 6 and Corollary 1,
we obtain the results of Theorem 5.4 and Corollary 5.5 of [10].

Remark 9. If k = 1, s = 0 and r = 1, then (20) and (21) reduces to

ψ′p(x+ 1) <
1

x
− 1

x+ p+ 1
< ψ′p(x),

ψ′′p(x) <
1

(x+ p+ 1)2
− 1

x2
< ψ′′p(x+ 1),

where, ψp(x) is the p-digamma function.
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Lemma 2. Let p ∈ N, k > 0 and r ∈ {2n+1 : n ∈ N0}. Then, the inequality

ψ
(r)
p,k(x)ψ

(r+2)
p,k (x)−

[
ψ

(r+1)
p,k (x)

]2
≥ 0,

holds for x > 0.

Proof. See Corollary 2.3 of [15]. QED

Lemma 3. Let p ∈ N, k > 0 and r ∈ {2n+ 1 : n ∈ N0}. Then, the function
ψ
(m+1)
p,k (x)

ψ
(m)
p,k (x)

is increasing on (0,∞).

Proof. Direct differentiation yieldsψ(r+1)
p,k (x)

ψ
(r)
p,k(x)

′ = ψ
(r)
p,k(x)ψ

(r+2)
p,k (x)− [ψ

(r+1)
p,k (x)]2

[ψ
(r)
p,k(x)]2

≥ 0,

which follows directly from Lemma 2. QED

Theorem 7. Let p ∈ N, k > 0, u ≥ 0 and r ∈ {2n+ 1 : n ∈ N0}. Then the
inequality

exp

(k − u)
ψ

(r+1)
p,k (x+ u)

ψ
(r)
p,k(x+ u)

 ≤ ψ
(r)
p,k(x+ k)

ψ
(r)
p,k(x+ u)

≤ exp

(k − u)
ψ

(r+1)
p,k (x+ k)

ψ
(r)
p,k(x+ k)

 ,

(24)
valid for all x > 0. Equality holds if and only if u = k.

Proof. Suppose that 0 ≤ u < k and consider the function lnψ
(r)
p,k(x) on the

interval (x+ u, x+ k). Then the mean value theorem yields

lnψ
(r)
p,k(k + x)− lnψ

(r)
p,k(x+ u)

k − u
=
ψ

(r+1)
p,k (c)

ψ
(r)
p,k(c)

,

where, c ∈ (x + u, x + k). Then, since
ψ
(r+1)
p,k (z)

ψ
(r)
p,k(z)

is increasing for all z > 0, we

have
ψ

(r+1)
p,k (x+ u)

ψ
(r)
p,k(x+ u)

<
1

k − u
ln
ψ

(r)
p,k(x+ k)

ψ
(r)
p,k(x+ u)

<
ψ

(r+1)
p,k (x+ k)

ψ
(r)
p,k(x+ k)

,

which upon taking exponents, gives inequality (24). The case where u > k gives
the same result by following a similar procedure. QED
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Remark 10. By letting k = 1 and p → ∞ in (24), we recover inequality
(8.1) of [10]. However, we noticed that, the proof of inequality (8.2) of [10] has
a drawback. The expression lnψ(2n)(x+ 1)− lnψ(2n)(x+λ) is not defined since
ψ(i)(x) < 0 for even values of i.

Theorem 8. Let p ∈ N, k > 0 and r ∈ {2n + 1 : n ∈ N0}. Then the
inequality

ψ
(r)
p,k(x)ψ

(r)
p,k(x+ y + z)− ψ(r)

p,k(x+ y)ψ
(r)
p,k(x+ z) > 0, (25)

holds for positive real numbers x, y and z.

Proof. For positive real numbers x, y and z, let Q be defined as

Q(x) =
ψ

(r)
p,k(x+ z)

ψ
(r)
p,k(x)

.

Then

Q′(x) =
ψ

(r)
p,k(x+ z)

ψ
(r)
p,k(x)

ψ(r+1)
p,k (x+ z)

ψ
(r)
p,k(x+ z)

−
ψ

(r+1)
p,k (x)

ψ
(r)
p,k(x)

 > 0,

since
ψ
(r+1)
p,k (x)

ψ
(r)
p,k(x)

is increasing. HenceQ(x) is increasing. Therefore,Q(x+y) > Q(x)

which gives inequality (25). QED

Theorem 9. Let p ∈ N, k > 0, r ∈ {2n+1 : n ∈ N0} and s ∈ {2n : n ∈ N0}.
Then the inequalities

ψ
(r)
p,k(x+ y) < ψ

(r)
p,k(x) + ψ

(r)
p,k(y), (26)

ψ
(s)
p,k(x+ y) > ψ

(s)
p,k(x) + ψ

(s)
p,k(y), (27)

holds for x > 0 and y > 0.

Proof. Let G be defined for x > 0, y > 0 and r ∈ {2n+ 1 : n ∈ N0} as

G(x, y) = ψ
(r)
p,k(x+ y)− ψ(r)

p,k(x)− ψ(r)
p,k(y).

Without loss of generality, let y be fixed. Then

∂

∂x
G(x, y) = ψ

(r+1)
p,k (x+ y)− ψ(r+1)

p,k (x) > 0,
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since ψ
(v)
p,k(x) is increasing for v ∈ {2n : n ∈ N0}. Thus, G(x, y) is increasing in

x. Furthermore, by using representation (6), we obtain

lim
x→∞

G(x, y) = −
∫ ∞

0

1− e−k(p+1)t

1− e−kt
tr+1e−yt < 0.

Therfore, G(x, y) < limx→∞G(x, y) < 0 which gives (26). The proof of (27)
follows a similar procedure. Hence we omit the details. QED

Remark 11. Theorem 9 generalizes Theorem 2.2 and Theorem 2.4 of [18].

Theorem 10. Let p ∈ N, k > 0, r ∈ {2n+1 : n ∈ N0}, a > 1 and 1
a+ 1

b = 1.
Then the inequality

ψ
(r)
p,k(x+ y) ≤

(
ψ

(r)
p,k(x)

) 1
a
(
ψ

(r)
p,k(y)

) 1
b

(28)

is valid for x > 0 and y > 0.

Proof. By utilizing the Hölder’s inequality for finite sums, we obtain

ψ
(r)
p,k(x+ y) =

p∑
n=0

r!

(nk + x+ y)r+1

=

p∑
n=0

(r!)
1
a (r!)

1
b

(nk + x+ y)
r+1
a (nk + x+ y)

r+1
b

≤
p∑

n=0

(r!)
1
a

(nk + x)
r+1
a

.
(r!)

1
b

(nk + y)
r+1
b

≤

(
p∑

n=0

r!

(nk + x)r+1

) 1
a
(

p∑
n=0

r!

(nk + y)r+1

) 1
b

=
(
ψ

(r)
p,k(x)

) 1
a
(
ψ

(r)
p,k(y)

) 1
b
,

which completes the proof. QED
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