On the ranks of homogeneous polynomials of degree at least 9 and border rank 5

Edoardo Ballico ${ }^{\text {i }}$
Department of Mathematics, University of Trento
ballico@science.unitn.it

Received: 10.4.2018; accepted: 9.8.2018.

Abstract

Let f be a degree $d \geq 9$ homogenous polynomial with border rank 5 . We prove that it has rank at most $4 d-2$ and give better results when f essentially depends on at most 3 variables or there are other conditions on the scheme evincing the cactus and border rank of f. We always assume that f essentially depends on at most 4 variables, because the other case was done by myself in Acta Math. Vietnam. 42 (2017), 509-531.

Keywords: symmetric tensor rank, border rank, cactus rank
MSC 2000 classification: primary 14N05, secondary 15A69

Introduction

A more descriptive title would be " Geometry of low degree zero-dimensional curvilinear schemes and an application to the ranks of homogeneous polynomials of degree at least 9 and border rank $5 "$. Let $\nu_{d, m}: \mathbb{P}^{m} \rightarrow \mathbb{P}^{r}, r:=\binom{m+d}{m}-1$, denote the Veronese embedding of \mathbb{P}^{m}, i.e. the embedding of \mathbb{P}^{m} induced by the complete linear system $\left|\mathcal{O}_{\mathbb{P}^{m}}(d)\right|$. If M is a k-dimensional linear subspace of \mathbb{P}^{m} and $a \in M$, then $\nu_{d, k}(a)=\nu_{d, m}(a)$ (here we use the image of $\left|\mathcal{O}_{\mathbb{P}^{m}}(d)\right|$ in $\left|\mathcal{O}_{M}(d)\right|$ to get the Veronese embedding of $\left.M\right)$. Thus we usually write ν_{d} instead of $\nu_{d, m}$ (this paper is a continuation of [2] and we used ν_{d} in [2]). For any $q \in \mathbb{P}^{r}$ the rank $r_{m, d}(q)$ of q is the minimal cardinality of a finite set $S \subset \mathbb{P}^{m}$ such that $q \in\left\langle\nu_{m, d}(S)\right\rangle$, where \rangle denote the linear span. For all integers $a>0$ the a-secant variety $\sigma_{a}\left(\nu_{d}\left(\mathbb{P}^{m}\right)\right)$ of $\nu_{d}\left(\mathbb{P}^{m}\right)$ is the closure in \mathbb{P}^{r} of the union of all $\left\langle\nu_{d}(S)\right\rangle$, where S is a subset of \mathbb{P}^{m} with cardinality a. For any $q \in \mathbb{P}^{r}$ the border rank $b_{m, d}(q)$ of q is the minimal integer a such that $q \in \sigma_{a}\left(\nu_{d}\left(\mathbb{P}^{m}\right)\right)$. By concision we have $r_{m, d}(q)=r_{k, d}(q)$ and $b_{m, d}(q)=b_{m, k}(q)$ if $q \in\left\langle\nu_{d, k}(M)\right\rangle$ with M a k-dimensional linear subspace of \mathbb{P}^{m} ([10, Exercise 3.2.2.2], [11, §3.2]). Let $Z \subset \mathbb{P}^{m}$ be a zero-dimensional scheme. Z is said to be curvilinear if for each point q of its support $Z_{\text {red }}$ the Zariski tangent space of Z at q has dimension at most 1. A zero-dimensional scheme is curvilinear if and only if it is contained

[^0]in a smooth curve (and if and only if it is contained in a reduced curve whose smooth locus contains $Z_{\text {red }}$).

Another possible title would be " The stratification by ranks of the homogeneous polynomials with border rank 5 and depending on at most 4 variables ", because the opposite was done in [2]. By concision ([10, Exercise 3.2.2.2]) we are basically working in \mathbb{P}^{3}.

We prove the following result.
Theorem 1. Assume $d \geq 9$. Let $P \in \mathbb{P}^{r}$ be a point with border rank 5. Then $r_{m, d}(P) \leq 4 d-2$.

We do not have a complete description of all the possible integers $r_{m, d}(P)$ with P of border rank 5 . Since $d \geq 4$, each $P \in \mathbb{P}^{r}$ is contained in the linear span $\left\langle\nu_{d}(A)\right\rangle$ of $\nu_{d}(A)$, where $A \subset \mathbb{P}^{m}$ is a degree 5 zero-dimensional smoothable scheme $A([7$, Lemma 2.6], [6, Proposition 2.5]). A is Gorenstein ([6, Lemma 2.3]). Since $\operatorname{deg}(A)$ is so low, we get very strong restrictions on the possible schemes A, both as abstract schemes and as embedded subschemes of \mathbb{P}^{m}. The structure of A gives very strong restrictions on the rank of P. The main result is not Theorem 1, but a long list of cases in which we compute the value $r_{m, d}(P)$. A main step in the proofs of all intermediate results is the use of certain zerodimensional schemes with low degree. For each of these schemes A we give an upper bound for the ranks of the points associated to A. For some A we give the precise value of the ranks. In most cases we only need curvilinear subschemes ([2, Remark 1]) and that each zero-dimensional curvilinear scheme has only finitely many subschemes. However, even for these easy schemes there is a positive-dimensional family Γ of associated polynomials (a projective space minus finitely many of its hyperplanes) and often it is not easy to check the exact value of the rank for all these polynomials, not only for the general element of Γ.

We summarize parts of Propositions 3, 4 and 5 in the following way.
Proposition 1. Assume $m \geq 3$ and $d \geq 9$. Fix a 3-dimensional linear space $\mathbb{H} \subseteq \mathbb{P}^{m}$. Let $A_{1} \subset \mathbb{H}$ be a degree 4 connected and curvilinear scheme with $\left\langle A_{1}\right\rangle=\mathbb{H}$. Let A_{1} (resp. A_{2}) be the degree 2 (resp. 3) subscheme of A. Fix $O_{2} \in\left\langle A_{1}\right\rangle \backslash\left(A_{1}\right)_{\text {red }}$ and set $A:=A_{1} \cup\left\{O_{2}\right\}$. Fix $P \in\left\langle\nu_{d}(A)\right\rangle$ such that $P \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A$.
(i) If $O_{2} \notin\left\langle A^{\prime \prime}\right\rangle$, then $r_{m, d}(P)=3 d-3$.
(ii) If $O_{2} \in\left\langle\nu_{d}\left(A^{\prime \prime}\right)\right\rangle \backslash\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$, then $3 d-3 \leq r_{m, d}(P) \leq 3 d-2$.
(iii) If $O_{2} \in\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$, then $r_{m, d}(P)=3 d-1$.

Part (iii), i.e. Proposition 4, is the part of the paper with the longer proof.
We summarize Propositions $8,10,11,12$ in the following way.
Proposition 2. Assume $d \geq 9$. Let $A_{1}, A_{2} \subset \mathbb{P}^{m}$, $m \geq 3$, be disjoint curvi-
linear schemes such that $\operatorname{deg}\left(A_{1}\right)=3$ and $\operatorname{deg}\left(A_{2}\right)=2$. Set $A:=A_{1} \cup A_{2}$. Assume $\operatorname{dim}(\langle A\rangle)=2$ and take $P \in\left\langle\nu_{d}(A)\right\rangle$ such that $P \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A$.
(a) If A is in linearly general position in $\langle A\rangle$, then $r_{m, d}(P)=3 d-3$.
(b) If A is not in linearly general position in $\langle A\rangle$, then $r_{m, d}(P)=3 d-2$.

In this paper we also prove the following results:
(1) If A is not connected and $d \geq 9$, then $r_{m, d}(P) \leq 3 d-1$ (Lemma 9).
(2) If $m=3, d \geq 9, A$ is connected and A is in linearly general position in \mathbb{P}^{3}, then $r_{m, d}(P)=3 d-3$ (Proposition 3).

Take $d \geq 9$ and A as in Theorem 1. We recall ([2, Proposition 5]) that if $\operatorname{dim}\langle A\rangle=2$ (and in particular if $m=2$), then $r_{m, d}(P) \leq 3 d$.

Many thanks are due to the referee for many comments and relevant remarks.

1 Preliminaries

For any $P \in \mathbb{P}^{r}$ let $r_{m, d}(P)$ (the rank of P) denote the minimal cardinality of a finite set $B \subset \mathbb{P}^{m}$ such that $P \in\left\langle\nu_{d}(S)\right\rangle$ and let $\mathcal{S}(P)$ denote the set of all subsets of \mathbb{P}^{m} evincing the rank of P, i.e. the set of all subset $B \in \mathbb{P}^{m}$ such that $P \in\left\langle\nu_{d}(B)\right\rangle$ and $\sharp(B)=r_{m, d}(P)$. For any $P \in \mathbb{P}^{r}$ let $b_{m, d}(P)$ denote the border rank of P. For any $P \in \mathbb{P}^{r}$ the cactus rank of P is the minimal degree of a zero-dimensional scheme $Z \subset \mathbb{P}^{m}$ such that $P \in\left\langle\nu_{d}(Z)\right\rangle$.

Remark 1. Fix $q \in \mathbb{P}^{r}$ such that there is a line $L \subseteq \mathbb{P}^{m}$ with $q \in\left\langle\nu_{d}(L)\right\rangle$. Sylvester's theorem says that $b_{1, d}(q) \leq\lfloor(d+2) / 2\rfloor$, either $b_{1, d}(q)=r_{1, d}$ or $r_{1, d}(q)=d+2-b_{1, d}(q)$, that each integer y with $1 \leq y \leq\lfloor(d+2) / 2\rfloor$ is the border rank of some $P \in L$ and that each integer x such that $1 \leq x \leq d$ occurs as a rank for some $q \in\left\langle\nu_{d}(L)\right\rangle$. Moreover, each $q \in\left\langle\nu_{d}(L)\right\rangle$ has cactus rank equal to its border rank $b_{1, d}(q)$. There is a unique zero-dimensional scheme $Z \subset L$ evincing the cactus rank of q (and hence $\operatorname{deg}(Z)=b_{1, d}(q)$). We have $b_{1, d}(q)=r_{1, d}(q)$ if and only if Z is reduced. If $b_{1, d}(q) \neq r_{1, d}(q)$ and $B \in \mathcal{S}(q)$, then $B \cap Z=\emptyset$ ([8], $[11,4.1])$. The fact that $b_{1, d}(q)$ is at least the cactus rank of q follows from general statements ([7, Lemma 2.6], [6, Proposition 2.5]) and easily implied that for q border and cactus ranks coincides. Granted this fact the uniqueness of Z and the fact that if $b_{1, d}(q) \neq r_{1, d}(q)$, then $b_{1, d}(q)+r_{1, d}(q) \geq d+2$ follows from [3, Lemma 1] and the fact that $h^{1}\left(\mathbb{P}^{1}, \mathcal{I}_{W}(d)\right)=0$ for every zero-dimensional scheme $W \subset \mathbb{P}^{1}$ with $\operatorname{deg}(W) \leq d+1$.

Let X be any projective scheme and let $D \subset X$ be an effective Cartier divisor of X. For any zero-dimensional scheme $Z \subset X$ let $\operatorname{Res}_{D}(Z)$ denote the closed subscheme of X with $\mathcal{I}_{Z}: \mathcal{I}_{D}$ as its ideal sheaf. We have $\operatorname{deg}(Z)=$
$\operatorname{deg}(Z \cap D)+\operatorname{deg}\left(\operatorname{Res}_{D}(Z)\right)$. For any line bundle \mathcal{L} on X we have the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{D}(Z)} \otimes \mathcal{L}(-D) \rightarrow \mathcal{I}_{Z} \otimes \mathcal{L} \rightarrow \mathcal{I}_{Z \cap D, D} \otimes \mathcal{L}_{\mid D} \rightarrow 0 \tag{1}
\end{equation*}
$$

We say that (1) is the residual exact sequence of the inclusion $D \subset X$.
The next 4 easy statements are contained in [2]. They are easily proved and they are the only parts of [2] that we use (except of course the statement of the main theorem of [2], which basically reduce the proof of Theorem 1 to prove it when $m=3$; the case $m=3$ is exactly the content of this paper).

Remark 2. Let $T \subset \mathbb{P}^{2}$ be a reduced curve of degree $t<d$. It is connected and the projective space $\left.\left\langle\nu_{d}(T)\right)\right\rangle$ has dimension $x:=\binom{d+2}{2}-\binom{d-t+2}{2}-1$. Every point of $\left\langle\nu_{d}(T)\right\rangle$ has rank at most x with respect to the curve $\nu_{d}(T)$ (the proof of [11, Proposition 5.1] works verbatim for reduced and connected curves). Hence if $B \in \mathcal{S}(P)$, then $\sharp(B \cap T) \leq x$. If $t=1$ (resp. $t=2$, resp $t=3$) then $x=d$ (resp. 2d, resp. $3 d-1$).

Lemma 1. Fix an integer $d \geq 6$. Let $Z \subset \mathbb{P}^{m}, m \geq 2$, be a zero-dimensional scheme with $\operatorname{deg}(Z) \leq 3 d+1$ and $h^{1}\left(\mathcal{I}_{Z}(d)\right)>0$. Then either there is a line $L \subset \mathbb{P}^{m}$ with $\operatorname{deg}(L \cap Z) \geq d+2$ or there is a conic $T \subset \mathbb{P}^{m}$ with $\operatorname{deg}(T \cap Z) \geq$ $2 d+2$ or there is a plane cubic F with $\operatorname{deg}(F \cap Z) \geq 3 d$.

Remark 3. Take the set-up of Lemma 1 and assume the existence of a plane conic T with $\operatorname{deg}(T \cap Z) \geq 2 d+2$, but that there is no line $L \subset \mathbb{P}^{m}$ with $\operatorname{deg}(L \cap Z) \geq d+2$. In many cases (e.g. when Z has many reduced connected components), it is obvious that T must be reduced. Assume that T is reduced and reducible, say $T=D \cup R$, with D and R lines and $D \neq R$. Set $\{o\}:=D \cap R$. Since $\operatorname{deg}(D \cap Z) \leq d+1$ and $\operatorname{deg}(R \cap Z) \leq d+1$. We get $\operatorname{deg}(D \cap Z)=$ $\operatorname{deg}(R \cap Z)=d+1$ and that either $o \notin Z_{\text {red }}$ or that Z is a Cartier divisor of the nodal curve T (it is a general property of nodal curves). Now assume the existence of a plane cubic F with $\operatorname{deg}(F \cap Z) \geq 3 d$. F is not reduced if and only if there is a line $L \subset F$ appearing in F with multiplicity at least two. To get that F is reduced it is sufficient to assume that $\operatorname{deg}(R \cap Z) \leq d+1$ for each line R and that Z has at least $2 d+2$ reduced connected components.

Lemma 2. ([2, Proposition 5]) In the set-up of Theorem 1 if $\operatorname{dim}(\langle A\rangle) \leq 2$, then $r_{m, d}(P) \leq 3 d$.

2 A few lemmas

A connected zero-dimensional scheme $A \subset \mathbb{P}^{n}$ is called curvilinear if it has embedding dimension ≤ 1, i.e. if and only if either it is a point with its reduced structure or $\operatorname{dim}\left(\mu / \mu^{2}\right)=1$, where μ is the maximal ideal of the local ring $\mathcal{O}_{A, O}$,
$\{O\}:=A_{\text {red }}$. A zero-dimensional scheme $A \subset \mathbb{P}^{n}$ is called curvilinear if its connected components are curvilinear. If A is connected and curvilinear, then for each integer z with $1 \leq z \leq \operatorname{deg}(A)$ there is a unique degree z subscheme of A. Hence a curvilinear zero-dimensional scheme has only finitely many subschemes. Usually for a projective scheme X and a coherent sheaf \mathcal{F} on X we write $H^{i}(X, \mathcal{F}), i \in \mathbb{N}$, for its cohomology group and set $h^{i}(X, \mathcal{F}):=\operatorname{dim} H^{i}(X, \mathcal{F})$, but we often write $H^{i}(\mathcal{F})$ and $h^{i}(\mathcal{F})$ if X is a projective space obvious from the context.

Let $Q \subset \mathbb{P}^{3}$ be any smooth quadric surface. We have $\operatorname{Pic}(Q) \cong \mathbb{Z}^{2}$ and we take as a free basis of it the line bundles $\mathcal{O}_{Q}(1,0)$ and $\mathcal{O}_{Q}(0,1)$ whose complete linear systems induce the two projections $Q \rightarrow \mathbb{P}^{1}$. Both $\mathcal{O}_{Q}(1,0)$ and $\mathcal{O}_{Q}(0,1)$ are base-point free, $h^{0}\left(\mathcal{O}_{Q}(1,0)\right)=h^{0}\left(\mathcal{O}_{Q}(0,1)\right)=2$ and $\mathcal{O}_{Q}(1) \cong \mathcal{O}_{Q}(1,1)$. The integers $h^{i}\left(Q, \mathcal{O}_{Q}(a, b)\right), i=0,1,2,(a, b) \in \mathbb{Z}^{2}$, are computed using the Künneth's formula and the cohomology of line bundles on \mathbb{P}^{1}. In particular we have $h^{1}\left(Q, \mathcal{O}_{Q}(a, b)\right)=0$ and $h^{0}\left(Q, \mathcal{O}_{Q}(a, b)\right)=(a+1)(b+1)$ if $a \geq-1$ and $b \geq-1$.

Lemma 3. Fix an integer $d \geq 8$. Let $Q \subset \mathbb{P}^{3}$ be a smooth quadric surface and let $Z \subset Q$ be a zero-dimensional scheme with $\operatorname{deg}(Z) \leq 3 d+3$ and $h^{1}\left(\mathcal{I}_{Z}(d)\right)>0$. If $\operatorname{deg}(Z)>3 d$, then assume that the union of the non-reduced connected components of Z has degree ≤ 5. Then one of the following cases occurs:
(1) there is $L \in\left(\left|\mathcal{O}_{Q}(1,0)\right| \cup\left|\mathcal{O}_{Q}(0,1)\right|\right)$ with $\operatorname{deg}(L \cap Z) \geq d+2$;
(2) there is $T \in\left|\mathcal{O}_{Q}(1,1)\right|$ with $\operatorname{deg}(T \cap D) \geq 2 d+2$;
(3) there is $F \in\left(\left|\mathcal{O}_{Q}(2,1)\right| \cup\left|\mathcal{O}_{Q}(1,2)\right|\right)$ with $\operatorname{deg}(F \cap Z) \geq 3 d+2$;

Proof. Taking a minimal $Z^{\prime} \subseteq Z$ with $h^{1}\left(\mathcal{I}_{Z^{\prime}}(d)\right)>0$, we reduce to the case in which $h^{1}\left(\mathcal{I}_{E}(d)\right)=0$ for all $E \subsetneq Z$. If $\operatorname{deg}(Z) \leq 3 d$, then use Lemma 1. In particular we may assume $3 d<\operatorname{deg}(Z) \leq 3 d+3$ and that the lemma is true for all integers $d^{\prime}<d$. Fix $D \in\left|\mathcal{O}_{Q}(2,2)\right|$ with $x:=\operatorname{deg}(D \cap Z)$ maximal.
(a) Assume that $h^{1}\left(D, \mathcal{I}_{D \cap Z}(d)\right)>0$. Since $h^{1}\left(Q, \mathcal{I}_{D}(d)\right)=0$, we get $h^{1}\left(\mathcal{I}_{Z \cap D}(d)\right)>0$. Since $h^{1}\left(\mathcal{I}_{E}(d)\right)=0$ for all $E \subsetneq Z$, we get $Z \subset D$. Let $G \subseteq D$ be a minimal subcurve such that $Z \subset G$. Assume for the moment that G is not reduced, i.e. it has a multiple component. If G has no line counted with multiplicity ≥ 2, then see the case $C_{1}=C_{2}$ of step (a2) below. Assume that G has a line with multiplicity 2 , say $G=2 L \cup J$ with $L \in\left|\mathcal{O}_{Q}(1,0)\right|$ and either $J=\emptyset$ or $J \in\left|\mathcal{O}_{Q}(0, e)\right|$ with $e \in\{1,2\}$; set $e:=0$ if $J=\emptyset$. Since the union of the non-reduced connected components of Z has degree ≤ 5 and $Z \subset 2 L \cup J$, we get $\operatorname{deg}\left(\operatorname{Res}_{L \cup J}(Z)\right) \leq 2$ and hence $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{L \cup J}(Z)}(d-1, d-e)\right)=0$. The residual exact sequence of the inclusion $L \cup J \subset Q$ gives $h^{1}\left(L \cup J, \mathcal{I}_{Z \cap(L \cup J)}(d)\right)>0$. Since
$h^{1}\left(Q, \mathcal{O}_{Q}(d-e, d-1)\right)=0$, we get $h^{1}\left(Q, \mathcal{I}_{Z \cap(L \cup J)}(d)\right)>0$, contradicting the definition of G. Therefore except in step (a2) we freely use that G is reduced. G is a union of lines if and only if C is a union of 4 lines. Since $h^{1}\left(Q, \mathcal{O}_{Q}(d)(-G)\right)=0$, we have $h^{1}\left(G, \mathcal{I}_{Z}(d)\right)>0$. If $G \subsetneq D$, then we are in one of the cases listed in the statement of the lemma.
(a1) Assume that D is irreducible. Since D is a complete intersection of two quadric surfaces, $\omega_{D} \cong \mathcal{O}_{D}$. Therefore Riemann-Roch gives $\operatorname{deg}(Z) \geq 4 d$, a contradiction.
(a2) Assume $D=C_{1} \cup C_{2}$ with C_{i} irreducible conics (we allow the case $C_{1}=C_{2}$). Note that $\operatorname{Res}_{C_{1}}(Z) \subset C_{1}$. If $C_{1} \neq C_{2}$ up to a change of the labels we may assume $\operatorname{deg}\left(C_{1} \cap Z\right) \geq \operatorname{deg}\left(C_{2} \cap Z\right)$ and hence $\operatorname{deg}\left(Z \cap C_{1}\right) \geq \operatorname{deg}(Z) / 2$. If $C_{1}=C_{2}$, then note that $\operatorname{Res}_{C_{1}}(Z) \subseteq Z$ and so $\operatorname{deg}\left(C_{1} \cap Z\right) \geq \operatorname{deg}\left(\operatorname{Res}_{C_{1}}(Z) \cap\right.$ $\left.C_{1}\right)=\operatorname{deg}\left(\operatorname{Res}_{C_{1}}(Z)\right)$, i.e. $\operatorname{deg}\left(C_{1} \cap Z\right) \geq \operatorname{deg}(Z) / 2$. Since C_{1} is a Cartier divisor of Q, we have $\operatorname{deg}\left(\operatorname{Res}_{C_{1}}(Z)\right)=\operatorname{deg}(Z)-\operatorname{deg}\left(C_{1} \cap Z\right) \leq(3 d+3) / 2<2 d$. Since $\operatorname{Res}_{C_{1}}(Z) \subset C_{2}$ and C_{2} is irreducible, we get $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{C_{1}}(Z)}(d-1)\right)=0$. The residual exact sequence of the inclusion $C_{1} \subset Q$ gives $h^{1}\left(C_{1}, \mathcal{I}_{C_{1} \cap Z}(d)\right)>0$ and hence $\operatorname{deg}\left(C_{1} \cap Z\right) \geq 2 d+2$.
(a3) By steps (a1) and (a2) we may assume that $G=D$ is reduced and that it contains a line L, say of type $(1,0)$. Take $F \in\left|\mathcal{O}_{Q}(1,2)\right|$ with $D=L+F$. Since $G=D$, we have $Z \cap F \subsetneq Z$ and hence $h^{1}\left(\mathcal{I}_{F \cap Z}(d)\right)=0$. Thus the residual exact sequence of the inclusion $F \subset Q$ gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{F}(Z)}(d-1, d-2)\right)>0$ and hence $\operatorname{deg}\left(L \cap \operatorname{Res}_{F}(Z)\right) \geq d$. Hence $\operatorname{deg}(F \cap Z) \leq 2 d+3$. First assume that F is irreducible. We get $h^{1}\left(F, \mathcal{I}_{F \cap Z}(d-1)\right)=0$. Hence $h^{1}\left(F, \mathcal{I}_{\operatorname{Res}_{L}(Z)}(d-1, d)\right)=0$. The residual exact sequence of the inclusion $L \subset Q$ gives $h^{1}\left(L, \mathcal{I}_{Z \cap L}(d)\right)>0$ and hence $Z \cap L=Z$ and $G=L$, a contradiction. Assume that F is reducible and take a curve $C^{\prime} \subset F$ of type $(1,1)$ (it may be reducible). Write $F=$ $C^{\prime}+R$. Since $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{C^{\prime}+L}(Z)}(d-2, d-1)\right)>0$, we get $\operatorname{deg}\left(\operatorname{Res}_{C^{\prime}+L}(Z)\right) \geq$ d and hence $\operatorname{deg}((L \cup R) \cap Z)) \geq 2 d$. Therefore $\operatorname{deg}\left(\operatorname{Res}_{R+L}(Z)\right) \leq d+3$. Since $h^{1}\left(C^{\prime}, \mathcal{I}_{\operatorname{Res}_{R+L}(Z)}(d-1)\right)>0$, we get that C^{\prime} is reducible and there is a component J of C^{\prime} with $\operatorname{deg}\left(J \cap \operatorname{Res}_{R+L}(Z)\right) \geq d+1$. Since $\operatorname{deg}\left(\operatorname{Res}_{J+R+L}(Z)\right) \leq$ 2, we have $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{J+R+L}(Z)}(d-1)(-J)\right)=0$. Hence $G \subseteq J \cup R \cup L$, a contradiction.
(b) Assume $h^{1}\left(D, \mathcal{I}_{D \cap Z}(d)\right)=0$. The residual exact sequence of D in Q gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{D}(Z)}(d-2)\right)>0$. Set $W:=\operatorname{Res}_{D}(Z)$. Since $h^{0}\left(\mathcal{O}_{Q}(2)\right)=9$, we have $x \geq 8$ and hence $\operatorname{deg}(W) \leq 3 d-5=3(d-2)+1$. The inductive assumption gives that either there is a line $L \subset Q$ with $\operatorname{deg}(L \cap W) \geq d$ or there is $E \in\left|\mathcal{O}_{Q}(1,1)\right|$ with $\operatorname{deg}(W \cap E) \geq 2 d-2$ or there a curve $F \in\left(\left|\mathcal{O}_{Q}(2,1)\right| \cup\left|\mathcal{O}_{Q}(1,2)\right|\right)$ with $\operatorname{deg}(F \cap Z) \geq 3 d-4$.

Assume the existence of E. Note that $\mathcal{O}_{Q}(2,2)(-E)=\mathcal{O}_{Q}(1,1)$. We have
$h^{0}\left(Q, \mathcal{O}_{Q}(1,1)\right)=4$. Thus there is a curve $N \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\operatorname{deg}\left(\operatorname{Res}_{E}(Z) \cap\right.$ $N) \geq \min \left\{\operatorname{deg}\left(\operatorname{Res}_{E}(Z), 3\right\}\right.$. Since $\operatorname{deg}(E \cap Z) \geq \operatorname{deg}(E \cap W) \geq 2 d-2$, we get $x \geq 2 d+1$ and hence $\operatorname{deg}(W) \leq d+2$, a contradiction. In the same way we exclude F. Therefore there is a line $L \subset Q$ with $\operatorname{deg}(L \cap W) \geq d$. Set $Z_{0}:=Z$. Fix $N_{1} \in\left|\mathcal{I}_{L}(1,1)\right|$ such that $f_{1}:=\operatorname{deg}\left(Z_{0} \cap N_{1}\right)$ is maximal. Since $h^{0}\left(Q, \mathcal{I}_{L}(1,1)\right)=2$, we have $f_{1} \geq 1+\operatorname{deg}(Z \cap L) \geq d+1$. Set $Z_{1}:=\operatorname{Res}_{N_{1}}\left(Z_{0}\right)$. Take $N_{2} \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $f_{2}:=\operatorname{deg}\left(N_{2} \cap Z_{1}\right)$ is maximal and set $Z_{2}:=\operatorname{Res}_{N_{2}}\left(Z_{1}\right)$. Fix an integer $h>2$ and assume defined f_{i}, N_{i} and Z_{i} for all $i<h$. Take any $N_{h} \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $f_{h}:=\operatorname{deg}\left(N_{h} \cap Z_{h-1}\right)$ is maximal. We have just defined N_{i}, f_{i}, Z_{i} for all $i \geq 1$. We have $f_{i} \geq f_{i+1}$ for all $i \geq 2$ and if $f_{i} \leq 2$, then $f_{i+1}=0$ and $Z_{i}=\emptyset$. Since $f_{1} \geq d+1$, we have $\sum_{i \geq 2} f_{i} \leq 2 d+2$. Recall that $h^{1}\left(Q, \mathcal{I}_{Z_{0}, Q}(d)\right)>0$. Fix an integer $h \geq 2$ and assume $h^{1}\left(N_{i}, \mathcal{I}_{Z_{i-1} \cap N_{i}, N_{i}}(d+1-i)\right)=0$ for all $i<h$. The residual exact sequence of $N_{h} \subset Q$ gives $h^{1}\left(Q, \mathcal{I}_{Z_{h}, Q}(d+1-h)\right)>0$. Since $h^{1}\left(\mathcal{O}_{Q}(t)\right)=0$ for all integers t, there is a minimal integer g^{\prime} such that $h^{1}\left(N_{g^{\prime}}, \mathcal{I}_{Z_{g^{\prime}-1} \cap N_{g^{\prime}, N_{g^{\prime}}}}\left(d+1-g^{\prime}\right)\right)>0$. Note that $f_{g^{\prime}}>0$. Since $f_{i} \geq 3$ if $f_{i+1}>0$ and $\sum_{i \geq 2} f_{i} \leq 2 d+2$, we have $g^{\prime}<d$. Since $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{N_{g^{\prime}} \cap Z_{g^{\prime}-1}}\left(d+1-g^{\prime}\right)\right)=h^{1}\left(N_{g^{\prime}}, \mathcal{I}_{N_{g^{\prime}} \cap Z_{g^{\prime}-1}}\left(d+1-g^{\prime}\right)\right)>0$, there is a line $R \subset \mathbb{P}^{3}$, such that $\operatorname{deg}\left(R \cap Z_{g^{\prime}-1}\right) \geq d+3-g^{\prime}([5$, Lemma 34]). Since $\operatorname{deg}\left(R \cap Z_{g^{\prime}-1}\right) \geq 3$, we have $R \subset Q$. Note that $R \neq L$, because $\operatorname{deg}\left(R \cap \operatorname{Res}_{L \cup R}(Z)\right) \geq d \geq 8$ and the sum of the degrees of the unreduced connected components of Z is at most 5 . Assume for the moment $g^{\prime} \geq 2$. Since $g^{\prime}<d$ and $\left(g^{\prime}-1\right)\left(d+3-g^{\prime}\right) \leq 2 d+2$, we get $g^{\prime} \leq 3$ and hence $\operatorname{deg}\left(R \cap Z_{1}\right) \geq d$. If $h^{1}\left(Q, \mathcal{I}_{Z \cap(L \cup R}(d)\right)>0$, then the minimality of Z gives $Z \subset L \cup R . L \cup R$ is either a plane conic or the union of 2 disjoint lines and in both cases we conclude, because we assumed at the beginning of the $\operatorname{proof} \operatorname{deg}(Z)>3 d$. Now assume $h^{1}\left(Q, \mathcal{I}_{Z \cap(L \cup R)}(d)\right)=0$. The residual exact sequence of $L \cup R \subset Q$ gives $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{L U R}(Z)}(d)(-L-R)\right)>0$. Hence $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{L \cup R}(Z)}(d-2, d-2)>0\right.$. Since $\operatorname{deg}\left(\operatorname{Res}_{L \cup R}(Z)\right) \leq d+2$, [5, Lemma 34] gives the existence of a line $J \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(J \cap \operatorname{Res}_{L \cup R}(Z)\right) \geq d$. Bezout's theorem gives $J \subset Q$. Note that $J \neq R$ and $J \neq L$, because $\operatorname{deg}\left(J \cap \operatorname{Res}_{L \cup R}(Z)\right) \geq d \geq 8$ and the sum of the degrees of the unreduced connected components of Z is at most 5 . Since $\operatorname{deg}\left(\operatorname{Res}_{L \cup R \cup J}(Z)\right) \leq 3$, we get $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{L \cup R U J}(Z)}(d)(-L-R-J)\right)=0$ (even if the lines L, R, J are in the same ruling of Q, because $d \geq 8$. The minimality of Z gives $Z \subset L \cup J \cup R$. We start with one of the lines L, R, J (call it L_{1}) with $\operatorname{deg}\left(L_{1} \cap Z\right)$ maximal. If $\operatorname{deg}\left(L_{1} \cap Z\right) \geq d+2$, the proof is over. If $\operatorname{deg}\left(L_{1} \cap Z\right) \leq$ $d+1$ and all lines L, R and J are in the same ruling of Q, then taking the residual first with respect to L, then to R and then to J we get $h^{1}\left(Q, \mathcal{I}_{Z}(d)\right)=0$, a contradiction. Thus at least one of the other lines meets L_{1} and we call L_{2} a line among $\{L, R, J\} \backslash L_{1}$ meeting L_{1} and with $\operatorname{deg}\left(L_{2} \cap \operatorname{Res}_{L_{1}}(Z)\right)$ maximal. Note that $\operatorname{deg}\left(Z \cap\left(L_{1} \cup L_{2}\right)\right)=\operatorname{deg}\left(L_{1} \cap Z\right)+\operatorname{deg}\left(L_{2} \cap \operatorname{Res}_{L_{1}}(Z)\right)$. If
$\operatorname{deg}\left(Z \cap\left(L_{1} \cup L_{2}\right)\right) \geq 2 d+2$, then we are in case (2). If $\operatorname{deg}\left(Z \cap\left(L_{1} \cup L_{2}\right)\right) \leq 2 d+1$, then $h^{1}\left(Q, \mathcal{I}_{Z \cap\left(L_{1} \cup L_{2}\right)}(d)\right)=0$. Since $L_{1} \cup L_{2} \in\left|\mathcal{O}_{Q}(1,1)\right|$, the residual exact sequence of $L_{1} \cup L_{2} \subset Q$ gives $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{L_{1} \cup L_{2}}(Z)}(d-1, d-1)\right)>0$. Hence [5, Lemma 34] gives $\operatorname{deg}\left(\operatorname{Res}_{L_{1} \cup L_{2}}(Z)\right) \geq d+1$. Call L_{3} the line in $\{L, R, J\} \backslash\left\{L_{1}, L_{2}\right\}$. Since $d+1 \geq \operatorname{deg}\left(Z \cap L_{1}\right) \geq \operatorname{deg}\left(Z \cap L_{3}\right)$, we get $\operatorname{deg}\left(L_{1} \cap\right.$ $Z)=\operatorname{deg}\left(L_{3} \cap Z\right)=\operatorname{deg}\left(L_{3} \cap \operatorname{Res}_{L_{1} \cup L_{2}}(Z)\right)=d+1$. We see that L_{1} and L_{3} are in the same ruling of Q, say $\left|\mathcal{O}_{Q}(1,0)\right|$ and that $h^{1}\left(Q, \mathcal{I}_{Z \cap\left(L_{1} \cup L_{3}\right)}(d)\right)=0$. The residual exact sequence of $L_{1} \cup L_{3} \subset Q$ gives $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{L_{1} \cup L_{3}}(Z)}(d-2, d)\right)>0$ and hence $\operatorname{deg}\left(\operatorname{Res}_{L_{1} \cup L_{3}}(Z)\right) \geq d$. Since $\left.\operatorname{Res}_{L_{1} \cup L_{3}}(Z)\right) \subset L_{3} \in\left|\mathcal{O}_{Q}(0,1)\right|$, we are in case (3) with F union of 3 lines.

Lemma 4. Fix an integer $d \geq 8$. Fix $o \in \mathbb{P}^{3}$ and 3 distinct lines L_{1}, L_{2}, L_{3} of \mathbb{P}^{3} with $\{o\}=L_{1} \cap L_{2} \cap L_{3}$ and $\left\langle L_{1} \cup L_{2} \cup L_{3}\right\rangle=\mathbb{P}^{3}$. Let $Z \subset L_{1} \cup L_{2} \cup L_{3}$ be a zero-dimensional scheme such that $\operatorname{deg}\left(Z \cap L_{1}\right) \geq \operatorname{deg}\left(Z \cap L_{i}\right)$ for all i and $\operatorname{deg}\left(Z \cap\left(L_{1} \cup L_{2}\right)\right) \geq \operatorname{deg}\left(Z \cap\left(L_{1} \cup L_{3}\right)\right)$. We have $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{Z}(d)\right)=h^{1}\left(L_{1} \cup L_{2} \cup\right.$ $\left.L_{3}, \mathcal{I}_{Z}(d)\right)$. We have $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{Z}(d)\right)>0$ if and only if either $\operatorname{deg}\left(L_{1} \cap Z\right) \geq d+2$ or $\operatorname{deg}\left(Z \cap\left(L_{1} \cup L_{2}\right)\right) \geq 2 d+2$ or $\operatorname{deg}(Z) \geq 3 d+2$.

Proof. We have $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{Z}(d)\right)=h^{1}\left(L_{1} \cup L_{2} \cup L_{3}, \mathcal{I}_{Z}(d)\right)$, because $L_{1} \cup L_{2} \cup$ L_{3} is arithmetically Cohen-Macaulay. Since $h^{0}\left(\mathcal{O}_{L_{1} \cup L_{2} \cup L_{3}}(d)\right)=3 d+1$ and $h^{0}\left(\mathcal{O}_{L_{1} \cup L_{2}}(d)\right)=2 d+1$, the " if " part is obvious. Assume $\operatorname{deg}\left(Z \cap L_{3}\right) \leq d$. Set $H:=\left\langle Z \cap\left(L_{1} \cup L_{2}\right)\right\rangle$. We have $\operatorname{dim}(H) \leq 2$ and we may assume $\operatorname{dim}(H)=2$, because the lemma is true if $Z \subset L_{i}$ for some i. We may apply [5, Lemma 34] to $Z \cap H$, because $H \cap Z=Z \cap\left(L_{1} \cup L_{2}\right)$ and if $\operatorname{deg}(Z \cap H) \geq 2 d+2$, then we are done. Therefore we may assume $h^{1}\left(\mathcal{I}_{Z \cap H}(d)\right)=0$. Hence a residual exact sequence gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(Z)}(d-1)\right)>0$. Since $\operatorname{Res}_{H}(Z) \subseteq Z \cap L_{3}$, we get $\operatorname{deg}\left(Z \cap L_{3}\right) \geq d+1$. By the proof just given we may also assume $\operatorname{deg}\left(Z \cap L_{2}\right)=$ $\operatorname{deg}\left(Z \cap L_{1}\right)=d+1$. Since $L_{1} \cap L_{2}=\{o\}$ (scheme-theoretically) we have $\operatorname{deg}\left(Z \cap\left(L_{1} \cup L_{2}\right)\right) \geq 2 d+1$. Since $\left(L_{1} \cup L_{2}\right) \cap L_{3}=\{o\}$ (scheme-theoretically), we get $\operatorname{deg}(Z) \geq \operatorname{deg}(Z \cap H)+\operatorname{deg}\left(Z \cap L_{3}\right)-1 \geq 3 d+2$.

QED
Lemma 5. Fix an integer $d \geq 3$. Let $Q \subset \mathbb{P}^{3}$ be an irreducible quadric cone with vertex o and $Z \subset Q$ a zero-dimensional scheme with $\operatorname{deg}(Z) \leq 3 d+3$ and $h^{1}\left(\mathcal{I}_{Z}(d)\right)>0$. If $\operatorname{deg}(Z) \geq 3 d$, then assume $d \geq 8$, that the union of the unreduced connected components has degree ≤ 5 and that each of them is curvilinear and linearly independent. Then one of the following cases occurs:
(i) there is a line $L \subset Q$ with $\operatorname{deg}(L \cap Z) \geq d+2$;
(ii) there is a plane section $D \subset Q$ with $\operatorname{deg}(D \cap Z) \geq 2 d+2$; if we are not in case (i) either D is smooth or $D=L_{1} \cup L_{2}$ with L_{1}, L_{2} distinct lines and $\operatorname{deg}\left(Z \cap L_{1}\right)=\operatorname{deg}\left(Z \cap L_{2}\right)=d+1 ;$
(iii) there is a curve $F \subset Q$ with $\operatorname{deg}(F \cap Z) \geq 3 d+2$ and either F is the union of a plane section of Q and a line of Q or it is a rational normal curve; if we are not in cases (i) or (ii) then either F is a smooth rational normal curve or $F=D \cup L$ with D a smooth conic, L a line, $\operatorname{deg}(D \cap Z)=2 d+1$ and $\operatorname{deg}(L \cap Z)=d+1$.

Proof. By Lemma 1 we may assume $\operatorname{deg}(Z) \geq 3 d+1$. Therefore we may assume $d \geq 8$. We immediately reduce to the case $h^{1}\left(\mathcal{I}_{W}(d)\right)=0$ for all $W \subsetneq Z$. Since the case in which Z is reduced is known ([1]), we may assume $Z \neq Z_{\text {red }}$. We may assume that $\operatorname{deg}(Z) \geq 3 d+1$ even after these reductions, because any subscheme of a curvilinear scheme is curvilinear.

Fix $D \in\left|\mathcal{O}_{Q}(2)\right|$ such that $x:=\operatorname{deg}(D \cap Z)$ is maximal. Since $h^{0}\left(\mathcal{O}_{Q}(2)\right)=9$, we have $m \geq 8$.
(a) Assume $h^{1}\left(D, \mathcal{I}_{D \cap Z}(d)\right)>0$. Hence $D \cap Z=Z$, i.e. $Z \subset D$. We have $h^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{D}(2)\right)=2$, because $h^{0}\left(Q, \mathcal{I}_{D, Q}(2)\right)=h^{0}\left(Q, \mathcal{O}_{Q}\right)=1$ and $h^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{Q}(2)\right)=$ 1 ; equivalently, we use that D is a complete intersection of 2 quadric surfaces. Take a general quadric $Q^{\prime} \subset \mathbb{P}^{3}$ containing D. Since Q is irreducible, Q^{\prime} is irreducible. If Q^{\prime} is smooth, then we apply Lemma 3 and get the existence of a certain curve L or T or F inside Q^{\prime} (call T^{\prime} this curve) with $h^{1}\left(\mathcal{I}_{T^{\prime} \cap Z}(d)\right)>0$, $\operatorname{deg}\left(T^{\prime} \cap Z\right)$ large and $h^{1}\left(\mathcal{I}_{T^{\prime \prime} \cap Z}(d)\right)=0$ for every proper subcurve $T^{\prime \prime}$ of T. Bezout's theorem gives $T^{\prime} \subset Q$ (in all cases, even if T^{\prime} is reducible). Now assume that all quadrics Q^{\prime} are singular. Since Q is irreducible and Q^{\prime} is a general element of $\left|\mathcal{I}_{D}(2)\right|, Q^{\prime}$ is irreducible. Bertini's theorem gives that a general Q^{\prime} has singular point contained in D. Each complete intersection curve of a surface singular at some $o^{\prime} \in \mathbb{P}^{3}$ with a surface containing o^{\prime} is singular at o^{\prime}. We get that either D has a multiple component or that D is the complete intersection of two quadric cones with the same vertex, o. In the latter case D is the union of 4 lines of Q through o (if D has no multiple component).
(a1) Assume that D has no multiple component. In this case case $D=$ $L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$ with each L_{i} a line. Set $m_{i}=\operatorname{deg}\left(L_{i} \cap Z\right)$. We order the lines $L_{1}, L_{2}, L_{3}, L_{4}$ of D so that $m_{4} \leq m_{i}$ for all i.
(a1.1) First assume $m_{4} \leq d-1$. If $h^{1}\left(L_{1} \cup L_{2} \cup L_{3}, \mathcal{I}_{Z \cap\left(L_{1} \cup L_{2} \cup L_{3}\right)}(d)\right)>$ 0 , then we use Lemma 4 . Now assume $h^{1}\left(L_{1} \cup L_{2} \cup L_{3}, \mathcal{I}_{Z \cap\left(L_{1} \cup L_{2} \cup L_{3}\right)}(d)\right)=$ 0 . Since Z is curvilinear, it has only finitely many subschemes. Since $L_{1} \cup$ $L_{2} \cup L_{3}$ is scheme-theoretically cut out by quadrics, we have $Q_{1} \cap Z=Z \cap$ $\left(L_{1} \cup L_{2} \cup L_{3}\right)$ for a general quadric surface $Q_{1} \supset L_{1} \cup L_{2} \cup L_{3}$. Since $h^{1}\left(L_{1} \cup\right.$ $\left.L_{2} \cup L_{3}, \mathcal{I}_{Z \cap\left(L_{1} \cup L_{2} \cup L_{3}\right)}(d)\right)=0$ and $Q_{1} \cap Z=Z \cap\left(L_{1} \cup L_{2} \cup L_{3}\right)$, the residual exact sequence of the inclusion $Q_{1} \subset \mathbb{P}^{3}$ gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q_{1}}(Z)}(d-2)\right)>0$. Since $\operatorname{Res}_{Q_{1}}(Z) \subseteq Z \cap L_{4}$, we get $m_{4} \geq d$, a contradiction.
(a1.2) Now assume $m_{4} \geq d$ and hence $m_{i} \geq d$ for all i. As in the last part of the proof of Lemma 4 we get $\operatorname{deg}\left(Z \cap\left(L_{1} \cup L_{2}\right)\right) \geq 2 d-1$ and $\operatorname{deg}(Z \cap$
$\left.\left(L_{1} \cup L_{2} \cup L_{3}\right)\right) \geq 3 d-2$. Since $\operatorname{deg}\left(L_{3} \cap\left(L_{1} \cup L_{2} \cup L_{3}\right)\right)=2$, we also get $\operatorname{deg}(Z) \geq 4 d-4>3 d+3$, a contradiction.
(a2) Assume that D has at least one multiple component. Set $f:=$ $\operatorname{deg}(D)-\operatorname{deg}\left(D_{\text {red }}\right)$. Since $Z_{\text {red }} \subset D_{\text {red }}$ and $\operatorname{deg}\left(Z_{\text {red }}\right) \geq \operatorname{deg}(Z)-4 \geq 3 d-3$, we may assume $f=1$, i.e. that D is the union of the double $2 L$ of a line L (i.e. the scheme-theoretic intersection of Q with a plane tangent to Q at a point of $L \backslash\{0\}$) and a conic C (a smooth plane section of Q or the union of two lines through o). Since Z is curvilinear, it has finitely many subschemes. Since $C \cup L$ is the schemetheoretic base locus of $\left|\mathcal{I}_{C \cup L}(2)\right|$ (take a general plane $H \subset \mathbb{P}^{3}$ and use that 3 non-collinear points of H are cut out by conics), we have $Z \cap Q^{\prime}=Z \cap(C \cup L)$ for a general $Q^{\prime} \in\left|\mathcal{I}_{C \cup L}(2)\right|$. Since $Z \neq Z_{\text {red }}$, we have $h^{1}\left(Q, \mathcal{I}_{Z_{\text {red }}}(d)\right)=0$ and hence $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{Z_{\text {red }}}(d)\right)=0$ and hence $h^{1}\left(Q^{\prime}, \mathcal{I}_{Z_{\text {red }}}(d)\right)=0$. The residual exact sequence of the inclusion $Q^{\prime} \subset \mathbb{P}^{3}$ gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q^{\prime}}(Z)}(d-2)\right)>0$. Hence $\operatorname{deg}\left(\operatorname{Res}_{Q^{\prime}}(Z)\right) \geq$ d. Since $\operatorname{deg}\left(\operatorname{Res}_{Q^{\prime}}(Z)\right)=\operatorname{deg}(Z)-\operatorname{deg}\left(Q^{\prime} \cap Z\right) \leq \operatorname{deg}(Z)-\operatorname{deg}\left(Z_{\text {red }}\right) \leq 4$, we get a contradiction.
(b) In this step we assume $h^{1}\left(C, \mathcal{I}_{D \cap Z}(d)\right)=0$. A residual exact sequence gives $h^{1}\left(\mathcal{I}_{\left.\operatorname{Res}_{D}(Z)\right)}(d-2)\right)>0$. As in step (b) of the proof of Lemma 3 we first get the existence of a line $L \subset Q$ with $\operatorname{deg}(L \cap Z) \geq d$, then define $N_{i}, f_{i}, Z_{i}, g^{\prime}$, get $g^{\prime} \leq 3$ and we land in one of the cases (i), (ii) or (iii) with curves unions of lines. Note that for two different lines of T, say L are R, the divisor $L \cup R$ is a Cartier divisor of Q (it is a plane section of Q) and hence we may define the residual sequence with respect to $L \cup R$, but not with respect to L. We call L_{1} an element of $\{L, R, J\}$ with $\operatorname{deg}\left(L_{1} \cap Z\right)$ maximal. Then we call L_{2} one of the other 2 lines with $\operatorname{deg}\left(Z \cap\left(L_{1} \cup L_{2}\right)\right)$ maximal.

Lemma 6. Let $A \subset \mathbb{P}^{m}$, $m \geq 2$, be a connected curvilinear scheme such that $\operatorname{deg}(A)=3$ and $\operatorname{dim}(\langle A\rangle)=2$. Set $\{o\}:=A_{\text {red }}$. Let L, R be lines of \mathbb{P}^{m} such that $L \neq R$. We have $A \subset L \cup R$ if and only if $L \cup R \subset\langle A\rangle, o \in L \cap R$ and one of the lines L, R contains the degree two subscheme of A.

Proof. If either $o \notin L$ or $o \notin R$, then $A \nsubseteq L \cup R$, because $A_{\text {red }}=\{o\}$ and $\operatorname{dim}(\langle A\rangle)=2$. Now assume $\{o\}=L \cap R$. Therefore $M:=\langle L \cup R\rangle$ is a plane. If $A \subset L \cup R$, then $\langle A\rangle \subseteq\langle L \cup R\rangle$. Therefore we may assume $L \cup R \subset\langle A\rangle$. We use that L, R are Cartier divisors of the plane $\langle A\rangle$ and hence $\operatorname{Res}_{L}\left(\operatorname{Res}_{R}(A)\right)=$ $\operatorname{Res}_{L+R}(A)=\operatorname{Res}_{R+L}(A)=\operatorname{Res}_{R}\left(\operatorname{Res}_{L}(A)\right)$. Since $\langle A\rangle=\mathbb{P}^{2}$, for any line D we have $\operatorname{deg}(A \cap D) \leq 2$ and equality holds if and only if D is the line spanned by the the degree two zero-dimensional scheme A^{\prime} of A. Therefore $A \nsubseteq L \cup R$ if $o \notin L \cup R$. Assume $o \in L \cup R$ and take one of the lines L, R, say R, which doesn't contain A^{\prime}. We have $\operatorname{Res}_{R}(A)=A^{\prime}$. Therefore $A \subset L \cup R$ if and only if $A^{\prime} \subset L$.

Lemma 7. Fix $o \in \mathbb{P}^{3}$ and let $L, R, D 3$ distinct lines of \mathbb{P}^{3} such that $o \in L \cap R \cap D$ and $\langle L \cup D \cup R\rangle=\mathbb{P}^{3}$. Let $A \subset \mathbb{P}^{3}$ be a connected curvilinear scheme such that $\operatorname{deg}(A)=4$ and $\langle A\rangle=\mathbb{P}^{3}$. Then $A \nsubseteq L \cup D \cup R$.

Proof. If $\{o\} \neq(A)_{\text {red }}$, then the lemma is obvious, because A is linearly independent and in particular it is not contained in a line. Therefore we may assume $\{o\}=A_{\text {red }}$. Let A^{\prime} (resp. $A^{\prime \prime}$) be the degree two (resp. 3) subscheme of A. At most one of the lines L, R, D contains A^{\prime}, i.e. it is the line $\left\langle A^{\prime}\right\rangle$. Take lines L, R which do not contain A^{\prime}.

First assume $A^{\prime} \nsubseteq\langle L \cup R\rangle$. In this case the plane $\langle L \cup R\rangle$ is transversal to $\left\langle A^{\prime}\right\rangle$ and hence $\operatorname{deg}(A \cap\langle L \cup R\rangle)=1$. Therefore $\operatorname{Res}_{\langle L \cup R\rangle}(A)=A^{\prime \prime}$. Since A is linearly independent, then $A^{\prime \prime} \nsubseteq D$ and hence $A \nsubseteq(\langle L \cup R\rangle) \cup D$.

Now assume $\left\langle A^{\prime}\right\rangle \subset\langle L \cup R\rangle$. Since $L \neq\left\langle A^{\prime}\right\rangle$ and $R \neq\left\langle A^{\prime}\right\rangle$, Lemma 6 gives $\operatorname{deg}(A \cap\langle L \cup R\rangle)=2$ and hence $\operatorname{Res}_{\langle L \cup R\rangle}(A)=A^{\prime}$. Since $D \nsubseteq\langle L \cup R\rangle$, we get $A^{\prime} \nsubseteq D$ and hence $A \nsubseteq(\langle L \cup R\rangle \cup D)$.

Lemma 8. Let $A \subset \mathbb{P}^{3}$ be a connected curvilinear degree 4 scheme such that $\operatorname{deg}(A)=4$ and $\langle A\rangle=\mathbb{P}^{3}$. Set $\{o\}:=A_{\text {red }}$ and let A^{\prime} be the degree 3 closed subscheme of A. Let $C \subset\left\langle A^{\prime}\right\rangle$ be any smooth conic containing A^{\prime}. There is a line $L \subset \mathbb{P}^{3}$ such that $A \subset C \cup L$ and $o \in L$ for any such a line L.

Proof. If L exists, then obviously $o \in L \nsubseteq\left\langle A^{\prime}\right\rangle$. Since $A \nsubseteq\left\langle A^{\prime}\right\rangle$, we have $(A \cup C) \cap\left\langle A^{\prime}\right\rangle=C$. We get the existence of a smooth quadric $Q \supset C \cup A$. Call $\mathcal{O}_{C}(1,0)$ any ruling of Q and let L be the line of $\left|\mathcal{O}_{Q}(1,0)\right|$ containing o. We have $\operatorname{Res}_{C}(A)=\{o\} \in L$. Since C, L are Cartier divisors of Q, we get $A \subset C \cup L$.

3 The main results

Let $A \subset \mathbb{P}^{n}, n \geq 2$, be a zero-dimensional scheme. We recall that A is said to be in linearly general position in \mathbb{P}^{n} if $\operatorname{deg}(V \cap A) \leq \operatorname{dim} V+1$ for every linear subspace $V \subsetneq \mathbb{P}^{n}$. If $\operatorname{deg}(A)>n$ (and in particular if $\langle A\rangle=\mathbb{P}^{n}$), A is in linearly general position if and only if $\operatorname{deg}(H \cap A) \leq n$ for all hyperplanes $H \subset \mathbb{P}^{n}$. If A is in linearly general position in \mathbb{P}^{n}, then each subscheme of A is in linearly general position in \mathbb{P}^{n}. If $\operatorname{deg}(A) \leq n+1, A$ is in linearly general position in \mathbb{P}^{n} if and only if it is linearly independent, i.e. if and only if $\operatorname{dim}(\langle A\rangle)=\operatorname{deg}(A)-1$.

Proposition 3. Assume $d \geq 7$ and $m \geq 3$ and take $P \in \mathbb{P}^{r}$ with $b_{m, d}(P)=$ 5 and $A \subset \mathbb{P}^{m}$ evincing the cactus rank of P with $A=A_{1} \sqcup\left\{O_{2}\right\}, \operatorname{deg}\left(A_{1}\right)=$ 4 and A_{1} connected. Assume the existence of a 3-dimensional linear subspace $\mathbb{H} \subseteq \mathbb{P}^{m}$ such that $\mathbb{H} \supset A$ and A is in linearly general position in \mathbb{H}. Then $r_{m, d}(P)=3 d-3$.

Proof. By concision ([10, Exercise 3.2.2.2]) we may assume $m=3$. Since A_{1} is Gorenstein ([6, part (ii) of Proposition 2.2]) and $\operatorname{dim}\left\langle A_{1}\right\rangle=\operatorname{deg}\left(A_{1}\right)-1, A_{1}$ is unramified and curvilinear ([9, Theorem 1.3]).

Claim: A is contained in a rational normal curve C.
Proof of the Claim: Since A is curvilinear, it has only finitely many subschemes. This property and a dimensional count give that the scheme $A \cup\{Q\}$ is in linearly general position for a general $Q \in \mathbb{P}^{3}$. By $[9$, part (b) of Theorem 1] $A \cup\{Q\}$ is contained in a unique rational normal curve. Hence A is contained in a rational normal curve.

Since $\nu_{d}(C)$ is a degree $3 d$ rational normal curve in its linear span and $A \subset C$, Sylvester's theorem (Remark 1) says that P has at most rank $3 d-3$ with respect to $\nu_{d}(C)$. Hence $r_{m, d}(P)=r_{3, d}(P) \leq 3 d-3$. Assume $r_{3, d}(P) \leq 3 d-4$ and take any $B \subset \mathbb{P}^{3}$ evincing the rank of P. We have $\operatorname{deg}(A \cup B) \leq 3 d+1$. The proof of [4, Proposition 5.19] gives a contradiction (see the proofs of Propositions 4 and Proposition 5 for similar, but harder proofs). Alternatively, take $P_{1} \in\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$ such that $P \in\left\langle\left\{P_{1}, \nu_{d}(A)\right\}\right\rangle$; it is easy to check that $P_{1} \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A_{1}$; since $d \geq 7, A_{1}$ is the unique zero-dimensional scheme $F \subset \mathbb{P}^{m}$ with $\operatorname{deg}(F) \leq 4$ and $P_{1} \in\left\langle\nu_{d}(F)\right\rangle$; therefore A_{1} evinces the cactus rank of P and hence $r_{m, d}\left(P_{1}\right)=3 d-2\left(\left[4\right.\right.$, Proposition 5.19]); since $P_{1} \in\left\langle\left\{\nu_{d}\left(O_{2}\right), P\right\}\right\rangle$, we get $r_{m, d}(P) \geq 3 d-3$.

Proposition 4. Assume $d \geq 9$. Let $A_{1} \subset \mathbb{P}^{m}$, $m \geq 3$, be a connected and curvilinear zero-dimensional scheme such that $\operatorname{deg}\left(A_{1}\right)=4$ and $\operatorname{dim}\left(\left\langle A_{1}\right\rangle\right)=3$. Set $\left\{O_{1}\right\}:=\left(A_{1}\right)_{\text {red }}$. Let A^{\prime} be the degree 2 subscheme of A_{1}. Fix $O_{2} \in\left\langle A^{\prime}\right\rangle \backslash\left\{O_{1}\right\}$ and set $A:=A_{1} \cup\left\{O_{2}\right\}$. Take any $P \in\langle A\rangle$ such that $P \notin\langle E\rangle$ for any scheme $E \subsetneq A$. Then $r_{m, d}(P)=3 d-1, b_{m, d}(P)=5$ and A is the only scheme evincing the cactus rank of P.

Proof. By concision ([10, Exercise 3.2.2.2]) we may assume $m=3$. There is a unique $P_{1} \in\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$ such that $P \in\left\langle\left\{P_{1}, \nu_{d}\left(O_{2}\right)\right\}\right\rangle$. Since $P \in\langle A\rangle$ and $P \notin\langle E\rangle$ for any $E \subsetneq A$, then $P_{1} \in\langle A\rangle$ and $P_{1} \notin\langle E\rangle$ for any $E \subsetneq A_{1}$. Hence $r_{m, d}\left(P_{1}\right)=3 d-2\left(\left[4\right.\right.$, Proposition 5.19]). Since $P \in\left\langle\left\{P_{1}, \nu_{d}\left(O_{2}\right)\right\}\right\rangle$ and $P_{1} \in\left\langle\left\{P, \nu_{d}\left(O_{2}\right)\right\}\right\rangle$, then $3 d-3 \leq r_{m, d}(P) \leq 3 d-1$. Assume $r_{m, d}(P) \leq 3 d-2$ and take $B \in \mathcal{S}(P)$. Set $W_{0}:=A \cup B$. We have $\operatorname{deg}\left(W_{0}\right) \leq 3 d+3$. We have $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)>0([3$, Lemma 1]).

Claim 1: A_{1} is not contained in a union of 3 distinct lines.
Proof of Claim 1: Assume $A_{1} \subset L \cup D \cup R$ with L, D, R distinct lines. Since A_{1} is connected and $\left\langle A_{1}\right\rangle=\mathbb{P}^{3}$, we have $\langle L \cup R \cup D\rangle=\mathbb{P}^{3}$ and $O_{1} \in L \cap D \cap R$, contradicting Lemma 7 .

Claim 2: A is not contained in a union of a reduced conic C and a line L.

Proof of Claim 2: Assume $A \subset C \cup L$. Claim 1 gives that C is a smooth conic. Since A_{1} is connected and $\left\langle A_{1}\right\rangle=\mathbb{P}^{3}$, we have $L \nsubseteq\langle C\rangle$ and $\left\{O_{1}\right\}=C \cap L$. Since $\operatorname{deg}(C \cap D) \leq 2$ for each line D, while $\operatorname{deg}\left(\left\{\left\{O_{1}, O_{2}\right\}\right\rangle \cap A\right)=3$, we get $L=\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle$. Since $L \nsubseteq\langle C\rangle$, we have $\operatorname{deg}\left(A_{1} \cap\langle C\rangle\right)=1$ and $O_{2} \notin\langle C\rangle$. Therefore $\operatorname{Res}_{\langle C\rangle}\left(A_{1}\right)=A^{\prime \prime} \nsubseteq L$. Therefore $A_{1} \nsubseteq\langle C\rangle \cup L$, a contradiction.

Claim 3: We have $O_{2} \notin B$.
Proof of Claim 3: Assume $O_{2} \in B$ and set $B^{\prime}:=B \backslash\left\{O_{2}\right\}$. The curvilinear scheme A_{1} is contained in a rational normal curve of \mathbb{P}^{3}. Using this curve we see that A_{1} is cut out by quadrics and hence by surfaces of degree d. Since $O_{2} \neq O_{1}$, we get $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{A}(d)\right)=0$ and hence $\nu_{d}\left(O_{2}\right) \notin\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$. Since $O_{2} \in B$, $P \notin\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$ and $P \in\left\langle\nu_{d}(A)\right\rangle$, the line $\left\langle\left\{\nu_{d}\left(O_{2}\right), P\right\rangle\right.$ contains at least one point, P_{2}, of $\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$. If $P_{2} \in\left\langle\nu_{d}(E)\right\rangle$ for some $E \nsubseteq A_{1}$, we have $r_{m, d}\left(P_{2}\right) \leq 2 d-1$ by [5] and so $r_{m, d}(P) \leq 2 d$, contradicting the inequality $r_{m, d}(P) \geq 3 d-2$. If $P_{2} \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \nsubseteq A_{1}$, we get $r_{m, d}\left(P_{2}\right)=3 d-1$ ([4, Proposition 5.19]). Hence $\sharp\left(B^{\prime}\right) \geq 3 d-1$, contradicting the assumption $\sharp(B) \leq 3 d-1$.

Let $H_{1} \subset \mathbb{P}^{3}$ be a plane such that $e_{1}:=\operatorname{deg}\left(W_{0} \cap H_{1}\right)$ is maximal. Set $W_{1}:=\operatorname{Res}_{H_{1}}\left(W_{0}\right)$. Fix an integer $i \geq 2$ and assume to have defined the integers e_{j}, the planes H_{j} and the scheme $W_{j}, 1 \leq j<i$. Let $H_{i} \subset \mathbb{P}^{3}$ be any plane such that $e_{i}:=\operatorname{deg}\left(H_{i} \cap W_{i-1}\right)$ is maximal. Set $W_{i}:=\operatorname{Res}_{H_{i}}\left(W_{i-1}\right)$. We have $e_{i} \geq e_{i+1}$ for all i. For each integer $i>0$ we have the residual exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{W_{i}}(d-i) \rightarrow \mathcal{I}_{W_{i-1}}(d+1-i) \rightarrow \mathcal{I}_{W_{i-1} \cap H_{i}, H_{i}}(d+1-i) \rightarrow 0 \tag{2}
\end{equation*}
$$

Since $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)>0$, there is an integer $i>0$ such that $h^{1}\left(H_{i}, \mathcal{I}_{W_{i-1} \cap H_{i}, H_{i}}(d+\right.$ $1-i))>0$. We call g the minimum such an integer. Since $h^{1}\left(\mathcal{O}_{\mathbb{P}^{3}}(t)\right)=0$ for every integer t, we have $e_{g}>0$. Since any zero-dimensional scheme with degree 3 of \mathbb{P}^{3} is contained in a plane, if $e_{i} \leq 2$, then $W_{i}=\emptyset$ and $e_{j}=0$ if $j>i$. We have $\sum_{i} e_{i}=\operatorname{deg}\left(W_{0}\right) \leq 3 d+3$. Since A is not in linearly general position, we have $e_{1} \geq 4$.
(a) Assume $g \geq d+2$. In particular $e_{d+2}>0$. Therefore $e_{i} \geq 3$ for $1 \leq i \leq d+1$. We get $\operatorname{deg}\left(W_{0}\right)>3 d+3$, a contradiction.
(b) Assume $g=d+1$, i.e. assume $h^{1}\left(\mathcal{I}_{H_{d+1} \cap W_{d}}\right)>0$. We get $e_{d+1} \geq 2$. Since $e_{1} \geq 4$, we get $e_{1}=4, e_{i}=3$ for $1 \leq i \leq d, e_{d+1}=2, W_{d+1}=\emptyset$ and $\operatorname{deg}\left(W_{0}\right)=3 d+3$. In particular we have $A \cap B=\emptyset$ and hence $O_{2} \notin B$. Let $Q \subset \mathbb{P}^{3}$ be a quadric surface such that $\gamma:=\operatorname{deg}\left(Q \cap W_{0}\right)$ is maximal. Since $h^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(2)\right)=10$, we have $\gamma \geq 9$. Set $E_{2}:=\operatorname{Res}_{Q}\left(W_{0}\right)$. Since $\gamma \geq 9$, then $\operatorname{deg}\left(E_{2}\right) \leq 3 d-6$. Let $M_{3} \subset \mathbb{P}^{3}$ be a plane such that $h_{3}:=\operatorname{deg}\left(M_{3} \cap E_{2}\right)$ is maximal. Set $E_{3}:=\operatorname{Res}_{M_{3}}\left(E_{2}\right)$. Fix an integer $i \geq 4$ and assume to have defined the plane M_{j}, the scheme E_{j} and the integer h_{j} for all $j \in\{2, \ldots, i-1\}$. Let M_{i} be a plane such that $h_{i}:=\operatorname{deg}\left(M_{i} \cap E_{i-1}\right)$ is maximal. Set $E_{i}:=$ $\operatorname{Res}_{M_{i}}\left(E_{i-1}\right)$. Since any zero-dimensional scheme of degree ≤ 3 of a projective
space is contained in a plane, if $h_{i} \leq 2$, then $h_{i+1}=0$ and $E_{i}=\emptyset$. Since $\operatorname{deg}\left(E_{2}\right) \leq 3 d-6$, then $\sum_{i \geq 3} h_{i} \leq 3 d-6$.
(b1) Assume $h^{1}\left(\mathcal{I}_{W_{0} \cap Q}(d)\right)=0$. The residual exact sequence of the inclusion $Q \subset \mathbb{P}^{3}$ gives $h^{1}\left(\mathcal{I}_{E_{2}}(d-2)\right)>0$. A residual exact sequence like (2) with E_{i} instead of W_{i} and M_{i} instead of H_{i} gives the existence of an integer $i \geq 3$ such that $h^{1}\left(M_{i}, \mathcal{I}_{M_{i} \cap E_{i-1}}(d+1-i)\right)>0$. We call c the first such an integer. We obviously have $h_{c}>0$. Since $h_{i} \geq 3$ for all $i \in\{3, \ldots, c-1\}$ and $\sum_{i \geq 3} h_{i} \leq 3 d-6$, we get $c \leq d$. By [5, Lemma 34], either $h_{c} \geq 2(d+1-c)+2$ or there is a line $L \subset H_{c}$ such that $\operatorname{deg}\left(L \cap E_{c-1}\right) \geq d+3-c$. Assume for the moment $c \geq 4$ and the existence of a line $L \subset H_{c}$ such that $\operatorname{deg}\left(L \cap E_{c-1}\right) \geq d+3-c$. Since $h_{c}>0$, we get $h_{c-1} \geq d+4-c$. Therefore $\sum_{i>3} h_{i} \geq(c-3)(d+4-c)+d+3-c$. We obviously get this inequality even if $c=3$ and L exists. Since $d \geq 9$, in this case we get $3 d-6 \geq(c-3)(d+4-c)+d+3-c$ and hence $3 \leq c \leq 4$. Now assume $h_{c} \geq 2(d+1-c)+2$. Since $h_{i} \geq h_{i+1}$ for all $i \geq 3$, we get $3 d-6 \geq 2(c-2)(d+2-c)$ and hence $c=3$. By [5, Lemma 34] we have $h_{3} \geq d$. Hence $e_{1} \geq d$, a contradiction.
(b2) Assume $h^{1}\left(\mathcal{I}_{W_{0} \cap Q}(d)\right)>0$.
(b2.1) Assume $h^{1}\left(\mathcal{I}_{E_{2}}(d-2)\right)>0$. As in step (b1) we first see the existence of an integer $i \geq 3$ such that $h^{1}\left(M_{i}, \mathcal{I}_{M_{i} \cap E_{i-1}}(d+1-i)\right)>0$ and then we get $e_{1} \geq d-2$, a contradiction.
(b2.2) Assume $h^{1}\left(\mathcal{I}_{E_{2}}(d-2)\right)=0$. Since A_{1} is connected and it spans \mathbb{P}^{3}, [4, Lemma 5.1] gives that either $W_{0} \subset Q$ or $O_{2} \in B, O_{2} \nsubseteq Q$ and $A_{1} \cup(B \backslash$ $\left.\left\{O_{2}\right\}\right) \subset Q$. By Claim 3 we may assume $W_{0} \subset Q$.
(b2.2.1) Assume that Q is smooth. Lemma 3 gives that either there is a line $L \subset Q$ such that $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$ or there is a conic $T \subset Q$ with $\operatorname{deg}\left(T \cap W_{0}\right) \geq 2 d+2$ or there is a degree 3 curve $F \subset Q$ of type $(2,1)$ or of type $(1,2)$ with $\operatorname{deg}\left(F \cap W_{0}\right) \geq 3 d+2$. L does not exist, because its existence would imply $e_{1} \geq d+3$. T does not exist, because its existence would imply $e_{1} \geq 2 d+2$. Therefore F exists, say with $F \in\left|\mathcal{O}_{Q}(2,1)\right|$. Since $\operatorname{deg}\left(\operatorname{Res}_{F}\left(W_{0}\right)\right) \leq 1$, we have $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{F}\left(W_{0}\right)}(d-2, d-1)\right)=0$. Since $O_{2} \notin B$ (Claim 3), applying [4, Lemma 5.1] to the inclusion $F \subset Q$ we get $W_{0} \subset F$ and in particular $A \subset F$. Since $\operatorname{deg}\left(\left\langle A^{\prime}\right\rangle \cap A\right)=3$, Bezout's theorem gives $\left\langle A^{\prime}\right\rangle \subset Q$. Since F has type $(2,1)$ and $\operatorname{deg}\left(F \cap\left\langle A^{\prime}\right\rangle \cap A\right)=3$, we get that $\left\langle A^{\prime}\right\rangle$ is a component of F. The non-existence of T or L gives $\operatorname{deg}\left(W_{0} \cap\left\langle A^{\prime}\right\rangle \cap A\right) \geq d-1$ and hence $e_{1}>4$, a contradiction.
(b2.2.2) Assume that Q is singular and irreducible. We use Lemma 5 instead of Lemma 3. Cases (i) and (ii) are excluded, because $e_{1}=4$. Therefore there is a curve $F \subset Q$ with $\operatorname{deg}(F \cap Z) \geq 3 d+2$ and either F is a smooth rational normal curve or $F=D \cup L$ with D a smooth conic, L a line, $\operatorname{deg}\left(D \cap W_{0}\right)=$ $2 d+1$ and $\operatorname{deg}\left(L \cap W_{0}\right)=d+1$. Since $e_{1}=4$, there is no line $L \subset \mathbb{P}^{3}$ with $\operatorname{deg}\left(L \cap W_{0}\right) \geq 4$. Now assume that F is a rational normal curve. Since A is not in
linearly general position, we get $\left(A \backslash\left\{O_{2}\right\}\right) \cup B \subset F$ and $O_{2} \notin F$. Since $\mathcal{I}_{F}(2)$ is spanned by its global sections (i.e. the evaluation map $H^{0}\left(\mathcal{I}_{F}(2)\right) \otimes \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{I}_{F}(2)$ is surjective), there is a quadric $Q^{\prime} \supset F$, with $O_{2} \notin Q^{\prime}$. Since $\operatorname{Res}_{Q^{\prime}}\left(W_{0}\right)=\left\{O_{2}\right\}$, [4, Lemma 5.1] gives $O_{2} \in B$, contradicting Claim 3 .
(b2.2.3) Assume that Q is not irreducible. Since $\gamma \geq 9$, there is a plane $M \subset Q$ with $\operatorname{deg}\left(M \cap W_{0}\right) \geq 5$. Hence $e_{1} \geq 5$, a contradiction.
(c) Assume $g \leq d$. By [5, Lemma 34] either there is a line $L \subset H_{g}$ such that $\operatorname{deg}\left(L \cap W_{g-1}\right) \geq d+3-g$ or $e_{g} \geq 2(d+2-g)+2=2(d+3-g)$. In the latter case we get $3 d+3 \geq 2 g(d+3-g)$ and hence $g=1$. In the former case if $g \geq 2$ we get $e_{g-1} \geq d+4-g$, because A spans \mathbb{P}^{3}. In the former case we also have $e_{g} \geq \operatorname{deg}\left(L \cap W_{g-1}\right) \geq d+3-g$. Hence in the former case we get $3 d+3 \geq e_{1}+\cdots+e_{g} \geq g(d+4-g)-1$ and hence $1 \leq g \leq 3$.
(c1) Assume $g=3$. We saw that there is a line $L \subset H_{3}$ such that $\operatorname{deg}(L \cap$ $\left.W_{2}\right) \geq d$ and that $e_{2} \geq d+1$. Therefore $d+1 \leq e_{1} \leq d+2$ and $e_{2}=d+1$. Let N_{1} be a plane containing L and with $f_{1}:=\operatorname{deg}\left(N_{1} \cap W_{0}\right)$ maximal among the planes containing L. Set $Z_{0}:=W_{0}$ and $Z_{1}:=\operatorname{Res}_{N_{1}}\left(Z_{0}\right)$. Let $N_{2} \subset \mathbb{P}^{3}$ be a plane such that $f_{2}:=\operatorname{deg}\left(Z_{1} \cap N_{0}\right)$ is maximal. Set $Z_{2}:=\operatorname{Res}_{N_{2}}\left(Z_{1}\right)$. Fix an integer $i \geq 3$ and assume to have defined f_{j}, N_{j}, Z_{j} for all $j<i$. Let $N_{i} \subset \mathbb{P}^{3}$ be any plane such that $f_{i}:=\operatorname{deg}\left(N_{i} \cap Z_{i-1}\right)$ is maximal. Set $Z_{i}:=\operatorname{Res}_{N_{i}}\left(Z_{i-1}\right)$. The residual exact sequences like (2) with N_{i} instead of H_{i} and Z_{i} instead of W_{i} give the existence of an integer $i>0$ such that $h^{1}\left(N_{i}, \mathcal{I}_{N_{i} \cap Z_{i-1}}(d+1-i)\right)>0$. Let g^{\prime} be the minimal such an integer. Since $h^{1}\left(\mathcal{O}_{\mathbb{P}^{3}}(t)\right)=0$ for all integers t, we have $f_{g^{\prime}}>0$. Since A spans \mathbb{P}^{3}, we have $f_{1} \geq 1+\operatorname{deg}\left(L \cap W_{2}\right) \geq d+1$. We have $f_{i} \geq f_{i+1}$ for all $i \geq 2$ and $\sum_{i \geq 2} f_{i} \leq 3 d+3-f_{1} \leq 2 d+2$. Since $f_{i} \geq 3$ if $f_{i+1}>0$, we get $3\left(g^{\prime}-2\right)+1 \leq 2 d+2$ and hence (since $d \geq 8$) $g^{\prime} \leq d$. Hence either $f_{g^{\prime}} \geq 2\left(d+1-g^{\prime}\right)+2$ or there is a line $R \subset N_{g^{\prime}}$ with $\operatorname{deg}\left(R \cap Z_{g^{\prime}-1}\right) \geq d+3-g^{\prime}\left(\left[5\right.\right.$, Lemma 34]). In the former case (since $f_{2} \geq \cdots \geq$ $f_{g^{\prime}-1} \geq f_{g^{\prime}}$) we get $2\left(g^{\prime}-1\right)\left(d+2-g^{\prime}\right) \leq 2 d+2$ and hence $1 \leq g^{\prime} \leq 2$. In the latter case if $g^{\prime} \geq 2$ we have $f_{g^{\prime}-1} \geq d+4-g^{\prime}$; hence in the latter case we have $2 d+2 \geq\left(g^{\prime}-1\right)\left(d+4-g^{\prime}\right)-1$ and hence $1 \leq g^{\prime} \leq 3$. Recall that since $g \geq 2$, we have $f_{1} \leq e_{1}<3 d+2$ and hence $f_{2}>0$. Thus $f_{1} \geq 1+\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$. Since $d+2 \geq e_{1} \geq f_{1} \geq d+2$, we have $e_{1}=f_{1}=d+2$. Hence $f_{2}+\cdots+f_{g^{\prime}} \leq 2 d$.
(c1.1) Assume $g^{\prime}=3$. Thus $f_{3} \geq d$. We saw in (c1) the existence of a line $R \subset N_{3}$ such that $\operatorname{deg}\left(Z_{2} \cap R\right) \geq d$. Since $\operatorname{deg}(D \cap A) \leq 3$ for each line D and $B \cap Z_{1} \subset B \backslash B \cap L$, we get $R \cap(B \backslash B \cap L) \neq \emptyset$. Therefore $R \neq L$. We have $R \cap L=\emptyset$ because $e_{1}<2 d-1$. Let $Q \subset \mathbb{P}^{3}$ be a smooth quadric surface containing $R \cup L$. We have $\delta:=\operatorname{deg}\left(W_{0} \cap Q\right) \geq 2 d$ and hence $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq d+3$.
(c1.1.1) Assume for the moment $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q}\left(W_{0}\right)}(d-2)\right)=0$. By [4, Lemma 5.1] either $O_{2} \in B$ or $W_{0} \subset Q$. Claim 3 gives $W_{0} \subset Q$. Since $e_{1} \leq d+2$, there is no line $D \subset \mathbb{P}^{3}$ with $\operatorname{deg}\left(D \cap W_{0}\right) \geq d+2$ (use that A_{1} spans \mathbb{P}^{3}) and no conic
$T \subset \mathbb{P}^{3}$ with $\operatorname{deg}\left(T \cap W_{0}\right) \geq 2 d+2$. Since $\operatorname{deg}\left(Z_{2} \cap R\right) \geq d, \operatorname{deg}\left(W_{0} \cap L\right) \geq d$ and $R \cap L=\emptyset$, Lemma 3 gives the existence of $F \subset Q$ of type $(2,1)$ or $(1,2)$ with $\operatorname{deg}\left(F \cap W_{0}\right) \geq 3 d+2$. We get $F=L \cup R \cup D$ with D a line. Since $L \cap R=\emptyset$, we have $D \cap L \neq \emptyset$ and hence $e_{1} \geq 2 d-1$, a contradiction.
$(c 1.1 .2)$ Now assume $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q}\left(W_{0}\right)}(d-2)\right)>0$. Since $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq$ $d+3 \leq 2(d-2)+1$, there is a line $D \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(D \cap \operatorname{Res}_{Q}\left(W_{0}\right)\right) \geq d$. Since $\operatorname{deg}(D \cap A) \leq 3$, we get $D \cap(B \backslash B \cap(L \cup R)) \neq \emptyset$. Therefore D, R, L are 3 distinct lines. Since $e_{1}<2 d-1$, we have $D \cap R=D \cap L=\emptyset$. Let Q^{\prime} be the only quadric containing $D \cup L \cup R\left(Q^{\prime}\right.$ is smooth). Since $\operatorname{deg}\left(\operatorname{Res}_{Q^{\prime}}\left(W_{0}\right)\right) \leq 3 d+2-d-d-d$, we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q^{\prime}}\left(W_{0}\right)}(d-2)\right)=0$. Claim 3 and [4, Lemma 5.1] gives $W_{0} \subset Q^{\prime}$. Since $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)=h^{1}\left(Q^{\prime}, \mathcal{I}_{W_{0}}(d)\right)>0, \operatorname{deg}\left(W_{0}\right) \leq \operatorname{deg}\left(W_{0} \cap(L \cup D \cup R)\right)+2$ and $e_{1} \leq d+2$, Lemma 3 gives a contradiction.
(c1.2) Assume $g^{\prime}=2$. Since $f_{2} \leq \operatorname{deg}\left(Z_{1}\right) \leq 2 d+1$, either there is a line $R \subset N_{2}$ with $\operatorname{deg}\left(R \cap Z_{1}\right) \geq d+1$ or there is a conic T with $\operatorname{deg}\left(T \cap Z_{1}\right) \geq 2 d$ and in particular $f_{2} \geq 2 d$. The latter case cannot occur, because $e_{1} \leq d+2$ for $g=3$. Hence R exists. We have $R \cap(B \backslash B \cap L) \neq \emptyset$ and hence $R \neq L$. If $R \cap L \neq \emptyset$, then $e_{1} \geq 2 d-1$, contradicting the inequality $e_{1} \leq d+2$. Therefore $R \cap L=\emptyset$. We continue as in step (c1.1.1) and (c1.1.2).
(c1.3) Assume $g^{\prime}=1$.
(c1.3.1) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$. Since A spans \mathbb{P}^{3}, we have $e_{1} \geq$ $f_{1} \geq 1+\operatorname{deg}\left(L \cap W_{0}\right) \geq d+3$, a contradiction.
(c1.3.2) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \leq d+1$. Since $f_{1} \leq e_{1} \leq d+2 \leq 2 d+1$, Lemma 1 gives the existence of a line $D \subset N_{1}$ with $\operatorname{deg}\left(D \cap W_{0}\right) \geq d+2$. Since $L \neq D, \operatorname{deg}\left(L \cap W_{0}\right) \geq d$ and $L \cup D \subset N_{1}$, we get $e_{1} \geq f_{1} \geq 2 d+1$, a contradiction.
(c2) Assume $g=2$. We saw that there is a line $L \subset H_{3}$ such that $\operatorname{deg}(L \cap$ $\left.W_{2}\right) \geq d+1$. Hence $e_{1} \leq 2 d+2$. Let N_{1} be a plane containing L and with $f_{1}:=\operatorname{deg}\left(N_{1} \cap W_{0}\right)$ maximal among the planes containing L. Since A spans \mathbb{P}^{3}, we have $f_{1} \geq 1+\operatorname{deg}\left(L \cap W_{2}\right) \geq d+2$. Define $N_{i}, f_{i}, Z_{i}, g^{\prime}$ as in step (c1). Since $f_{i} \geq 3$ if $f_{i+1}>0$, we get $g^{\prime} \leq d$. Hence either $f_{g^{\prime}} \geq 2\left(d+1-g^{\prime}\right)+2=2\left(d+2-g^{\prime}\right)$ or there is a line $R \subset N_{g^{\prime}}$ with $\operatorname{deg}\left(R \cap Z_{g^{\prime}-1}\right) \geq d+3-g^{\prime}$. In the former case if $g^{\prime} \geq 2$ we get $2\left(g^{\prime}-1\right)\left(d+2-g^{\prime}\right)+d+2 \leq 3 d+2$ and hence $1 \leq g^{\prime} \leq 2$. In the latter case if $g^{\prime} \geq 2$ we have $f_{g^{\prime}-1} \geq d+4-g^{\prime}$; in the latter case we have $3 d+2 \geq g^{\prime}\left(d+4-g^{\prime}\right)-1$, because $f_{1} \geq d+2$; thus $1 \leq g^{\prime} \leq 3$.
(c2.1) Assume $g^{\prime}=3$. We saw the existence of a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(R \cap Z_{2}\right) \geq d$. Since $f_{3}>0, Z_{1}$ spans \mathbb{P}^{3}. Hence $f_{2} \geq \operatorname{deg}\left(R \cap Z_{2}\right)+1 \geq d+1$. Since $f_{1} \geq d+2$ and $\operatorname{deg}\left(W_{0}\right) \leq 3 d+3$, we get $\operatorname{deg}\left(R \cap Z_{2}\right)=d, Z_{2} \subset R$, $f_{2}=d+1$ and $f_{1}=d+2$. Since $f_{1}<2 d$, we have $R \cap L=\emptyset$. Let Q be any smooth quadric containing $R \cup L$. Since $\mathcal{I}_{R \cup L}(2)$ is spanned by its global sections and $A_{1} \nsubseteq R \cup L,\left[4\right.$, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q}\left(W_{0}\right)}(d-2)\right)>0$.

Since $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq d+2 \leq 2(d-2)+1$, there is a line D with $\operatorname{deg}(D \cap$ $\left.\operatorname{Res}_{Q}\left(W_{0}\right)\right) \geq d$. We have $D \neq R$ and $D \neq L$. Since $\mathcal{I}_{D \cup R \cup L}(3)$ is spanned, $A_{1} \nsubseteq D \cup R \cup L$ (Claim 1) and A is curvilinear, there is $Y \in\left|\mathcal{I}_{D \cup R \cup L}(3)\right|$ with $A_{1} \nsubseteq Y$. Since $\operatorname{deg}\left(\operatorname{Res}_{Y}\left(W_{0}\right)\right) \leq 3 d+3-(d+1)-d-d+1 \leq d-2$, we have $h^{1}\left(\mathcal{I}_{\left(\operatorname{ReS}_{Y}\left(W_{0}\right)\right.}(d-3)\right)=0$, contradicting [4, Lemma 5.1] and the assumption $A_{1} \nsubseteq Y$.
(c2.2) Assume $g^{\prime}=2$. Since $f_{2} \leq \operatorname{deg}\left(Z_{1}\right) \leq 2 d$, either there is a line $R \subset N_{2}$ with $\operatorname{deg}\left(R \cap Z_{1}\right) \geq d+1$ or $f_{2}=\operatorname{deg}\left(Z_{1}\right)=2 d$ and there is a conic $T \supset Z_{1}$. If R exists, then $R \cap(B \backslash B \cap L) \neq \emptyset$ and hence $R \neq L$.
(c2.2.1) Assume the existence of R and that $R \cap L=\emptyset$. We continue as in step (c2.1).
(c2.2.2) Assume the existence of R and that $R \cap L \neq \emptyset$ and hence $f_{1} \geq$ $(d+1)+(d+1)-1$. Since $A_{1} \nsubseteq N_{1},\left[4\right.$, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{Z_{1}}(d-1)\right)>0$. Since $\operatorname{deg}\left(Z_{1}\right) \leq 3 d+2-f_{1} \leq 2 d-1$, [5, Lemma 34] gives the existence of a line $D \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(D \cap Z_{1}\right) \geq d+1$. Using $\left|\mathcal{I}_{R \cup L \cup D}(3)\right|$ and $[4$, Lemma 5.1] as in step (c2.1) we get $A_{1} \subset R \cup L \cup D$, contradicting Claim 1 .
(c2.2.3) Assume $\operatorname{deg}\left(Z_{1}\right)=2 d$ and the existence of a reduced conic $T \supset$ Z_{1}. The sheaf $\mathcal{I}_{T \cup L}(3)$ is spanned by its global sections. Fix $Y \in\left|\mathcal{I}_{T \cup L}(3)\right|$. Since $\operatorname{deg}\left(\operatorname{Res}_{Y}\left(W_{0}\right)\right) \leq 4$, we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Y}\left(W_{0}\right)}(d-3)\right)=0$. Hence $A_{1} \subset Y$ ([4, Lemma 5.1]). Since $\mathcal{I}_{T \cup L}(3)$ is spanned and A is curvilinear, as in step (c2.1) we get $A_{1} \subset T \cup L$, contradicting Claim 2 .
(c2.3) Assume $g^{\prime}=1$.
(c2.3.1) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$. Since A spans \mathbb{P}^{3}, we have $f_{1} \geq$ $1+\operatorname{deg}\left(L \cap W_{0}\right) \geq d+3$ and hence $\operatorname{deg}\left(Z_{1}\right) \leq 2 d$. Since $A_{1} \nsubseteq N_{1}$, [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{Z_{1}}(d-1)\right)>0$. Lemma 1 gives that either there is a line R with $\operatorname{deg}\left(R \cap Z_{1}\right) \geq d+1$ or $\operatorname{deg}\left(Z_{1}\right)=2 d$ and $Z_{1} \subset T$ for some reduced conic. First assume the existence of R. Since $R \cap(B \backslash B \cap L) \neq \emptyset$, Remark 2 gives $A \cap R \neq \emptyset$, i.e. either $O_{1} \in R$ or $O_{2} \in R$. Hence $R \cap L \neq \emptyset$. Let M be the plane spanned by $R \cup L$. Since $A_{1} \nsubseteq M$, [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{M(}\left(W_{0}\right)}(d-1)\right)>0$. Since $\operatorname{deg}\left(M \cap W_{0}\right) \geq(d+2)+(d+1)-1$, there is a line D with $\operatorname{deg}\left(D \cap \operatorname{Res}_{M}\left(W_{0}\right)\right) \geq$ $d+1$. Since $D \cap\left(B \backslash(B \cap(R \cup L)) \neq \emptyset\right.$, then $D \neq R$ and $D \neq L$. Since $f_{1}<3 d$, $\langle D \cup R \cup L\rangle=\mathbb{P}^{3}$. For all possible configurations of L, D, R we see that $\mathcal{I}_{D \cup R \cup L}(3)$ is spanned by its global sections. We conclude as in the last part of step (c2.1). Now assume $\operatorname{deg}\left(Z_{1}\right)=2 d$ and $Z_{1} \subset T$ for some reduced conic T. Since $\mathcal{I}_{T \cup L}(3)$ is spanned and $O_{2} \notin B$ (Claim 3), [4, Lemma 5.1] gives $W_{0} \subset T \cup L$. Since $\operatorname{deg}\left(W_{0} \cap L\right) \geq d+2$, Remark 2 gives $L=\left\langle A^{\prime}\right\rangle$. Since $A_{1} \subset T \cup L$, we have $L \nsubseteq\langle T\rangle$ and hence $\operatorname{deg}(L \cap T) \leq 1$. Since $L=\left\langle A^{\prime}\right\rangle$, we get $T \cap A_{1}=\left\{O_{1}\right\}$ as schemes and hence $A_{1} \nsubseteq T \cup L$.
(c2.3.2) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \leq d+1$. Since $f_{1} \leq e_{1} \leq 2 d+2$, Lemma 1 gives that either there is a line $D \subset N_{1}$ with $\operatorname{deg}\left(D \cap W_{0}\right) \geq d+2$ or $f_{1}=2 d+2$
and there is a reduced conic $T \supset W_{0} \cap N_{1}$. If D exists, then $D \neq L$ and hence $f_{1} \geq(d+1)+(d+2)-1$, i.e. $f_{1}=2 d+2$ and $W_{0} \cap N_{1} \subset D \cup L$. Therefore in both cases we have $\operatorname{deg}\left(Z_{1}\right) \leq 2(d-1)+1$. Since $h^{1}\left(\mathcal{I}_{Z_{1}}(d-1)\right)>0$ by [4, Lemma 5.1], there is a line $R \subset \mathbb{P}^{3}$ with $\operatorname{deg}\left(R \cap Z_{1}\right) \geq d+1$. We have 3 lines R, L, D^{\prime} with either $D^{\prime}=D$ or $D^{\prime} \cup L=T$. In all cases we see that $\mathcal{I}_{D \cup R \cup L}(3)$ is spanned by its global sections and we conclude as in the last part of step (c2.1).
(c3) Assume $g=1$. Since A_{1} is connected and $A_{1} \nsubseteq H_{1}$, [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{W_{1}}(d-1)\right)>0$. Since $h^{1}\left(H_{1}, \mathcal{I}_{W_{0} \cap H_{1}}(d)\right)>0$, we have $e_{1} \geq d+2$ and hence $\operatorname{deg}\left(W_{1}\right) \leq 2 d+1$. By Lemma 1 either there is a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(R \cap W_{1}\right) \geq d+1$ or there is a plane conic T with $\operatorname{deg}\left(T \cap W_{1}\right) \geq 2 d$. The latter case does not arise, because it would imply $e_{1} \geq 2 d$ and hence $\operatorname{deg}\left(W_{1}\right) \leq d+3$. Therefore there is a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(R \cap W_{1}\right) \geq d+1$. Therefore $e_{1} \leq 2 d+2$. Since $g=1$, Lemma 1 gives that either there is line $L \subset H_{1}$ such that $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$ or there is a plane conic $T \subset H_{1}$ such that $\operatorname{deg}\left(W_{0} \cap T\right) \geq 2 d+2$.
(c3.1) Assume the existence of a plane conic $T \subset H_{1}$ such that $\operatorname{deg}\left(W_{0} \cap\right.$ $T) \geq 2 d+2$. We get $e_{1}=2 d+2, W_{0} \cap H_{1} \subset T$ and $W_{1} \subset R$. Remark 2 gives $\operatorname{deg}(T \cap B) \leq 2 d$ and hence $O_{1} \in T$. First assume $R \cap T=\emptyset$. The linear system $\left|\mathcal{I}_{T \cup R}(2)\right|$ is formed by the pencil of the reducible quadrics $H_{1} \cup M$ with M a plane containing R. By [4, Lemma 5.1] we get $A_{1} \subset H_{1} \cup M$. Since $R \cap T=\emptyset$ and $O_{1} \in T$, we may find $M \supset R$ with $M \cap A_{1}=\emptyset$. Thus $A_{1} \subset H_{1}$, a contradiction. Now assume $R \cap T \neq \emptyset$. In this case $R \cup T$ is the scheme-theoretic base locus of the linear system $\left|\mathcal{I}_{R \cup T}(2)\right|$. Fix any $Y \in\left|\mathcal{I}_{R \cup T}(2)\right|$. [4, Lemma 5.1] gives $A_{1} \cup\left(B \backslash\left\{O_{2}\right\}\right) \subset Y$ and either $O_{2} \in Y$ or $O_{2} \in B$. Claim 3 gives $O_{2} \in Y$. Therefore $W_{0} \subset Y$. Since $\mathcal{I}_{R \cup T}(2)$ is spanned, we get $W_{0} \subset R \cup T$. Since $\operatorname{deg}\left(A \cap\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle\right)=3$, we get $\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle \subset R \cup T$. Claim 1 implies that T is a smooth conic. Hence $R=\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle=\left\langle A^{\prime}\right\rangle$. Obviously $O_{1} \in T$. Since $R \nsubseteq N_{1}=\langle T\rangle$, we get $\operatorname{deg}(T \cap A)=1$. Hence $\operatorname{deg}\left(A_{1} \cap(R \cup T)\right) \leq 3$, a contradiction.
(c3.2) Assume the existence of a line $L \subset H_{1}$ such that $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$. Remark 2 gives $\operatorname{deg}(L \cap A) \geq 2$. Hence $L=\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle$. Since $\operatorname{deg}(R \cap \bar{A}) \leq 3$, we have $R \cap(B \backslash B \cap L) \neq \emptyset$. Therefore $R \neq L$. Remark 2 gives $R \cap A \neq \emptyset$. Hence either $O_{1} \in R$ or $O_{2} \in R$. In both cases we have $R \cap L \neq \emptyset$. Let M be the plane spanned by $L \cup R$. Since $A_{1} \nsubseteq M$, [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{M(}\left(W_{0}\right)}(d-1)\right)>0$. Since $\operatorname{deg}\left(\operatorname{Res}_{M}\left(W_{0}\right)\right) \leq 3 d+3-(d+2)-(d+1)+1$, we get $\operatorname{Res}_{M}\left(W_{0}\right) \subset D$ for some line D. Since A_{1} is curvilinear and $\mathcal{I}_{D \cup L \cup R}(3)$ is spanned, as in step (c2.1) we get get $A_{1} \subset D \cup L \cup R$, a contradiction.

Proposition 5. Assume $d \geq 9, m \geq 3$. Let $A_{1} \subset \mathbb{P}^{m}$, $m \geq 3$, be a connected and curvilinear zero-dimensional scheme such that $\operatorname{deg}\left(A_{1}\right)=4$ and $\operatorname{dim}\left(\left\langle A_{1}\right\rangle\right)=3$. Set $\left\{O_{1}\right\}:=\left(A_{1}\right)_{\text {red }}$. Let A^{\prime} (resp. $A^{\prime \prime}$) be the degree 2 (resp. 3)
subscheme of A. Fix $O_{2} \in\left\langle A^{\prime \prime}\right\rangle \backslash\left\langle A^{\prime}\right\rangle$, set $A:=A_{1} \cup\left\{O_{2}\right\}$ and take any $P \in\langle A\rangle$ such that $P \notin\langle E\rangle$ for any $E \subsetneq A$.
(i) We have $3 d-3 \leq r_{m, d}(P) \leq 3 d-2$.
(ii) Fix any $B \subset \mathbb{P}^{m}$ such that $3 d-3 \leq \sharp(B) \leq 3 d-2, P \in\left\langle\nu_{d}(B)\right\rangle$ and $P \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq B$. Then there are a smooth conic $C \subset\left\langle A^{\prime \prime}\right\rangle$ and a line $L \subset\left\langle A_{1}\right\rangle$ such that $L \cap\left\langle A^{\prime \prime}\right\rangle=\left\{O_{1}\right\}, A^{\prime \prime} \cup\left\{O_{2}\right\} \subset C, \sharp(B \cap L)=d$ and $A \cup B \subset C \cup L$.
(iii) We have $r_{m, d}(U)=3 d-3$ for some $U \in \mathbb{P}^{r}$ whose cactus rank is evinced by A.

Proof. By concision ([10, Exercise 3.2.2.2]) we may assume $m=3$. Set $H:=$ $\left\langle A^{\prime \prime}\right\rangle$. Since $O_{2} \notin\left\langle A^{\prime}\right\rangle$, we have $\operatorname{deg}\left(D \cap A^{\prime \prime}\right) \leq 2$ for all lines $D \subset H$. Therefore $h^{0}\left(H, \mathcal{I}_{A^{\prime \prime} \cup\left\{O_{2}\right\}}(2)\right)=2$ and a general conic C of H containing $A^{\prime \prime} \cup\left\{O_{2}\right\}$ is smooth. By Lemma 8 there is a line $L \subset \mathbb{P}^{3}$ such that $A_{1} \subset C \cup L, O_{1} \in L$ and $L \nsubseteq H$. Therefore $O_{2} \notin L$. Since $O_{2} \in C$, we get $A \subset C \cup L$. Hence $P \in\left\langle\nu_{d}(C \cup L)\right\rangle$. Therefore there are $P_{1} \in\left\langle\nu_{d}(C)\right\rangle$ and $P_{2} \in\left\langle\nu_{d}(L)\right\rangle$ such that $P \in\left\langle\left\{P_{1}, P_{2}\right\}\right\rangle$ (we do not claim that $P_{1} \neq P_{2}$, but if $P_{1}=P_{2}$, then $P=P_{2}$ and hence $r_{m, d}(P) \leq d$ by Sylvester's theorem (Remark 1) and we will later get a contradiction with the weaker assumption $\left.r_{m, d}(P) \leq 3 d-4\right)$. We have $P_{1} \in\left\langle\nu_{d}\left(\left\{O_{2}\right\} \cup A^{\prime \prime}\right)\right\rangle$. Since $P \notin\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$, we have $P_{1} \notin\left\langle\nu_{d}\left(A^{\prime \prime}\right)\right\rangle$. Assume for the moment $P_{1} \in\left\langle\nu_{d}\left(\left\{O_{1}\right\} \cup A^{\prime}\right)\right\rangle$. Since P_{2} has at most rank d with respect to the rational normal curve $\nu_{d}(L)$ and every point of $\left\langle\nu_{d}\left(\left\langle A^{\prime}\right\rangle\right)\right\rangle$ has at most rank d with respect to the rational normal curve $\nu_{d}\left(\left\langle A^{\prime}\right\rangle\right)$, we would get $r_{m, d}(P) \leq 2 d+1$; we will later find a contradiction with the weaker assumption $r_{m, d}(P) \leq 3 d-4$. Now assume $P_{1} \notin\left\langle\nu_{d}\left(\left\{O_{1}\right\} \cup A^{\prime}\right)\right\rangle$. Since $P \notin\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$, we have $P_{1} \notin\left\langle\nu_{d}\left(A^{\prime \prime}\right)\right\rangle$. Therefore P_{1} has border rank 4 with respect to the degree $2 d$ rational normal curve $\nu_{d}(C)$. Sylvester's theorem ([8], Remark 1) gives that P_{1} has rank $2 d-2$ with respect to $\nu_{d}(C)$. Every point of $\left\langle\nu_{d}(L)\right\rangle$ has rank $\leq d$ with respect to the rational normal curve $\nu_{d}(L)$. Hence $r_{m, d}(P) \leq 3 d-2$. Take $B \in \mathcal{S}(P)$ and set $W_{0}:=A \cup B$. We saw that $\operatorname{deg}\left(W_{0}\right) \leq 3 d+3$. To prove parts (i) and (ii) of Proposition 5 it is sufficient to prove that $\operatorname{deg}\left(W_{0}\right) \geq 3 d+2$ and that there are curves C, L as in part (ii). See step (d) for the proof of part (iii).

Claim 1: If $B \subset H \cup L$, then $\sharp\left(B \cap\left(L \backslash\left\{O_{1}\right\}\right)\right) \geq d$.
Proof of Claim 1: Assume $\sharp\left(B \cap\left(L \backslash\left\{O_{1}\right\}\right)\right) \leq d-1$. Since $\operatorname{Res}_{H}(A)=\left\{O_{1}\right\}$, we get $\operatorname{deg}\left(\operatorname{Res}_{H}\left(W_{0}\right)\right) \leq d$ and hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(W_{0}\right)}(d-1)\right)=0$. By [4, Lemma 5.1] we get $A_{1} \subset H$, a contradiction.

Claim 2: Assume $A_{1} \subset C \cup L$ with L a line and C either a reduced conic or the disjoint union of two distinct lines. Then C is a smooth conic, $A^{\prime \prime} \subset C$, $H=\langle C\rangle, L \nsubseteq H$, and $\left\{O_{1}\right\}=L \cap C=L \cap H$.

Proof of Claim 2: By Claim 1 of the proof of Proposition $4 A_{1}$ is not contained in the union of 3 lines. Hence C must be a smooth conic. Since
A_{1} is connected and $\left\langle A_{1}\right\rangle=\mathbb{P}^{3}$, we have $L \nsubseteq\langle C\rangle$ and the scheme-theoretic intersection $L \cap\langle C\rangle$ is a single point, o. Since A_{1} is connected and $\langle A\rangle=\mathbb{P}^{3}$, we get $o=O_{1}$. First assume $L=\left\langle A^{\prime}\right\rangle$. Since $\langle C\rangle \nsupseteq L$, we get $\operatorname{deg}(A \cap\langle C\rangle)=1$ and hence $\operatorname{Res}_{\langle C\rangle}(A)=A^{\prime \prime}$. Since $\left\langle A^{\prime \prime}\right\rangle$ is a plane, we have $A^{\prime \prime} \nsubseteq L$ and hence $A \nsubseteq\langle C\rangle \cup L$. Therefore $A \nsubseteq C \cup L$, a contradiction. Hence $L \neq\left\langle A^{\prime \prime}\right\rangle$. Since $A_{1} \subset C \cup L$, we get $A^{\prime \prime} \subset C$ and hence $\langle C\rangle=H$.

Claim 3: Assume $W_{0} \subset C \cup L$ with C a reduced conic and L a line. Then $\sharp(B \cap C) \geq 2 d-3, O_{1} \notin B, \sharp(B \cap L)=d$ and $\operatorname{deg}(A \cap L)=1$.

Proof of Claim 3: By Claim $2 C$ is a smooth conic, $H=\langle C\rangle$ and $A^{\prime \prime} \subset C$. Since $A^{\prime \prime} \subset C$, we have $\operatorname{deg}\left(L \cap A_{1}\right)=1$. Since $O_{1} \in L$, we have $O_{2} \notin L$. Since $A_{1} \nsubseteq H$ and $O_{2} \notin L$, we have $\operatorname{deg}(L \cap A)=1$ and hence $\operatorname{deg}\left(W_{0} \cap L\right)=d+1$. Assume $\sharp(B \cap C) \leq 2 d-4$. Take a smooth quadric Q containing $C \cup L$. Since $\operatorname{deg}\left(W_{0} \cap C\right)=2 d, \operatorname{deg}\left(W_{0} \cap L\right)=d+1$ and $\operatorname{deg}\left(W_{0}\right) \leq \operatorname{deg}\left(W_{0} \cap C\right)+\operatorname{deg}\left(W_{0} \cap\right.$ $L)=3 d+1$, Lemma 3 gives $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)=0$, a contradiction.

Our goal is to prove the existence of a reduced conic C and a line L such that $W_{0} \subset C \cup L$. If we prove the existence of C and L, then we get part (i) by Claim 3.

We repeat the proof of Proposition 4, except that now we also have to handle the smooth conics containing $A_{1} \cup\left\{O_{2}\right\}$. Since A is not in linearly general position in \mathbb{P}^{3}, then $e_{1} \geq 4$. Steps (a), (b), (c1) works verbatim (they only use the integers e_{i} and not the position of O_{2}). The first difference arises in step (c2.3.1). Instead of having $L=\left\langle A^{\prime}\right\rangle$ we have that either $L=\left\langle A^{\prime}\right\rangle$ or $L=\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle$. However in this part of the proof we have $\operatorname{deg}\left(W_{0}\right)=3 d+3$ (i.e. $A \cap B=\emptyset$ and $\sharp(B)=3 d-2)$ and $W_{0} \subset T \cup L$ with T a reduced conic. So in this case instead of having a contradiction we just jump to step (d). In step (c2.3.1) we either get a contradiction or get $\operatorname{deg}\left(W_{0}\right)=3 d+3$ and $W_{0} \subset T \cup L$ with T a reduced conic. Claim 3 gives parts (i) and (ii). We rewrite with minimal modifications steps (c3.1) and (c3.2).
(c3.1) Assume the existence of a plane conic $T \subset H_{1}$ such that $\operatorname{deg}\left(W_{0} \cap\right.$ $T) \geq 2 d+2$. We get $e_{1}=2 d+2, W_{0} \cap H_{1} \subset T$ and $W_{1} \subset R$. Therefore $e_{2}=d+1$ and $\operatorname{deg}\left(W_{0}\right)=3 d+3$. Since $\operatorname{deg}(B \cap T) \leq 2 d$ by Remark 2 , we have $O_{1} \in T$.

First assume $R \cap T=\emptyset$ and in particular $O_{1} \notin R$. The linear system $\left|\mathcal{I}_{T \cup R}(2)\right|$ is formed by the pencil of all reducible quadrics $H_{1} \cup M$ with M a plane containing R. By [4, Lemma 5.1] we get $A_{1} \subset H_{1} \cup M$. Since $O_{1} \notin M$ for a general $M \supset R$, we get $A_{1} \subset H_{1}$, a contradiction. Now assume $R \cap T \neq \emptyset$. In this case $R \cup T$ is the scheme-theoretic base locus of the linear system $\left|\mathcal{I}_{R \cup T}(2)\right|$. Fix any $Y \in\left|\mathcal{I}_{R \cup T}(2)\right|$. [4, Lemma 5.1] gives $A_{1} \cup\left(B \backslash\left\{O_{2}\right\}\right) \subset Y$ and either $O_{2} \in Y$ or $O_{2} \in B$. The case $x=2$ of Claim 3 of the proof of Proposition 4 gives $W_{0} \subset Y$. Since $R \cup T$ is the scheme-theoretic base locus of the linear system $\left|\mathcal{I}_{R \cup T}(2)\right|$, we get $W_{0} \subset T \cup R$. Apply Remark 2 and Claim 2 to get (i) and (ii).
(c3.2) Assume the existence of a line $L \subset H_{1}$ such that $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$. Remark 2 gives $\operatorname{deg}(L \cap A) \geq 2$. Hence either $L=\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle$ or $L=\left\langle A^{\prime}\right\rangle$. Since $\operatorname{deg}(R \cap A) \leq 3$, we have $R \cap(B \backslash B \cap L) \neq \emptyset$. Therefore $R \neq L$. First assume $R \cap L \neq \emptyset$. Let M be the plane spanned by $L \cup R$. Since $A_{1} \nsubseteq M,[4$, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{M}\left(W_{0}\right)}(d-1)\right)>0$. Since $\operatorname{deg}\left(\operatorname{Res}_{M}\left(W_{0}\right)\right) \leq 3 d+3-(d+2)-(d+$ $1)+1,[5, \operatorname{Lemma} 34]$ gives $\operatorname{deg}\left(\operatorname{Res}_{M}\left(W_{0}\right)\right)=d+1$ and $\operatorname{Res}_{M}\left(W_{0}\right) \subset D$ for some line D. Since A_{1} is curvilinear, we also get $A_{1} \subset D \cup L \cup R$, contradicting Claim 1. Now assume $R \cap L=\emptyset$. Remark 2 gives $R \cap A \neq \emptyset$. Therefore $L=\left\langle A^{\prime}\right\rangle, O_{2} \in R$ and $O_{1} \notin R$. Fix any $o \in B \backslash B \cap(L \cup R)$ and take any $Q \in\left|\mathcal{I}_{L \cup R \cup\{o\}}(2)\right|$. Since $\operatorname{deg}\left(W_{0} \cap(L \cup R)\right) \geq 2 d+3$, we have $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq d-1$ (this is obviously true even if $B \subset L \cup R)$ and hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q}\left(W_{0}\right)}(d-1)\right)=0$. By [4, Lemma 5.1] we get $A_{1} \subset Q$. Since $R \cap L=\emptyset$, the base locus of $\left|\mathcal{I}_{L \cup R \cup\{o\}}(2)\right|$ is a line D. Hence $A_{1} \subset L \cup D \cup R$ (we even have $A_{1} \subset L \cup D$, because $O_{1} \notin R$), a contradiction.
(d) We saw that for each $B \in \mathcal{S}(P)$ we have $3 d-3 \leq \sharp(B) \leq 3 d-2$, and that there are C, L such that $W_{0} \subset C \cup L$ and $\sharp\left(B \cap\left(L \backslash\left\{O_{1}\right\}\right)\right)=d$ (and hence $\sharp(B \cap C)=\sharp(B)-d)$. Take P with $r_{m, d}(P)=3 d-2$ (if any). Therefore $\sharp(B \cap C)=2 d-2$.

Claim 4: $A \cap B=\emptyset$.
Proof of Claim 4: Assume $A \cap B \neq \emptyset$. Remark 2 gives $O_{1} \notin B$. Assume $O_{2} \in B$ and set $B^{\prime \prime}:=B \backslash\left\{O_{2}\right\}$. Since $\operatorname{deg}(A \cap B)=1$, we have $\operatorname{dim}\left\langle\nu_{d}(A)\right\rangle \cap$ $\left.\left\langle\nu_{d}(B)\right\rangle\right) \geq 1$ and hence $\left\langle\nu_{d}\left(A_{1}\right)\right\rangle \cap\left\langle\nu_{d}\left(B^{\prime \prime}\right)\right\rangle \neq \emptyset$. Take $V \in\left\langle\nu_{d}\left(A_{1}\right)\right\rangle \cap\left\langle\nu_{d}\left(B^{\prime \prime}\right)\right\rangle$ and let $E \subseteq B^{\prime \prime}$ be the minimal subset of $B^{\prime \prime}$ with $V \in\left\langle\nu_{d}(E)\right\rangle$. Since $B \in \mathcal{S}(P)$, then $E \in \mathcal{S}(V)$. Since $\left.P \in\left\langle\nu_{d}\left(E \cup\left\{O_{2}\right\}\right)\right)\right\rangle$, we get $\sharp(E) \geq 3 d-3$, i.e. $E=B^{\prime \prime}$. By [5] V has not border rank ≤ 3. Hence A_{1} evinces the border rank of V. Therefore $\sharp\left(B^{\prime \prime}\right)=3 d-2([4$, Proposition 5.19]), a contradiction.

Since $B \cap A=\emptyset\left(\right.$ Claim 4), $r_{m, d}(P)=3 d-2$ if and only if $B \cap C$ evinces the rank of a point $P_{1} \in\left\langle\nu_{d}(C)\right\rangle$ with border rank 4 . Since $h^{0}\left(\mathcal{O}_{C \cup L}(d)\right)=3 d+2$ and $\operatorname{deg}\left(W_{0}\right)=3 d+3$, we see that $\left\langle\nu_{d}(B)\right\rangle \cap\left\langle\nu_{d}(L)\right\rangle$ is a line. Fix $o \in B \cap C$. The set $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(B \backslash\{o\})\right\rangle$ is a point, $P^{\prime \prime}$, and $r_{m, d}\left(P^{\prime \prime}\right) \leq 3 d-3$. Set $B^{\prime}:=B \backslash\{o\}$.

Claim 5: A evinces the cactus rank of $P^{\prime \prime}$ and B^{\prime} evinces the rank of $P^{\prime \prime}$.
Proof of Claim 5: $P^{\prime \prime}$ has cactus rank at most 5. Since $d \geq 8, P^{\prime \prime}$ has cactus rank 5 if and only if $P^{\prime \prime} \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A$. Assume $P^{\prime \prime} \in$ $\left\langle\nu_{d}\left(A^{\prime \prime} \cup\left\{O_{2}\right\}\right)\right\rangle$. We would get $r_{m, d}\left(P^{\prime \prime}\right) \leq(2 d-1)+1$ by [5, Theorem 37$]$ and hence $r_{m, d}(P) \leq 2 d+1$, contradicting, for instance, Claim 3 and steps (b), (c) of the proof of Proposition 4. Now assume $P^{\prime \prime} \in\left\langle\nu_{d}\left(A_{1}\right)\right\rangle \backslash\left\langle\nu_{d}\left(A^{\prime \prime}\right)\right\rangle$. Since $r_{m, d}\left(P^{\prime \prime}\right)=3 d-2$ ([4, Proposition 5.19]), we get $\sharp\left(B^{\prime}\right) \geq 3 d-2$ and hence $\sharp(B) \geq 3 d-1$, a contradiction. Let $B_{1} \subseteq B^{\prime}$ be a minimal subset of B^{\prime} such that $P^{\prime} \in\left\langle\nu_{d}\left(B_{1}\right)\right\rangle$. Since $B \in \mathcal{S}(P)$, it is easy to check that $B_{1} \in \mathcal{S}\left(P^{\prime}\right)$. If $B_{1} \subsetneq B^{\prime}$,
then $\sharp\left(B_{1}\right) \geq 3 d-3$ (by what we proved in steps (a), (b) and (c)) and hence $\sharp(B) \geq 3 d-1$, a contradiction.

Claim 5 shows that $r_{m, d}(P)=3 d-3$ for some P whose cactus rank is evinced by A.

Proposition 6. Fix integers $m \geq 1, b \geq 2, d \geq 2 b+1$ and let $P \in \mathbb{P}^{r}$ be a point with border rank b whose border rank and cactus rank is evinced by a scheme A with $b-1$ connected components, one of degree 2 and the other ones of degree 1. Write $A=A_{1} \sqcup\left\{O_{2}, \cdots O_{b-1}\right\}$ with $\operatorname{deg}\left(A_{1}\right)=2$ and set $L:=\left\langle A_{1}\right\rangle$. Let c be the number of indices $i \in\{2, \ldots, b-1\}$ such that $O_{i} \in L$. Assume $2 b \leq 4+3 c$. We have $r_{m, d}(P)=d+b-2-2 c$ and every $B \in \mathcal{S}(P)$ has a decomposition $B_{1} \sqcup B_{2}$ with $\sharp\left(B_{2}\right)=b-c-2, B_{2}=\left\{O_{2}, \ldots, O_{b-1}\right\} \backslash\left\{O_{2}, \ldots, O_{b-1}\right\} \cap L$, $\sharp\left(B_{1}\right)=d-c, B_{1} \subset L \backslash A_{\text {red }} \cap L$ and $A \cap B_{1}=\emptyset$.

Proof. Set $W_{0}:=A \cup B$. Since A is not reduced, we have $A \neq B$ and hence $h^{1}\left(\mathcal{I}_{A \cup B}(d)\right)>0([3$, Lemma 1]). The case $m=1$ (and hence $c=b-2$) of the assertion on $r_{m, d}(P)$ is Sylvester's theorem (Remark 1, [8], [11, Theorem 4.1], [5, Theorem 23]). For $m=1$ the assertion on $\mathcal{S}(P)$ says only that $A_{\text {red }} \cap B=\emptyset$, which is true by the last part of Remark 1.

Now assume $m>1$. Take any $B \in \mathcal{S}(P)$. Set $E:=A \cap L$ and $F:=$ $\left\{O_{2}, \ldots, O_{b-1}\right\} \backslash\left\{O_{2}, \ldots, O_{b-1}\right\} \cap L$. We have $\sharp(F)=b-2-c$. Since A evinces the cactus rank of P, there are $P_{1} \in\left\langle\nu_{d}(E)\right\rangle$ and $P_{2} \in\left\langle\nu_{d}(F)\right\rangle$ such that $P \in\left\langle\left\{P_{1}, P_{2}\right\}\right\rangle, E$ evinces the cactus rank of P_{1} and F evinces the cactus rank of P_{2}. Sylvester's theorem gives $r_{1, d}\left(P_{1}\right)=d-c$ (Remark 1, [8], [11, Theorem 4.1], [5, Theorem 23]). Since F is reduced, we get $r_{m, d}(P) \leq d+b-2-2 c$ and hence $\sharp(B) \leq d+b-2-2 c$. Let $M \subset \mathbb{P}^{m}$ be a general hyperplane containing L (hence $M=L$ if $m=1$). Since every non-reduced connected component of A is contained in $L, W_{0} \backslash W_{0} \cap L$ is a finite set and M is general, we have $M \cap W_{0}=W_{0} \cap L$ and hence $\sharp\left(W_{0} \backslash W_{0} \cap L\right) \leq d+2 b-4-3 c$. Since $2 b \leq 4+3 c$, we have $\sharp\left(W_{0} \backslash W_{0} \cap L\right) \leq d$ and hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{M}\left(W_{0}\right)}(d-1)\right)=0$. By [4, Lemma 5.1] we get $B \backslash B \cap L=F$. Hence $\operatorname{deg}\left(W_{0}\right) \leq d+2+b-2 c$. Since B evinces the rank of P, we get $r_{m, d}(P)=b-2-c+r_{m, d}\left(P_{1}\right)$. By concision ([10, Exercise 3.2.2.2]) we have $r_{m, d}\left(P_{1}\right)=r_{1, d}\left(P_{1}\right)$ and every element of $\mathcal{S}\left(P_{1}\right)$ is contained in L.

Proposition 7. Fix integers $d \geq 5, x \geq 0, y \geq 0$, and assume $x<\lceil(d-$ 2)/2ך and $d \geq 2+2 y$. Let $A_{1} \subset \mathbb{P}^{m}, m \geq 2$, be a curvilinear scheme of degree 3 such that $\operatorname{dim}\left(\left\langle A_{1}\right\rangle\right)=2$. If $m=2$, then assume $y=0$. Let $A^{\prime} \subset A_{1}$ be the degree two subscheme of A_{1}. Set $\left\{O_{1}\right\}:=\left(A_{1}\right)_{\text {red }}$ and $L:=\left\langle A^{\prime}\right\rangle$. Fix finite sets $E \subset L \backslash\left\{O_{1}\right\}$ and $F \subset \mathbb{P}^{m} \backslash\left\langle A_{1}\right\rangle$ with $\sharp(E)=x$ and $\sharp(F)=y$. Set
$A:=A_{1} \cup E \cup F$. Fix $P \in\left\langle\nu_{d}(A)\right\rangle$ such that $P \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A$. Then $r_{m, d}(P)=2 d-1-x+y$ and every $B \in \mathcal{S}(P)$ contains F.

Proof. First assume $y=0$. By concision we may assume $m=2$. Since $P \notin$ $\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A$, the set $\left\langle\nu_{d}(E) \cup\{P\}\right\rangle \cap\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$ is a single point, Q_{1}, and $Q_{1} \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A_{1}$. Therefore A_{1} achieves the cactus rank and the border rank of Q_{1}. Therefore $r_{m, d}\left(Q_{1}\right)=2 d-1$ ([5, Theorem 37]). Hence $2 d+1-x \leq r_{m, d}(P)$. Therefore it is sufficient to prove that $r_{m, d}(P) \leq 2 d-1-x$.

Let $R \subset \mathbb{P}^{2}$ be any line such that $O_{1} \in R$ and $L \neq R$. Since $\operatorname{Res}_{L}(A)=$ $\left\{O_{1}\right\} \subset R$, we have $A \subset L \cup R$ and hence $P \in\left\langle\nu_{d}(L \cup R)\right\rangle$. Fix $P_{1} \in\left\langle\nu_{d}(L)\right\rangle$ and $P_{2} \in\left\langle\nu_{d}(R)\right\rangle$ such that $P \in\left\langle\left\{P_{1}, P_{2}\right\}\right\rangle$. Let A^{\prime} be the degree two subscheme of A_{1}.

Claim 1: We have $P_{1} \in\left\langle\nu_{d}\left(A^{\prime} \cup E\right)\right\rangle$.
Proof of Claim 1: Assume $P_{1} \notin\left\langle\nu_{d}\left(A^{\prime} \cup E\right)\right\rangle$ and call $J \subset L$ any zerodimensional scheme evincing the border rank, b, of P_{1} with respect to the rational normal curve $\nu_{d}(L)$. Let $K \subset R$ be any zero-dimensional scheme evincing the border rank, b^{\prime}, of P_{2} with respect to $\nu_{d}(R)$. We have $b \leq\lfloor(d+2) / 2\rfloor$ and $b^{\prime} \leq\lfloor(d+2) / 2\rfloor$ and hence $\operatorname{deg}(J \cup K) \leq b+b^{\prime} \leq 2\lfloor(d+2) / 2\rfloor$ (Remark 1). We have $P \in\left\langle\nu_{d}(J \cup K)\right\rangle$. If $A \nsubseteq J \cup K$, then $h^{1}\left(\mathcal{I}_{J \cup K \cup A}(d)\right)>0$ ([3, Lemma 1]). We have $\operatorname{deg}(J \cup K \cup A) \leq 2\lfloor(d+2) / 2\rfloor+3+x \leq 2 d+1$. By [5 , Lemma 34] we get the existence of a line $T \subset \mathbb{P}^{2}$ with $\operatorname{deg}(T \cap(J \cup B \cup A)) \geq d+2$. Since $A \cup J \cup K \subset L \cup R$, then either $T=L$ or $T=R$. Assume $T=R$. Since $T \cap A=\left\{O_{1}\right\}$ as schemes, we get $b^{\prime} \geq d+1$, a contradiction. If $T=L$ we get $2+x+b \geq d+2$, i.e. $x \geq\lceil(d-2) / 2\rceil$, a contradiction. Now assume $A \subset J \cup K$. Since $R \cap A=\left\{O_{1}\right\}$ as schemes, we get $A^{\prime} \cup E \subseteq J$ and hence $P_{1} \in\left\langle\nu_{d}\left(A^{\prime} \cup E\right)\right\rangle$.

Claim 2: We have $P_{1} \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq E$.
Proof of Claim 2: Assume $P_{1} \in\left\langle\nu_{d}(U)\right\rangle$ for some $U \subseteq E$. We get $P \in$ $\left\langle\nu_{d}(U \cup R)\right\rangle$. Let $K \subset R$ be a scheme evincing the cactus rank, b^{\prime}, of P_{2} with respect to $\nu_{d}(R)$. Since $A \nsubseteq U \cup K$, [3, Lemma 1] gives $h^{1}\left(\mathcal{I}_{U \cup K}(d)\right)>0$ and hence $\operatorname{deg}(U \cup K) \geq d+2$. Since $\operatorname{deg}(U \cup K) \leq x+1+b^{\prime} \leq x+1+\lfloor(d+2) / 2\rfloor$, we get a contradiction.

By Claims 1 and $2 P_{1}$ has border rank $2+x$ with respect to $\nu_{d}(L)$. Sylvester's theorem (Remark 1), gives the existence of $B_{1} \subset L$ such that $\sharp\left(B_{1}\right)=d-x$ and $P_{1} \in\left\langle\nu_{d}\left(B_{1}\right)\right\rangle$. By Sylvester's theorem (Remark 1) applied to $\nu_{d}(R)$ and P_{2} it would be sufficient to prove that P_{2} has border rank >2 with respect to $\nu_{d}(R)$ for some choice of P_{1}, P_{2}. Instead of P_{2} we may take any $P_{2}^{\prime} \in\left\langle\left\{P_{1}, \nu_{d}\left(O_{1}\right)\right\}\right\rangle \backslash$ $\left\{\nu_{d}\left(O_{1}\right)\right\}$ and then find a new point P_{1}. We may find P_{2}^{\prime} with border rank >2 unless the border rank of P_{2} is evinced by the degree two scheme $\mathbf{v} \subset R$ with O_{1} as its support. In this case we would have $P \in\left\langle\nu_{d}\left(\mathbf{v} \cup A^{\prime} \cup E\right)\right\rangle$. Since $\mathbf{v} \cup A^{\prime}$ is contained in the scheme $2 O_{1} \subset \mathbb{P}^{2}$ with $\left(\mathcal{I}_{O_{1}}\right)^{2}$ as its ideal sheaf
and since each point of $\left\langle\nu_{d}\left(2 O_{1}\right)\right\rangle$ has rank d ([5, Theorem 32]), we would get $r_{m, d}(P) \leq d+x<2 d-1-x$, a contradiction.

Now assume $y>0$ and hence $m>2$. By the case $y=0$ we know that $r_{m, d}(P) \leq 2 d-1-x+y$. Fix any $B \in \mathcal{S}(P)$. We have $\sharp(B) \leq 2 d-1-x+y$ and hence $W:=A \cup B$ has degree $\leq 2 d+2+2 y$. By the case $y=0$ it is sufficient to prove that $F \subset B$. We have $\operatorname{deg}(W) \leq 2 d+2+2 y \leq 3 d$ and there is no plane containing $A_{1} \cup F$. Since $h^{1}\left(\mathcal{I}_{W}(d)\right)>0$ by [3, Lemma 1], Lemma 1 and Remark 3 give that either there is a line D with $\operatorname{deg}\left(D \cap W_{0}\right) \geq d+2$ or there is a reduced conic T with $\operatorname{deg}\left(T \cap W_{0}\right) \geq 2 d+2$. Assume the existence of T. Let $H \subset \mathbb{P}^{m}$ be any hyperplane containing T. Since $\operatorname{deg}\left(\operatorname{Res}_{M}(W)\right) \leq d-2$, we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(W)}(d-1)\right)=0$. By [4, Lemma 5.1] we get $A_{1} \subset M$ and $B \backslash B \cap M=(E \cup F) \backslash(E \cup F) \cap M$. Since M is an arbitrary hyperplane containing T, we get $\left\langle A_{1}\right\rangle=\langle T\rangle$ and $F \subset B$. We also get that $B \backslash F$ evinces the rank of a point with $A_{1} \cup E$ evincing its cactus rank and hence $\sharp(B \backslash F)=2 d-1-x$.

Now assume the existence of the line D such that $\operatorname{deg}(D \cap W) \geq d+2$. Since $\sharp(F)=y \leq d$, we have $\operatorname{deg}\left(A_{1} \cup E\right) \geq 2$. Therefore $L \subset\left\langle A_{1}\right\rangle$ and, as we saw using T, we get $F \subset B$.

Proposition 8. Assume $d \geq 9$. Let $A_{1}, A_{2} \subset \mathbb{P}^{m}$, $m \geq 3$, be disjoint connected curvilinear schemes such that $\operatorname{deg}\left(A_{1}\right)=3$ and $\operatorname{deg}\left(A_{2}\right)=2$. Set $A:=A_{1} \cup A_{2}$. Assume $\operatorname{dim}(\langle A\rangle)=3$ and that A is in linearly general position in $\langle A\rangle$, i.e. assume $\left(A_{2}\right)_{\text {red }} \notin\left\langle A_{1}\right\rangle$ and that the line $\left\langle A_{2}\right\rangle$ does not intersect the line spanned by the degree two subscheme of A_{1}. Fix $P \in\left\langle\nu_{d}(A)\right\rangle$ such that $P \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A$. Then $r_{m, d}(P)=3 d-3$.

Proof. By concision we may assume $m=3$. Since A is curvilinear, it has only finitely many subschemes. Hence $A \cup\{Q\}$ is in linearly general position for a general $Q \in \mathbb{P}^{3}$. The scheme $A \cup\{Q\}$ is contained in a unique rational normal curve C ($\left[9\right.$, part (b) of Theorem 1]). Hence $P \in\left\langle\nu_{d}(C)\right\rangle$. Since A is not reduced and $d \geq 4$, Sylvester's theorem says that P has rank $3 d+2-\operatorname{deg}(A)=3 d-3$ with respect to the degree $3 d$ rational normal curve $\nu_{d}(C)$ (Remark 1). Therefore $r_{m, d}(P) \leq 3 d-3$. Assume $r_{m, d}(P) \leq 3 d-4$ and fix $B \in \mathcal{S}(B)$. Set $W_{0}:=A \cup B$ and use the proof of [4, Proposition 5.19] (the proof of Proposition 4 was harder (e.g. step (b) in that proof does not occur), because now $\operatorname{deg}\left(W_{0}\right) \leq 3 d+1$, while $\operatorname{deg}\left(W_{0}\right) \leq 3 d+2$ in that proof $)$.

Proposition 9. Fix integers $m \geq 2, c \in\{0,1,2\}, y \geq 0$, and $d \geq \max \{9,2+$ $2 y\}$. If $y>0$, then assume $m \geq 3$. Let $A_{1} \subset \mathbb{P}^{m}$ be a connected curvilinear scheme such that $\operatorname{deg}\left(A_{1}\right)=3$ and $\operatorname{dim}\left(\left\langle A_{1}\right\rangle\right)=2$. Set $\left\{O_{1}\right\}:=\left(A_{1}\right)_{\text {red }}$. Let A^{\prime} be the degree 2 zero-dimensional subscheme of A_{1}. Fix sets $E \subset\left\langle A_{1}\right\rangle \backslash\left\langle A^{\prime}\right\rangle$ and $F \subset \mathbb{P}^{m} \backslash\left\langle A_{1}\right\rangle$ such that $\sharp(E)=c$ and $\sharp(F)=y$. If $c=2$, then assume
$O_{1} \notin\langle E\rangle$. Set $A:=A_{1} \cup E \cup F$. Fix $P \in\left\langle\nu_{d}(A)\right\rangle$ such that $P \notin\left\langle\nu_{d}(U)\right\rangle$ for any $O \nsubseteq A$. Then $r_{m, d}(P)=2 d-1-c+y$ and every element of $\mathcal{S}(P)$ contains F

Proof. First assume $y=0$. By concision we may assume $m=2$. Our assumptions on E imply the existence of a smooth conic C containing A and hence $P \in\left\langle\nu_{d}(C)\right\rangle$. Since A is not reduced, Sylvester's theorem gives that P has rank $2 d-1-c$ with respect to the curve $\nu_{d}(C)$ (Remark 1). Hence $r_{m, d}(P) \leq 2 d-1-c$. Assume $r_{m, d}(P) \leq 2 d-2-c$ and fix $B \in \mathcal{S}(P)$. Set $W:=A \cup B$. Since $h^{1}\left(\mathcal{I}_{W}(d)\right)>0([3$, Lemma 1$])$ and $\operatorname{deg}(W) \leq 2 d+1$, there is a line R with $\operatorname{deg}(R \cap W) \geq d+2$. Since $\operatorname{Res}_{R}(W)$ has degree $\leq d-1$, we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{R}(W)}(d-1)\right)=0$. By [4, Lemma 5.1] we get $A_{1} \subset R$, a contradiction. If $y>0$, then the proof of Proposition 7 works verbatim.

Proposition 10. Assume $d \geq 9$ and $m \geq 3$. Let $A_{1} \subset \mathbb{P}^{m}$ be a degree 3 connected curvilinear scheme such that $\left\langle A_{1}\right\rangle$ is a plane. Let A^{\prime} be the degree two subscheme of A_{1}. Fix $O_{2} \in\left(\left\langle A_{1}\right\rangle \backslash\left\langle A^{\prime}\right\rangle\right)$ and call A_{2} any degree two connected zero-dimensional scheme such that $\left(A_{2}\right)_{\text {red }}=\left\{O_{2}\right\}$ and $A_{2} \nsubseteq\left\langle A_{1}\right\rangle$. Set $A:=$ $A_{1} \cup A_{2}$. Fix $P \in\left\langle\nu_{d}(A)\right\rangle$ such that $P \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A$. Then $r_{m, d}(P)=$ $3 d-2$.

Proof. By concision we may assume $m=3$. Since $O_{2} \in\left\langle A_{1}\right\rangle \backslash\left\langle A^{\prime}\right\rangle$, we have $h^{0}\left(\left\langle A_{1}\right\rangle, \mathcal{I}_{A_{1} \cup\left\{O_{2}\right\}}(2)\right)=2$ and a general conic $C \subset M$ containing $A_{1} \cup\left\{O_{2}\right\}$ is smooth. Since $P \in\left\langle\nu_{d}(A)\right\rangle$, but $P \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A$, the set $\left\langle\nu_{d}\left(A_{1} \cup\right.\right.$ $\left.\left.\left\{O_{2}\right\}\right)\right\rangle \cap\left\langle\{P\} \cup \nu_{d}\left(A_{2}\right)\right\rangle$ is a line containing $\nu_{d}\left(O_{2}\right)$. Fix any point $P^{\prime} \neq \nu_{d}\left(O_{2}\right)$ of this line. We have $P^{\prime} \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A_{1} \cup\left\{O_{2}\right\}$. Therefore P^{\prime} has border rank 4 with respect to the degree d rational normal curve $\nu_{d}(C)$. By Sylvester's theorem (Remark 1) there is $B_{1} \subset C$ such that $\sharp\left(B_{1}\right)=2 d-2$ and $P^{\prime} \in\left\langle\nu_{d}\left(B_{1}\right)\right\rangle$. Since $P^{\prime} \in\left\langle\{P\} \cup \nu_{d}\left(A_{2}\right)\right\rangle$, there is $P^{\prime \prime} \in\left\langle\nu_{d}\left(A_{2}\right)\right\rangle$ such that $P \in\left\langle\left\{P^{\prime}, P^{\prime \prime}\right\}\right\rangle$. Since $P^{\prime \prime} \in\left\langle\nu_{d}\left(\left\langle A_{2}\right\rangle\right)\right\rangle$ and every point of $\left\langle\nu_{d}\left(\left\langle A_{2}\right\rangle\right)\right\rangle$ has rank at most d with respect to the degree d rational normal curve $\nu_{d}\left(\left\langle A_{2}\right\rangle\right)$, we get $r_{m, d}(P) \leq 3 d-2$. Assume $r_{m, d}(P) \leq 3 d-3$ and take $B \in \mathcal{S}(P)$. Set $W_{0}:=A \cup B$. We have $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)>0([3$, Lemma 1$])$ and $\operatorname{deg}\left(W_{0}\right) \leq 3 d+2$.

Claim 1: Assume the existence of a reduced conic C such that $W_{0} \subset$ $C \cup\left\langle A_{2}\right\rangle$. Then $\sharp\left(B \backslash\left(B \cap\left\langle A_{1}\right\rangle\right)\right) \geq d$.

Proof of Claim 1: Assume $\sharp\left(B \backslash\left(B \cap\left\langle A_{1}\right\rangle\right)\right) \leq d-1$. Since $\operatorname{Res}_{\left\langle A_{1}\right\rangle}\left(W_{0}\right)=$ $\left\{O_{2}\right\} \cup\left(B \backslash\left(B \cap\left\langle A_{1}\right\rangle\right)\right)$, we have $\operatorname{deg}\left(\operatorname{Res}_{\left\langle A_{1}\right\rangle}\left(W_{0}\right)\right) \leq d$ and hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{\left\langle A_{1}\right\rangle}\left(W_{0}\right)}\right.$ $(d-1))=0$. If $h^{1}\left(\mathcal{I}_{\left\langle A_{1}\right\rangle \cap W_{0}}(d)\right)=0$, then a residual exact sequence gives $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)=0$, a contradiction. If $h^{1}\left(\mathcal{I}_{\left\langle A_{1}\right\rangle \cap W_{0}}(d)\right)>0$, then [4, Lemma 5.1] shows that $A \subset\left\langle A_{1}\right\rangle$, a contradiction.

Claim 2: Assume the existence of a reduced conic C such that $W_{0} \subset$ $C \cup\left\langle A_{2}\right\rangle$. Then $\sharp(B \cap C) \geq 2 d-2$.

Proof of Claim 2: Since $\left(A_{1}\right)_{\text {red }} \notin\left\langle A_{2}\right\rangle$, then $A_{1} \subset C$ and $\left\langle A_{1}\right\rangle=\langle C\rangle$. Claim 1 and Remark 2 gives $O_{2} \notin B$ and $\sharp\left(B \cap\left\langle A_{2}\right\rangle\right)=d$.
(i) Assume $h^{1}\left(\left\langle A_{1}\right\rangle, \mathcal{I}_{W_{0} \cap\left\langle A_{1}\right\rangle}(d)\right)>0$.
(i1) First assume $O_{2} \in C$ and that C is a smooth conic. Since $\operatorname{deg}(C \cap$ $A)=4$ and $\sharp(B \cap C) \leq 2 d-3$, then $h^{1}\left(C, \mathcal{I}_{C \cap W_{0}}(d)\right)=0$ and hence $h^{1}\left(\left\langle A_{1}\right\rangle\right.$, $\left.\mathcal{I}_{W_{0} \cap\left\langle A_{1}\right\rangle}(d)\right)=0$.
(i2) Now assume $O_{2} \in C$ and that C is not smooth. Since $O_{2} \notin\left\langle A^{\prime}\right\rangle$, we have $\langle C\rangle=\left\langle\left\{O_{2}\right\} \cup A^{\prime}\right\rangle$. Set $M:=\left\langle\left\{O_{2}\right\} \cup A^{\prime}\right\rangle$. We have $\operatorname{Res}_{M}(A)=A^{\prime}$. Since $\langle A\rangle=\mathbb{P}^{3}$ and no connected component of A is reduced, [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{M}\left(W_{0}\right)}(d-1)\right)>0$ and hence $\sharp\left(B \cap\left(\left\langle A^{\prime}\right\rangle \backslash\left\{O_{1}\right\}\right)\right) \geq d-1$. Assume $\sharp\left(B \cap\left(\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle \backslash\left\{O_{1}, O_{2}\right\}\right)\right) \leq d-2$. If $B \cap\left(\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle \backslash\left\{O_{1}, O_{2}\right\}\right)=\emptyset$, then set $\epsilon:=\emptyset$. If $B \cap\left(\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle \backslash\left\{O_{1}, O_{2}\right\}\right) \neq \emptyset$, then fix $o \in\left(B \cap\left(\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle \backslash\right.\right.$ $\left.\left\{O_{1}, O_{2}\right\}\right)$) and set $\epsilon:=\{o\}$. There is a smooth quadric $\left.Q \supset\left\langle A^{\prime}\right\rangle\right\rangle \cup\left\langle A_{2}\right\rangle \cup \epsilon$ and with $A_{1} \nsubseteq Q$. Since $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq d-1$ by our definition of ϵ and the assumption on the integer $\sharp\left(B \cap\left(\left\langle\left\{O_{1}, O_{2}\right\}\right\rangle \backslash\left\{O_{1}, O_{2}\right\}\right)\right)$, [4, Lemma 5.1] gives a contradiction.
(i3) Now assume $O_{2} \notin C$. Assume for the moment $h^{1}\left(C, \mathcal{O}_{C \cap W_{0}}(d)\right)=$ 0 . Since $h^{1}\left(\langle C\rangle, \mathcal{I}_{O_{2}}(d-2)\right)=0$, the residual exact sequence of the inclusion $\left\langle A_{1}\right\rangle \subset \mathbb{P}^{3}$ gives $h^{1}\left(\left\langle A_{1}\right\rangle, \mathcal{I}_{W_{0} \cap\left\langle A_{1}\right\rangle}(d)\right)=0$, a contradiction. Now assume $h^{1}\left(C, \mathcal{O}_{C \cap W_{0}}(d)\right)>0$. If C is smooth, then as before we get $\sharp(B \cap C) \geq 2 d-1$, a contradiction. Now assume that C is not smooth. Since $C \supset A_{1}, C$ is the union of $\left\langle A^{\prime}\right\rangle$ and another line $D \subset\left\langle A_{1}\right\rangle$ with $O_{1} \in D$. Remark 2 gives $\sharp(B \cap D) \leq d$. Hence $h^{1}\left(C, \mathcal{O}_{C \cap W_{0}}(d)\right)>0$ only if either $\sharp(B \cap C)=2 d-1$ or $\sharp\left(B \cap\left\langle A^{\prime}\right\rangle\right) \geq d$. We may assume that the latter case occurs and that $\sharp\left(B \cap\left(D \backslash\left\{O_{1}\right\}\right)\right) \leq d-3$. Fix a general quadric $Q \subset \mathbb{P}^{3}$ containing the two disjoint lines $\left\langle A^{\prime}\right\rangle$ and $\left\langle A_{2}\right\rangle$. Since $\mathcal{I}_{\left\langle A^{\prime}\right\rangle \cup\left\langle A_{2}\right\rangle}(2)$ is spanned by its global sections, we have $Q \cap\left(B \cap\left(D \backslash\left\{O_{1}\right\}\right)=\emptyset\right.$ and $A_{1} \nsubseteq Q$. Hence $\operatorname{Res}_{Q}\left(W_{0}\right)=\left\{O_{1}\right\} \cup B \cap D$. Since $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq d-2$, then $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q}\left(W_{0}\right)}(d-2)\right)=0$. Therefore [4, Lemma 5.1] implies $A_{1} \subset Q$, a contradiction.
(ii) Assume $h^{1}\left(\left\langle A_{1}\right\rangle, \mathcal{I}_{W_{0} \cap\left\langle A_{1}\right\rangle}(d)\right)=0$. Since $\operatorname{Res}_{\left\langle A_{1}\right\rangle}\left(W_{0}\right)=\left\{O_{2}\right\} \cup(B \cap$ $\left.\left\langle A_{2}\right\rangle\right)$, we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{\left\langle A_{1}\right\rangle}\left(W_{0}\right)}(d-1)\right)=1$. The residual exact sequence of the inclusion $\left\langle A_{1}\right\rangle \subset \mathbb{P}^{3}$ gives $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right) \leq 1$ and hence $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)=1$. Grassmann's formula gives $\operatorname{dim}(\langle A\rangle \cap\langle B\rangle)=\operatorname{deg}(A \cap B)$. Set $B_{2}:=B \cap\left\langle A_{2}\right\rangle$. Since $O_{2} \notin B$ and $\sharp\left(B \cap\left\langle A_{2}\right\rangle\right)=d$, Grassmann's formula gives that $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(B)\right\rangle$ is the linear span of the point $\left\langle\nu_{d}\left(A_{2}\right)\right\rangle \cap\left\langle\nu_{d}\left(B_{2}\right)\right\rangle$ and the set $E:=B \cap A \cap C$. Since $P \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A$, we get $A_{1} \subseteq E \subset B$, contradicting the fact that A_{1} is not reduced.
(a) By Claims 1 and 2 to get a contradiction to the assumption $\sharp(B) \leq$ $3 d-3$ it is sufficient to prove the existence of a reduced conic C such that $W_{0} \subset C \cup\left\langle A_{2}\right\rangle$. Since $\left\langle A_{1}\right\rangle$ is a plane, W_{0} is not contained in the union of 3
disjoint lines. Since A is not in linearly general position in \mathbb{P}^{3}, A is not contained in a rational normal curve. Since $\langle A\rangle=\mathbb{P}^{3}, A$ is not contained in a plane cubic. Hence any degree 3 reduced curve containing W_{0} (if any) has either 1 line or 3 lines as components and in both cases $\left\langle A_{2}\right\rangle$ is one of these lines. Therefore to get a contradiction it is sufficient to prove that W_{0} is contained in a reduced degree 3 curve.
(b) Let $H_{1} \subset \mathbb{P}^{3}$ be a plane such that $e_{1}:=\operatorname{deg}\left(W_{0} \cap H_{1}\right)$ is maximal. Set $W_{1}:=\operatorname{Res}_{H_{1}}\left(W_{0}\right)$. Fix an integer $i \geq 2$ and assume to have defined the integers e_{j}, the planes H_{j} and the scheme $W_{j}, 1 \leq j<i$. Let $H_{i} \subset \mathbb{P}^{3}$ be any plane such that $e_{i}:=\operatorname{deg}\left(H_{i} \cap W_{i-1}\right)$ is maximal. Set $W_{i}:=\operatorname{Res}_{H_{i}}\left(W_{i-1}\right)$. We have $e_{i} \geq e_{i+1}$ for all i. We look at the residual exact sequences (2). Since $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)>0$, there is an integer $i>0$ such that $h^{1}\left(H_{i}, \mathcal{I}_{W_{i-1} \cap H_{i}, H_{i}}(d+1-i)\right)>0$. We call g the first such an integer. Since any zero-dimensional scheme with degree 3 of \mathbb{P}^{3} is contained in a plane, if $e_{i} \leq 2$, then $W_{i}=\emptyset$ and $e_{j}=0$ if $j>i$. We have $\sum_{i} e_{i}=\operatorname{deg}\left(W_{0}\right) \leq 3 d+2$. Since A is not in linearly general position, we have $e_{1} \geq 4$. Therefore $g \leq d+1$. Assume $g=d+1$. We get $e_{d+1} \geq 2$. Since $e_{1} \geq 4$, we get $e_{1}=4$, and $e_{i} \geq 3$ for $i \leq d$. Therefore $\operatorname{deg}\left(W_{0}\right) \geq 3 d+4$, a contradiction.
(c) Assume $g \leq d$. Since $h^{1}\left(\mathcal{O}_{\mathbb{P} 3}(t)\right)=0$ for all integers t, we have $e_{g}>0$. Recall that $e_{1} \geq \cdots \geq e_{g-1} \geq e_{g}$ and that $e_{1}+\cdots+e_{g} \leq 3 d+2$. By [5, Lemma 34] either there is a line $L \subset H_{g}$ such that $\operatorname{deg}\left(L \cap W_{g-1}\right) \geq d+3-g$ or $e_{g} \geq 2(d+2-g)+2=2(d+3-g)$. In the latter case we get $3 d+2 \geq 2 g(d+3-g)$ and hence $g=1$. In the former case if $g \geq 2$ we get $e_{g-1} \geq d+4-g$, because A spans \mathbb{P}^{3}. Hence in the former case we get $3 d+2 \geq g(d+4-g)-1$ and hence $1 \leq g \leq 3$.
(c1) Assume $g=3$. We saw that there is a line $L \subset H_{3}$ such that $\operatorname{deg}(L \cap$ $\left.W_{2}\right) \geq d$ and that $e_{2} \geq d+1$. Therefore $e_{1}=e_{2}=d+1$ and $e_{3}=d$. Let N_{1} be a plane containing L and with $f_{1}:=\operatorname{deg}\left(N_{1} \cap W_{0}\right)$ maximal among the planes containing L. Since $d<f_{1} \leq e_{1}=d+1$, we have $f_{1}=d+1$. Set $Z_{0}:=W_{0}$ and $Z_{1}:=\operatorname{Res}_{N_{1}}\left(Z_{0}\right)$. Let $N_{2} \subset \mathbb{P}^{3}$ be a plane such that $f_{2}:=\operatorname{deg}\left(Z_{1} \cap N_{0}\right)$ is maximal. Set $Z_{2}:=\operatorname{Res}_{N_{2}}\left(Z_{1}\right)$. Fix an integer $i \geq 3$ and assume that we had defined f_{j}, N_{j}, Z_{j} for all $j<i$. Let $N_{i} \subset \mathbb{P}^{3}$ be any plane such that $f_{i}:=$ $\operatorname{deg}\left(N_{i} \cap Z_{i-1}\right)$ is maximal. Set $Z_{i}:=\operatorname{Res}_{N_{2}}\left(Z_{i-1}\right)$. The residual exact sequences like (2) with N_{i} instead of H_{i} and Z_{i} instead of W_{i} give the existence of an integer $i>0$ such that $h^{1}\left(N_{i}, \mathcal{I}_{N_{i} \cap Z_{i-1}}(d+1-i)\right)>0$. Let g^{\prime} be the minimal such an integer. Since A spans \mathbb{P}^{3} we have $f_{1} \geq 1+\operatorname{deg}\left(L \cap W_{2}\right) \geq d+1$. We have $f_{g^{\prime}}>0$ because $h^{1}\left(\mathcal{O}_{\mathbb{P}^{3}}(t)\right)=0$ for all integers t. We have $f_{i} \geq f_{i+1}$ for all $i \geq 2$ and $\sum_{i \geq 2} f_{i} \leq 3 d+2-f_{1} \leq 2 d+1$. Since $f_{i} \geq 3$ if $f_{i+1}>0$, we get $g^{\prime} \leq d$. Hence either $f_{g^{\prime}} \geq 2\left(d+1-g^{\prime}\right)+2$ or there is a line $R \subset N_{g^{\prime}}$ with $\operatorname{deg}\left(R \cap W_{g^{\prime}-1}\right) \geq d+3-g^{\prime}$. In the former case we get $2\left(g^{\prime}-1\right)\left(d+2-g^{\prime}\right)+f_{1} \leq$ $3 d+2$ with $f_{1}=d+1$ and hence $1 \leq g^{\prime} \leq 2$. In the latter case if $g^{\prime} \geq 2$ we have
$f_{g^{\prime}-1} \geq d+4-g^{\prime}$; hence in the latter case we have $3 d+2 \geq g^{\prime}\left(d+4-g^{\prime}\right)-1$ and hence $1 \leq g^{\prime} \leq 3$.
(c1.1) Assume $g^{\prime}=3$. Since $f_{1}=d+1$, we have $R \cap L=\emptyset$. Fix a general quadric $Q \supset L \cup D$. Since W_{0} is curvilinear and $\mathcal{I}_{L \cup R}(2)$ is spanned by its global sections, we have $W_{0} \cap Q=W_{0} \cap(L \cup R)$. If $h^{1}\left(Q, \mathcal{I}_{L \cup R}(d)\right)>0$, we immediately get that either $\operatorname{deg}\left(R \cap W_{0}\right) \geq d+2$ (false because $e_{3}=d$) or $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$ (false because $f_{1}=d+1$). The residual sequence of $Q \subset \mathbb{P}^{3}$ gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q}\left(W_{0}\right)}(d-2)\right)>0$. Since $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq 3 d+2-d-d$, there is a line D with $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \geq d$. Since $W_{0}=A \cup B$ with B reduced, we have $D \neq R$ and $D \neq L$. Since $e_{1}<2 d-1$, we have $D \cap R=D \cap L=\emptyset$. Let T be the only quadric containing $L \cup R \cup D . T$ is smooth. Call $\left|\mathcal{O}_{Q}(1,0)\right|$ the ruling of T containing L, R and D. Since $\operatorname{deg}\left(W_{0}\right)-\operatorname{deg}\left(W_{0} \cap(L \cup R \cup D)\right) \leq 2$, we have $h^{1}\left(Q, \mathcal{I}_{\operatorname{Res}_{L \cup R \cup D}\left(W_{0}\right)}(d-2, d)\right)=0$. Thus [4, Lemma 5.1] gives $W_{0} \cup L \cup R \cup D$, contradicting the connectedness of A_{1} and that $\left\langle A_{1}\right\rangle$ is a plane.
(c1.2) Assume $g^{\prime}=2$. Since $f_{2} \leq \operatorname{deg}\left(Z_{1}\right) \leq 2 d+1$, either there is a line $R \subset N_{2}$ with $\operatorname{deg}\left(R \cap Z_{1}\right) \geq d+1$ or there is a conic T with $\operatorname{deg}\left(T \cap Z_{1}\right) \geq f_{2}=$ $\operatorname{deg}\left(Z_{1}\right)=2 d$ and $T \supset Z_{1}$. The latter case cannot occur, because $e_{1}<2 d$. Hence R exists. Since $\operatorname{deg}\left(R \cap W_{0}\right) \geq \operatorname{deg}\left(R \cap Z_{1}\right) \geq d+1$ and W_{0} is not contained in a line, we get $e_{1} \geq d+2$, a contradiction.
(c1.3) Assume $g^{\prime}=1$.
(c1.3.1) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$. Since A spans \mathbb{P}^{3}, we have $e_{1} \geq$ $f_{1} \geq 1+\operatorname{deg}\left(L \cap W_{0}\right) \geq d+3$, a contradiction.
(c1.3.2) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \leq d+1$. Since $f_{1} \leq e_{1} \leq d+2 \leq 2 d+1$, Lemma 1 (or [5, Lemma 34]) gives the existence of a line $D \subset N_{1}$ with $\operatorname{deg}\left(D \cap W_{0}\right) \geq$ $d+2$. Since $L \neq D, L \cup D \subset N_{1}$ and $\operatorname{deg}\left(L \cap W_{0}\right) \geq d$, we get $e_{1} \geq f_{1} \geq 2 d+1$, a contradiction.
(c2) Assume $g=2$. We saw in step (c) that there is a line $L \subset H_{2}$ such that $\operatorname{deg}\left(L \cap W_{1}\right) \geq d+1$. Hence $e_{1} \leq 2 d+1$. Let N_{1} be a plane containing L and with $f_{1}:=\operatorname{deg}\left(N_{1} \cap W_{0}\right)$ maximal among the planes containing L. Define $N_{i}, f_{i}, Z_{i}, g^{\prime}$ as in step (c1). In particular $f_{i} \geq f_{i+1}$ for all $i \geq 2$. We have $f_{1} \geq d+2$ (because $W_{0} \nsubseteq L$) and $f_{2}+\cdots+f_{g^{\prime}} \leq 3 d+2-f_{1} \leq 2 d$. Since $f_{i} \geq 3$ if $f_{i+1}>0$, we get $g^{\prime} \leq d$. Hence either $f_{g^{\prime}} \geq 2\left(d+1-g^{\prime}\right)+2=2\left(d+2-g^{\prime}\right)$ or there is a line $R \subset N_{g^{\prime}}$ with $\operatorname{deg}\left(R \cap Z_{g^{\prime}-1}\right) \geq d+3-g^{\prime}$. In the former case we get that either $g^{\prime}=1$ or $2\left(g^{\prime}-1\right)\left(d+2-g^{\prime}\right) \leq 2 d$; thus $1 \leq g^{\prime} \leq 2$. In the latter case if $g^{\prime} \geq 23$ we have $f_{g^{\prime}-1} \geq d+4-g^{\prime}$, because $Z_{g^{\prime}-2}$ is not contained in the line $R \mathrm{n}$ and $f_{g^{\prime}-1}$ satisfies a maximality condition. Hence in the latter case if $g^{\prime} \geq 3$ we have $2 d \geq\left(g^{\prime}-2\right)\left(d+4-g^{\prime}\right)+d+3-g^{\prime}$. Thus in the latter case we have $1 \leq g^{\prime} \leq 3$.
(c2.1) Assume $g^{\prime}=2, f_{2} \geq 2 d$ and the non-existence of a line R such that $\operatorname{deg}\left(R \cap Z_{1}\right) \geq d+1$. Since $e_{1} \geq f_{2}$, we get $e_{2} \leq d+1$. Since $\operatorname{deg}\left(L \cap W_{1}\right) \geq d+1$,
we get $\operatorname{deg}\left(W_{1}\right)=d+1$ and $W_{1} \subset L$. We also get $f_{1}=d+2$ and hence (since $\left.W_{0} \nsubseteq L\right)$ we have $\operatorname{deg}\left(L \cap W_{0}\right)=d+1$. Since $f_{1}=d+2, f_{2} \geq 2 d$ and $\operatorname{deg}\left(W_{0}\right) \leq 3 d+2$, we get $f_{2}=2 d$ and $Z_{1} \subset N_{2}$. Since $h^{1}\left(N_{2}, \mathcal{I}_{Z_{1} \cap N_{2}}(d-1)\right)>0$ and there is no line R with $\operatorname{deg}\left(R \cap W_{1}\right) \geq d+1$, Lemma 2 gives the existence of a plane conic $E \subset N_{2}$ containing Z_{2}. Recall that it is sufficient to prove that $W_{0} \subset E \cup L$ with E a reduced conic. Since the sum of the degrees of the unreduced connected components of W_{0} is at most 5 and $d \geq 9, E$ is not a double line. Since $\operatorname{deg}\left(E \cap W_{1}\right) \geq 6$ and B is reduced, L is not a component of E. By step (a) it is sufficient to prove that $W_{0} \subset L \cup E$. Let $M \subset \mathbb{P}^{3}$ be a general plane containing L. Since W_{0} is curvilinear and M is general, we have $W_{0} \cap M=W_{0} \cap M$. Since $N_{1} \supset L$ and $\operatorname{deg}\left(\operatorname{Res}_{N_{1}}\left(W_{0}\right) \cap N_{2}\right)=2 d$, we have $\operatorname{deg}\left(W_{0} \cap\left(M \cup N_{2}\right)\right) \geq \operatorname{deg}\left(L \cap W_{0}\right)+f_{2} \geq 3 d+1$. Hence $\operatorname{deg}\left(\operatorname{Res}_{N_{2} \cup M}\left(W_{0}\right)\right) \leq 1$ and so $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{N_{2} \cup M}\left(W_{0}\right)}(d-2)\right)=0$. Since B is a finite set, [4, Lemma 5.1] (applied to the degree 2 surface $N_{2} \cup M$, not a hyperplane) gives $W_{0} \subset N_{2} \cup M$. Hence $\operatorname{Res}_{N_{2}}\left(W_{0}\right) \subset M$. Since $W_{0} \cap M=W_{0} \cap L$, we get $\operatorname{Res}_{N_{2}}\left(W_{0}\right) \subset L$. Since $N_{2} \cap W_{0}=E \cap W_{0}$, if W_{0} were a finite set, we would have $W_{0} \subset E \cup L$. We at least have $\left(W_{0}\right)_{\text {red }} \subset E \cup L$ and to get $W_{0} \subset E \cup L$ it is sufficient to prove that $A_{1} \subset E \cup L$ and $A_{2} \subset E \cup L$. For an arbitrary zero-dimensional scheme $W_{0} \subset N_{2} \cup L$ with $W_{0} \cap N_{2} \subset E$, we have $W_{0} \subset E \cup L$ if $E \cap L \cap W_{0}=\emptyset$. Thus we may assume $E \cap L \cap W_{0} \neq \emptyset$. In particular $E \cap L \neq \emptyset$. Since $L \nsubseteq N_{2}$, the scheme $E \cap L$ is a point, o, with its reduced structure. We have $h^{0}\left(\mathcal{I}_{E \cup L}(2)\right)=3$ Since E is not a double line, the general quadric Q containing $E \cup L$ is smooth, unless E is reducible and $L \cap E$ is the singular point of E, i.e. unless $E \cup L$ is a non-coplanar union of 3 lines through o. In the latter case $\mathcal{I}_{E \cup L}(2)$ is spanned by its global sections, because for any $S \subset \mathbb{P}^{2}$ with $\sharp(S)=3$ and S not contained in a line the sheaf $\mathcal{I}_{S, \mathbb{P}^{2}}(2)$ is globally generated and the cone $E \cup L$ is an arithmetically Cohen-Macaulay curve. If o is not the singular point of E, call Q a smooth quadric containing $E \cup L$ and $\left|\mathcal{O}_{Q}(2,1)\right|$ the linear system of Q such that $E \cup L \in\left|\mathcal{O}_{Q}(2,1)\right|$. Since the line bundle $\mathcal{O}_{Q}(0,1)$ is spanned by its global sections, even in this case we see that $\mathcal{I}_{E \cup L}(2)$ is globally generated. Take a general quadric $T \supset E \cup L$. Since $\operatorname{deg}\left(\operatorname{Res}_{T}\left(W_{0}\right)\right) \leq 5 \leq d-2$, we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{T}\left(W_{0}\right)}(d-2)\right)=0$. Since B is a finite set and $A_{\mathrm{red}} \subset E \cup L$, [4, Lemma 5.1] gives $W_{0} \subset T$. Since this is true for a general quadric $T \supset E \cup L$, we have $W_{0} \subset E \cup L$.
(c2.2) Assume $g^{\prime}=3$. We saw the existence of a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(R \cap Z_{2}\right) \geq d$. Since $f_{2} \geq f_{3} \geq d$, we get $f_{1} \leq d+3$. Since $\operatorname{deg}(R \cap A) \leq 3$, we get $R \cap(B \backslash B \cap L) \neq \emptyset$ and hence $R \neq L$. First assume $R \cap L \neq \emptyset$ and hence $R \cup L$ is contained in a plane. We get $f_{1} \geq(d+1)+d-1$, a contradiction. Now assume $R \cap L=\emptyset$. Let $Q \subset \mathbb{P}^{3}$ we a general quadric surface containing $R \cup L$. Since W_{0} is curvilinear, $\mathcal{I}_{R \cup L}(2)$ is spanned by its global sections and Q
is general, we have $Q \cap W_{0}=(R \cup L) \cap W_{0}$. Since $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq d+1$. We continue as in step (c1.1).
(c2.3) Assume $g^{\prime}=2$. By step (c2.1) there is a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(R \cap Z_{2}\right) \geq d+1$. Since $\operatorname{deg}(R \cap A) \leq 3$, we get $R \cap(B \backslash B \cap L) \neq \emptyset$ and hence $R \neq L$.
(c2.3.1) Assume $R \cap L \neq \emptyset$, then $f_{1} \geq(d+1)+(d+1)-1=2 d+1$. Since $A \nsubseteq$ N_{1}, [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{Z_{1}}(d-1)\right)>0$. Since $\operatorname{deg}\left(Z_{1}\right) \leq 3 d+3-f_{1} \leq 2 d-1$, [5, Lemma 34] gives the existence of a line $D \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(D \cap Z_{1}\right) \geq d+1$. Using $\left|\mathcal{I}_{R \cup L \cup D}(3)\right|$ and [4, Lemma 5.1] we get $A \subset R \cup L \cup D$, contradicting step (a).
(c2.3) Assume $g^{\prime}=1$.
(c2.3.1) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$. Since $A \nsubseteq N_{1},[4$, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{Z_{1}}(d-1)\right)>0$. Since A spans \mathbb{P}^{3}, we have $f_{1} \geq d+3$ and hence $\operatorname{deg}\left(Z_{1}\right) \leq$ $2(d-1)+1$. Therefore there is a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(R \cap Z_{1}\right) \geq d+1$. If $B \subset L \cup R$, then set $\epsilon:=\emptyset$. If $B \nsubseteq L \cup R$, then fix $o \in(B \backslash B \cap(R \cup L))$ and set $\epsilon:=\{o\}$. Let Q be any quadric containing $R \cup L$. Since $\operatorname{deg}\left(W_{0} \cap(R \cup L)\right) \geq$ $(d+1)+(d+2)-1$ and $\operatorname{deg}(A) \leq d-1$, we have $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq d-1$ and hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q}\left(W_{0}\right)}(d-2)\right)=0$. Therefore [4, Lemma 5.1] gives $W_{0} \subset Q$. If $L \cap R=\emptyset$, then $\mathcal{I}_{L \cup R \cup \epsilon}(2)$ is spanned and hence varying Q, we get $A \subset L \cup R$, a contradiction. If $L \cap R \neq \emptyset$, it is sufficient to take as o a point of B not in the plane $\langle L \cup R\rangle$ (it exists by concision [10, Exercise 3.2.2.2]).
(c2.3.2) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \leq d+1$. Since $f_{1} \leq e_{1} \leq 2 d+1$, there is a line $D \subset N_{1}$ with $\operatorname{deg}\left(D \cap W_{0}\right) \geq d+2$. We have $D \neq L$ and hence $e_{1} \geq f_{1} \geq(d+1)+(d+2)-1=2 d+2$, a contradiction.
(c3) Assume $g=1$. Since A spans $\mathbb{P}^{3},\left[4\right.$, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{W_{1}}(d-\right.$ 1)) >0. Therefore $\operatorname{deg}\left(W_{1}\right) \geq d+1$ and hence $e_{1} \leq 2 d+1$. Since $h^{1}\left(H_{1}\right.$, $\left.\mathcal{I}_{W_{0} \cap H_{1}}(d)\right)>0$, we have $e_{1} \geq d+2$ and hence $\operatorname{deg}\left(W_{1}\right) \leq 2 d$. By Lemma 1 either there is a line $L \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(L \cap W_{1}\right) \geq d+1$ or there is a plane conic T with $\operatorname{deg}\left(T \cap W_{1}\right) \geq 2 d$. The latter case does not arise, because it would imply $e_{1} \geq 2 d$ and hence $\operatorname{deg}\left(W_{1}\right) \leq d+2<\operatorname{deg}\left(T \cap W_{1}\right)$. Therefore there is a line $L \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(L \cap W_{1}\right) \geq d+1$. We continue as in step (c2). QED

Proposition 11. Assume $d \geq 9$ and $m \geq 3$. Let $A_{1} \subset \mathbb{P}^{m}$ be a degree 3 connected curvilinear scheme such that $\left\langle A_{1}\right\rangle$ is a plane. Let A^{\prime} be the degree two subscheme of A_{1}. Set $\left\{O_{1}\right\}:=\left(A_{1}\right)_{\text {red }}$. Fix $O_{2} \in\left(\left\langle A^{\prime}\right\rangle \backslash\left\{O_{1}\right\}\right)$ and call A_{2} any degree two connected zero-dimensional scheme such that $\left(A_{2}\right)_{\text {red }}=\left\{O_{2}\right\}$ and $A_{2} \nsubseteq\left\langle A_{1}\right\rangle$. Set $A:=A_{1} \cup A_{2}$. Fix $P \in\left\langle\nu_{d}(A)\right\rangle$ such that $P \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A$. Then $r_{m, d}(P)=3 d-2$.

Proof. By concision we may assume $m=3$. There are $P^{\prime} \in\left\langle\nu_{d}\left(A_{1} \cup\left\{O_{2}\right\}\right\rangle\right.$ and $P^{\prime \prime} \in\left\langle\nu_{d}\left(A_{2}\right)\right\rangle$. By Sylvester's theorem (Remark 1), $P^{\prime \prime}$ has rank at most d with
respect to the degree d rational normal curve $\nu_{d}\left(\left\langle A_{2}\right\rangle\right)$. Hence to prove that $r_{m, d}(P) \leq 3 d-2$ it is sufficient to prove that $r_{m, d}\left(P^{\prime}\right) \leq 2 d-2$. This is true by the case $x=1$ and $y=0$ of Proposition 7. Therefore $r_{m, d}(P) \leq 3 d-2$. Assume $r_{m, d}(P) \leq 3 d-3$, take $B \in \mathcal{S}(P)$ and set $W_{0}:=A \cup B$. We have $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)>0$ ([3, Lemma 1]) and $\operatorname{deg}\left(W_{0}\right) \leq 3 d+2$.

Since $\langle A\rangle=\mathbb{P}^{3}, A$ is not contained in a plane curve of degree 3 . Since A is not in linearly general position in \mathbb{P}^{3}, it is not contained in a rational normal curve. Since $\operatorname{deg}\left(A \cap\left\langle A^{\prime}\right\rangle\right)=3$ and $O_{1} \notin\left\langle A_{2}\right\rangle$, the only reduced degree 3 curves containing A are the union of 3 lines: they are the union of $\left\langle A^{\prime}\right\rangle,\left\langle A_{2}\right\rangle$ and a line of $\left\langle A_{1}\right\rangle$ containing O_{1} and different from $\left\langle A^{\prime}\right\rangle$. Assume $W_{0} \subset\left\langle A_{1}\right\rangle \cup\left\langle A_{2}\right\rangle$. As in Claim 1 of the proof of Proposition 10 we see that $O_{2} \notin B$ and that $\sharp\left(B \cap\left\langle A_{2}\right\rangle\right)=d$. Now assume that W_{0} contained in the union of 3 different lines, $\left\langle A^{\prime}\right\rangle,\left\langle A_{2}\right\rangle$ and a line R of $\left\langle A_{1}\right\rangle$ containing O_{1} and different from $\left\langle A^{\prime}\right\rangle$.
(i) Assume $h^{1}\left(\left\langle A_{1}\right\rangle, \mathcal{I}_{W_{0} \cap\left\langle A_{1}\right\rangle}(d)\right)>0$. If $\operatorname{deg}\left(W_{0} \cap\left\langle A_{1}\right\rangle\right) \geq 2 d+2$, then we get $\sharp\left(B \cap\left\langle A_{1}\right\rangle\right) \geq 2 d-2$, because $\operatorname{deg}\left(A \cap\left\langle A_{1}\right\rangle\right)=4$. Now assume $\operatorname{deg}\left(W_{0} \cap\right.$ $\left.\left\langle A_{1}\right\rangle\right) \leq 2 d+1$. By [5, Lemma 34] there is a line $L \subset\left\langle A_{1}\right\rangle$ such that $\operatorname{deg}(L \cap$ $\left.W_{0}\right) \geq d+2$. Since $\left\langle A^{\prime}\right\rangle$ is the only line D of $\left\langle A_{1}\right\rangle$ with $\operatorname{deg}(D \cap A) \geq 2$ and $\operatorname{deg}\left(\left\langle A^{\prime}\right\rangle \cap A\right)=3$, Remark 2 gives $L=\left\langle A^{\prime}\right\rangle$ and $\sharp\left(B \cap\left(L \backslash\left\{O_{1}\right\}\right) \geq d-1\right.$. Set $M:=\left\langle\left\{O_{1}\right\} \cup A_{2}\right\rangle . M$ is a plane and $\operatorname{Res}_{M}(A)=\left\{O_{1}\right\}$. Since $A_{1} \nsubseteq M$, $[4$, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{M}\left(W_{0}\right)}(d-1)\right)>0$ and hence $\sharp\left(B \cap\left(R \backslash\left\{O_{1}\right\}\right) \geq d\right.$. Therefore $\sharp(B) \geq 3 d-1$, a contradiction.
(ii) Assume $h^{1}\left(\left\langle A_{1}\right\rangle, \mathcal{I}_{W_{0} \cap\left\langle A_{1}\right\rangle}(d)\right)=0$. Since $\operatorname{Res}_{\left\langle A_{1}\right\rangle}\left(W_{0}\right)=\left\{O_{2}\right\} \cup(B \cap$ $\left.\left\langle A_{2}\right\rangle\right)$, we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{\left\langle A_{1}\right\rangle}\left(W_{0}\right)}(d-1)\right)=1$. A residual exact sequence gives $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right) \leq 1$ and hence $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)=1$. Grassmann's formula gives $\operatorname{dim}(\langle A\rangle \cap$ $\langle B\rangle)=\operatorname{deg}(A \cap B)$. Set $B_{2}:=B \cap\left\langle A_{2}\right\rangle$. Since $O_{2} \notin B$ and $\sharp\left(B \cap\left\langle A_{2}\right\rangle\right)=d$, Grassmann's formula gives that $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(B)\right\rangle$ is the linear span of the point $\left\langle\nu_{d}\left(A_{2}\right)\right\rangle \cap\left\langle\nu_{d}\left(B_{2}\right)\right\rangle$ and the set $E:=B \cap\left(A_{1} \cup\left\{O_{2}\right\}\right)$. Since $P \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A$, we get $A_{1} \subseteq E \subset B$, contradicting the fact that A_{1} is not reduced.

Then we continue as in the proof of Proposition 10.
Proposition 12. Assume $d \geq 9$ and $m \geq 3$. Let $A_{1} \subset \mathbb{P}^{m}$ be a degree 3 connected curvilinear scheme such that $\left\langle A_{1}\right\rangle$ is a plane. Set $\left\{O_{1}\right\}:=\left(A_{1}\right)_{\text {red }}$. Fix a degree 2 connected zero-dimensional scheme A_{2} such that $O_{1} \in\left\langle A_{2}\right\rangle$ and $O_{1} \neq O_{2}$, where $\left\{O_{2}\right\}:=\left(A_{2}\right)_{\text {red }}$. Set $A:=A_{1} \cup A_{2}$. Fix $P \in\left\langle\nu_{d}(A)\right\rangle$ such that $P \notin\left\langle\nu_{d}(U)\right\rangle$ for any $U \subsetneq A$. Then $r_{m, d}(P)=3 d-2$.

Proof. By concision we may assume $m=3$.
Claim 1: We have $r_{m, d}(P) \leq 3 d-2$.
Proof of Claim 1: Since $\nu_{d}(A)$ is linearly independent and $A_{1} \cap A_{2}=$ \emptyset, there are unique points $P_{i} \in\left\langle\nu_{d}\left(A_{i}\right)\right\rangle$ such that $P \in\left\langle\left\{P_{1}, P_{2}\right\}\right\rangle$. Since $P \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A$, then $P_{i} \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A_{i}$. Fix any
$P_{i}^{\prime} \in\left\langle\left\{P_{2}, \nu_{d}\left(O_{1}\right)\right\}\right\rangle \backslash\left\{P_{2}, \nu_{d}\left(O_{1}\right)\right\}$ (it exists, because $O_{1} \neq O_{2}$ and $\nu_{d}\left(A_{2} \cup\left\{O_{2}\right\}\right.$) is linearly independent). The parenthetical remark implies $P_{2} \notin\left\langle\nu_{d}\left(A_{2}\right)\right\rangle$. Therefore P_{2} has border rank and cactus rank 3 with respect to the degree d rational normal curve $\nu_{d}\left(\left\langle A_{2}\right\rangle\right)$. Sylvester's theorem gives a set $B_{2} \subset\left\langle A_{2}\right\rangle$ such that $P_{2}^{\prime} \in\left\langle\nu_{d}\left(B_{2}\right)\right\rangle$ (Remark 1). Fix a smooth conic $C \subset\left\langle A_{1}\right\rangle$ containing A_{1}. We have $P \in\left\langle\left\{P_{2}^{\prime}, \nu_{d}\left(O_{1}\right), P_{1}\right\}\right\rangle$. Since $\left\{\nu_{d}\left(O_{1}\right), P_{1}\right\} \subset\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$. Therefore there is $P_{1}^{\prime} \in\left\langle\nu_{d}\left(A_{1}\right)\right\rangle$ such that $P \in\left\{P_{2}^{\prime}, P_{1}^{\prime}\right\}$. Let A^{\prime} be the degree two subscheme of A_{1} and assume $P_{1}^{\prime} \in\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$. Since $\left\{O_{1}\right\} \subset A^{\prime}$, we get $P \in\left\langle\left\{P_{1}\right\} \cup \nu_{d}\left(A^{\prime}\right)\right\rangle \subset\left\langle\nu_{d}\left(A^{\prime} \cup A^{\prime}\right)\right\rangle$, a contradiction. Therefore $P_{1}^{\prime} \nsubseteq\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A_{1}$. Sylvester's theorem gives the existence of $B_{1} \subset C$ such that $\sharp\left(B_{1}\right)=2 d-1$ and $P_{2}^{\prime} \in\left\langle\nu_{d}\left(B_{1}\right)\right\rangle$ (Remark 1). Since $P \in\left\langle\nu_{d}\left(B_{1} \cup B_{2}\right)\right\rangle$ and $\sharp\left(B_{1} \cup B_{2}\right) \leq 3 d-2$, we get $r_{m, d}(P) \leq 3 d-2$.

Assume $r_{m, d}(P) \leq 3 d-3$, take $B \in \mathcal{S}(P)$ and set $W_{0}:=A \cup B$. We have $\operatorname{deg}\left(W_{0}\right) \leq 3 d+2$.

Claim 3: Assume $B \subset\left\langle A_{1}\right\rangle \cup\left\langle A_{2}\right\rangle$. Then $\sharp\left(B \cap\left(\left\langle A_{2}\right\rangle \backslash\left\{O_{2}\right\}\right)\right) \geq d-1$.
Proof of Claim 3: Since $A \subset\left\langle A_{1}\right\rangle \cup\left\langle A_{2}\right\rangle$, we have $W_{0} \subset\left\langle A_{1}\right\rangle \cup\left\langle A_{2}\right\rangle$. Assume $\sharp\left(B \cap\left(\left\langle A_{2}\right\rangle \backslash\left\{O_{2}\right\}\right)\right) \leq d-2$. We get $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{\left\langle A_{1}\right\rangle}\left(W_{0}\right)}(d-1)\right)=0$, contradicting [4, Lemma 5.1], because A_{2} is connected, not reduced and $A_{2} \nsubseteq$ $\left\langle A_{1}\right\rangle$.
(a) Assume $B \subset\left\langle A_{1}\right\rangle \cup\left\langle A_{2}\right\rangle$. In this step we prove that either $\sharp\left(B \cap\left\langle A_{1}\right\rangle\right) \geq$ $2 d-1$ or $\sharp\left(B \cap\left(\left\langle A_{2}\right\rangle \backslash\left\{O_{2}\right\}\right)\right)=d$ and $\sharp\left(B \cap\left(\left\langle A_{1}\right\rangle \backslash\left\{O_{1}\right\}\right)\right) \geq 2 d-2$. Assume $\sharp\left(B \cap\left\langle A_{1}\right\rangle\right) \leq 2 d-2$. Set $J:=B \cap\left(\left\langle A_{2}\right\rangle \backslash\left\{O_{2}\right\}\right)$.
(a1) Assume $\sharp\left(B \cap\left(\left\langle A_{1}\right\rangle \backslash\left\{O_{1}\right\}\right)\right) \leq 2 d-3$. Let $M \subset \mathbb{P}^{3}$ be the plane spanned by A_{2} and the degree two subscheme of A_{1}. Since $A \nsubseteq N$ and no connected component of A is reduced, [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{N}\left(W_{0}\right)}(d-\right.$ $1))>0$. Since $\operatorname{deg}\left(\operatorname{Res}_{M}\left(W_{0}\right)\right) \leq 2 d-2$, [5, Lemma 34] gives the existence of a line D such that $\operatorname{deg}\left(D \cap \operatorname{Res}_{N}\left(W_{0}\right)\right) \geq d+1$. Since $A_{2} \cap \operatorname{Res}_{N}\left(W_{0}\right)=\emptyset$, Remark 2 gives $O_{1} \in D, O_{1} \notin B$ and $\sharp(B \cap D)=d$. Since $D \cap\left(B \backslash B \cap\left\langle A_{2}\right\rangle\right) \neq \emptyset$, we have $D \neq\left\langle A_{2}\right\rangle$. Therefore $N:=\left\langle A_{2} \cup D\right\rangle$ is a plane. Since $\operatorname{deg}\left(\operatorname{Res}_{N}\left(W_{0}\right)\right) \leq$ $2+(2 d-3)-d$, we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{N}\left(W_{0}\right)}(d-1)\right)=0$, contradicting [4, Lemma 5.1], because $N \neq\left\langle A_{1}\right\rangle$.
(a2) Assume $h^{1}\left(\left\langle A_{1}\right\rangle, \mathcal{I}_{\left\langle A_{1}\right\rangle \cap W_{0}}(d)\right)>0$. Since $\operatorname{deg}\left(A_{1}\right)=3$ and $O_{2} \notin\left\langle A_{1}\right\rangle$, there is a line $D \subset\left\langle A_{1}\right\rangle$ such that $\operatorname{deg}\left(W_{0} \cap D\right) \geq d+2$. Remark 2 gives that D is spanned by the degree 2 subscheme of A_{1}, that $O_{1} \notin B$ and that $\sharp(B \cap D)=d$. Set $M:=\left\langle D \cup A_{2}\right\rangle . M$ is a plane and $\operatorname{deg}\left(M \cap W_{0}\right) \geq 4+d+d-1$ by Claim 2. Since $\operatorname{deg}\left(W_{0}\right) \leq 3 d+2$, we get $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{M}\left(W_{0}\right)}(d-1)\right)=0$ and hence (by [4, Lemma 5.1]) $A_{1} \subset M$, a contradiction.
(a3) Assume $h^{1}\left(\left\langle A_{1}\right\rangle, \mathcal{I}_{\left\langle A_{1}\right\rangle \cap W_{0}}(d)\right)=0$. By the residual exact sequence of the inclusion $\left\langle A_{1}\right\rangle \subset \mathbb{P}^{3}$ we get $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right) \leq h^{1}\left(\left\langle A_{2}\right\rangle, \mathcal{O}_{\left\langle A_{2}\right\rangle}(d-1)\left(-J-A_{2}\right)\right)$. Remark 2 gives $\sharp(J) \leq d$. Since $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)>0$, we get $\sharp(J) \geq d-1$. By step
(a1) we have $\sharp\left(B \cap\left(\left\langle A_{1}\right\rangle \backslash\left\{O_{1}\right\}\right)\right) \geq 2 d-2$. Hence if $\sharp(J) \geq d$, then step (a) is proved. Therefore we may assume $\sharp(J)=d-1$ and hence $h^{1}\left(\mathcal{I}_{W_{0}}(d)\right)=$ $h^{1}\left(\left\langle A_{2}\right\rangle, \mathcal{O}_{\left\langle A_{2}\right\rangle}(d-1)\left(-J-A_{2}\right)\right)=1$. Since $A \cap B=\left(\left\{O_{1}\right\} \cup A_{2}\right) \cap\left(B \cap\left\langle A_{2}\right\rangle\right)$, Grassmann's formula gives $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(B)\right\rangle=\left\langle\nu_{d}\left(\left\{O_{1}\right\} \cup A_{2}\right)\right\rangle \cap\left\langle\nu_{d}\left(\left\{O_{1}\right\} \cup\right.\right.$ $\left.\left.\left(B \cap\left\langle A_{2}\right\rangle\right)\right)\right\rangle \subset\left\langle\nu_{d}\left(\left\{O_{1}\right\} \cup A_{2}\right)\right\rangle$. Therefore $P \in\left\langle\nu_{d}\left(\left\{O_{1}\right\} \cup A_{2}\right)\right\rangle$, a contradiction.

By Claims 1 and 2 and step (a) to prove Proposition 12 it is sufficient to either get a contradiction or to show that $W_{0} \subset\left\langle A_{1}\right\rangle \cup\left\langle A_{2}\right\rangle$. We follow the proof of Proposition 10 using the same labels for the proofs. We define H_{i}, e_{i}, W_{i}, g as in the proof of Proposition 10 and get (as in that proof) that $1 \leq g \leq 3$.
(c1) Assume $g=3$ and take the line $L \subset H_{3}$ such that $\operatorname{deg}\left(L \cap W_{2}\right) \geq d$. We have $W_{2} \subset L, \operatorname{deg}\left(W_{2} \cap L\right)=d$ and $e_{1}=e_{2}=d+1$ and $d+1 \leq e_{1} \leq d+2$. Define $f_{i}, N_{i}, Z_{i}, g^{\prime}$ as in the quoted proof and get $1 \leq g^{\prime} \leq 3$.
(c1.1) Assume $g^{\prime}=3$. We saw (in step (c1) of the quoted proof) the existence of a line $R \subset N_{3}$ such that $\operatorname{deg}\left(Z_{2} \cap R\right) \geq d$. Since $\operatorname{deg}(D \cap A) \leq 3$ for each line D and $B \cap Z_{1} \subset B \backslash B \cap L$, we get $R \cap(B \backslash B \cap L) \neq \emptyset$. Therefore $R \neq L$. We have $R \cap L=\emptyset$ because $e_{1}<2 d-1$. Fix a general $Q^{\prime} \in\left|\mathcal{I}_{L \cup R}(2)\right|$. Since $R \cap L=\emptyset, Q^{\prime}$ is smooth. Since A is curvilinear, we also have $B \cap Q^{\prime}=B \cap(L \cup R)$ and $Q^{\prime} \cap A=A \cap(L \cup R)$ (as schemes). [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q^{\prime}}\left(W_{0}\right)}(d-\right.$ 2)) >0. Since $\operatorname{deg}\left(\operatorname{Res}_{Q^{\prime}}\left(W_{0}\right)\right) \leq d+2 \leq 2(d-2)+1$, there is a line $D \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(D \cap \operatorname{Res}_{Q^{\prime}}\left(W_{0}\right)\right) \geq d$. Since $D \cap(B \backslash B \cap(L \cup R)) \neq \emptyset$, we get $D \neq R$ and $D \neq L$. Fix a general $U \in\left|\mathcal{I}_{D \cup R \cup L}(3)\right|$. Since $\operatorname{deg}(D \cap(L \cup R)) \leq 2$, then $\operatorname{deg}\left(\operatorname{Res}_{U}\left(W_{0}\right)\right) \leq 3 d+2-d-d-d+2$ and hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{U}\left(W_{0}\right)}(d-3)\right)=0$. Hence $W_{0} \subset U\left(\left[4\right.\right.$, Lemma 5.1]). Since $\mathcal{I}_{D \cup R \cup L)}(3)$ is spanned, for general U we have $U \cap W_{0}=W_{0} \cap(L \cup D \cup R)$. Hence $W_{0} \subset L \cup D \cup R$. Since $A \subset L \cup D \cup R$ and $L \cap R=\emptyset$, we get $D=\left\langle A_{2}\right\rangle$ and that one of the lines L, R, say R^{\prime} contains O_{1}, while the other one, say L^{\prime}, contains O_{2}, but not O_{1}. We get $A_{1} \subset D \cup R$, contradicting the fact that $\left\langle A_{2}\right\rangle \nsubseteq\left\langle A_{1}\right\rangle$.
(c1.2) Assume $g^{\prime}=2$. We saw (in step (c1) of the quoted proof) the existence of a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(R \cap Z_{2}\right) \geq d$. Since $\operatorname{deg}(R \cap A) \leq 3$, we get $R \cap(B \backslash B \cap L) \neq \emptyset$ and hence $R \neq L$. Since $e_{1}=d+1$, then $R \cap L=\emptyset$. We continue as in steps (c1.1).
(c1.3) Assume $g^{\prime}=1$. Since $e_{1}=d+1$, we have $f_{1} \leq d+1$. Hence $h^{1}\left(N_{1}, \mathcal{I}_{W_{0} \cap N_{1}}(d)\right)=0$, a contradiction.
(c2) Assume $g=2$. We saw that there is a line $L \subset H_{2}$ such that $\operatorname{deg}(L \cap$ $\left.W_{1}\right) \geq d+1$. Hence $e_{1} \leq 2 d+1$. Let N_{1} be a plane containing L and with $f_{1}:=\operatorname{deg}\left(N_{1} \cap W_{0}\right)$ maximal among the planes containing L. Define N_{i}, f_{i}, Z_{i}, g^{\prime} as in step (c1). Since $f_{i} \geq 3$ if $f_{i+1}>0$, we get $g^{\prime} \leq d$. If $g^{\prime} \geq 2$ we have $f_{1} \geq \operatorname{deg}\left(L \cap W_{0}\right)+1 \geq d+2$, because $W_{0} \nsubseteq L$. Hence either $f_{g^{\prime}} \geq 2\left(d+1-g^{\prime}\right)+2$ or there is a line $R \subset N_{g^{\prime}}$ with $\operatorname{deg}\left(R \cap Z_{g^{\prime}-1}\right) \geq d+3-g^{\prime}$. In the former case if $g^{\prime} \geq 2$ we get $2\left(g^{\prime}-1\right)\left(d+2-g^{\prime}\right)+f_{1} \leq 3 d+3$ and hence $1 \leq g^{\prime} \leq 2$. In the
latter case if $g^{\prime} \geq 2$ we have $f_{g^{\prime}-1} \geq d+4-g^{\prime}$; hence in the latter case we have $3 d+3 \geq g^{\prime}\left(d+4-g^{\prime}\right)-1$ and hence $1 \leq g^{\prime} \leq 3$.
(c2.1) Assume $g^{\prime}=3$. We saw the existence of a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(R \cap Z_{2}\right) \geq d$. Since $f_{2} \geq f_{3} \geq d$, we get $f_{1} \leq d+3$. Since $\operatorname{deg}(R \cap A) \leq 3$, we get $R \cap(B \backslash B \cap L) \neq \emptyset$ and hence $R \neq L$. First assume $R \cap L \neq \emptyset$. We get $f_{1} \geq(d+1)+d-1$, a contradiction. Now assume $R \cap L=\emptyset$. We continue as in step (c1.1).
(c2.2) Assume $g^{\prime}=2$ and the existence of a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}(R \cap$ $\left.Z_{2}\right) \geq d+1$. Since $\operatorname{deg}(R \cap A) \leq 3$, we get $R \cap(B \backslash B \cap L) \neq \emptyset$ and hence $R \neq L$.
(c2.2.1) Assume $R \cap L \neq \emptyset$, then $f_{1} \geq(d+1)+(d+1)-1=2 d+1$. Since $A \nsubseteq$ N_{1}, [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{Z_{1}}(d-1)\right)>0$. Since $\operatorname{deg}\left(Z_{1}\right) \leq 3 d+3-f_{1} \leq 2 d-1$, [5, Lemma 34] gives the existence of a line $D \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(D \cap Z_{1}\right) \geq d+1$. Using $\left|\mathcal{I}_{R \cup L \cup D}(3)\right|$ and [4, Lemma 5.1] we get $A \subset R \cup L \cup D$. Therefore one of the lines L, R, D (call it R^{\prime}) is the line $\left\langle A_{2}\right\rangle$. The other two lines, say L^{\prime} and D^{\prime}, must contain O_{1} and being contained in $\left\langle A_{1}\right\rangle$. Claim 2 and step (a) conclude the proof.
(c2.2.2) Assume $g^{\prime}=2, f_{2} \geq 2 d$ and the non-existence of a line $R \subset N_{2}$ with $\operatorname{deg}\left(Z_{1} \cap R\right) \geq d+1$. We saw that $\operatorname{deg}\left(L \cap W_{0}\right)=d+1, f_{1}=d+2, f_{2}=2 d$ and $Z_{1} \subset N_{2}$. Since $h^{1}\left(N_{2}, \mathcal{I}_{Z_{1}}(d-1)\right)>0$, Lemma 2 gives the existence of a conic $E \subset N_{2}$ such that $Z_{1} \subset E$. Since the sum of the degrees of the nonreduced connected components of W_{0} is $5<d, E$ is a reduced conic. Let M be the plane spanned by L and one of the points, α, of $E \cap B$. Since $f_{1}=d+2$ and $\operatorname{deg}\left(N_{1} \cap W_{0}\right) \geq \operatorname{deg}\left(M \cap W_{0}\right)$ by the definition of N_{1}, we have $\operatorname{deg}\left(M \cap W_{0}\right) \geq \geq$ $d+2$, because $\alpha \notin L$, and $\operatorname{deg}\left(M \cap W_{0}\right) \leq e_{1}<2 d$. Since $\operatorname{deg}\left(L \cap W_{0}\right)=d+1$, [5, Lemma 34] gives $h^{1}\left(M, \mathcal{I}_{W_{0} \cap M}(d)\right)=0$. We have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{M}}\left(W_{0}\right)(d-1)\right)=0$, because $\alpha \notin \operatorname{Res}_{M}\left(W_{0}\right)$ and so $\operatorname{deg}\left(\operatorname{Res}_{M}\left(W_{0}\right) \cap E\right)<2 d$. The residual exact sequence of $M \subset \mathbb{P}^{3}$ gives a contradiction.
(c2.3) Assume $g^{\prime}=1$.
(c2.3.1) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \geq d+2$. Since $A \nsubseteq N_{1},[4$, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{Z_{1}}(d-1)\right)>0$. Since A spans \mathbb{P}^{3}, we have $f_{1} \geq d+3$ and hence $\operatorname{deg}\left(Z_{1}\right) \leq$ $2(d-1)+1$. Therefore there is a line $R \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(R \cap Z_{1}\right) \geq d+1$. If $B \subset L \cup R$, then set $\epsilon:=\emptyset$. If $B \nsubseteq L \cup R$, then fix $o \in(B \backslash B \cap(R \cup L))$ and set $\epsilon:=\{o\}$. Let Q be any quadric containing $R \cup L \cup \epsilon$. Since $\operatorname{deg}\left(W_{0} \cap(R \cup L)\right) \geq$ $(d+1)+(d+2)-1$ and $\operatorname{deg}(A) \leq d-1$, we have $\operatorname{deg}\left(\operatorname{Res}_{Q}\left(W_{0}\right)\right) \leq d-1$ and hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{Q}\left(W_{0}\right)}(d-2)\right)=0$. Therefore [4, Lemma 5.1] gives $W_{0} \subset Q$. If $L \cap R=\emptyset$, then $\mathcal{I}_{L \cup R \cup \epsilon}(2)$ is spanned and hence varying Q, we get $A \subset L \cup R$, a contradiction. If $L \cap R \neq \emptyset$, it is sufficient to take as o a point of B not in the plane $\langle L \cup R\rangle$ (it exists by concision [10, Exercise 3.2.2.2]).
(c2.3.2) Assume $\operatorname{deg}\left(L \cap W_{0}\right) \leq d+1$. Since $f_{1} \leq e_{1} \leq 2 d+1$, there is a line $D \subset N_{1}$ with $\operatorname{deg}\left(D \cap W_{0}\right) \geq d+2$. We have $D \neq L$ and hence
$e_{1} \geq f_{1} \geq(d+1)+(d+2)-1=2 d+2$, a contradiction.
(c3) Assume $g=1$. Since A spans \mathbb{P}^{3}, [4, Lemma 5.1] gives $h^{1}\left(\mathcal{I}_{W_{1}}(d-\right.$ 1)) >0. Therefore $\operatorname{deg}\left(W_{1}\right) \geq d+1$ and hence $e_{1} \leq 2 d+1$. Since $h^{1}\left(H_{1}\right.$, $\left.\mathcal{I}_{W_{0} \cap H_{1}}(d)\right)>0$, we have $e_{1} \geq d+2$ and hence $\operatorname{deg}\left(W_{1}\right) \leq 2 d$. By Lemma 1 either there is a line $L \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(L \cap W_{1}\right) \geq d+1$ or there is a plane conic T with $\operatorname{deg}\left(T \cap W_{1}\right) \geq 2 d$. The latter case does not arise, because it would imply $e_{1} \geq 2 d$ and hence $\operatorname{deg}\left(W_{1}\right) \leq d+2<\operatorname{deg}\left(T \cap W_{1}\right)$. Therefore there is a line $L \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(L \cap W_{1}\right) \geq d+1$. We continue as in step (c2). QED

4 Other results

The following example with $n=3$ describes the schemes A appearing in the statement of Proposition 13.

Example 1. Let $A \subset \mathbb{P}^{n}$ be a connected zero-dimensional scheme such that $\operatorname{deg}(A)=n+2$ and $\langle A\rangle=\mathbb{P}^{n}$. Set $\{O\}:=A_{\text {red }}$. Assume that A is not in linearly general position. By [9, Theorem 1.3] we have $2 O \subset A$ (where $2 O$ is the closed subscheme of \mathbb{P}^{n} with $\left(\mathcal{I}_{P}\right)^{2}$ as its ideal sheaf) and $\mathcal{O}_{A, O}$ is Gorenstein. Fix any hyperplane $H \subset \mathbb{P}^{n}$. If $O \notin H$, then $H \cap A=\emptyset$. Now assume $O \in H$. Since A is in linearly general position, we have $\operatorname{deg}(H \cap A) \leq n$. Since $A \supset 2 O$ and $O \in H$, we have $\operatorname{deg}(H \cap A) \geq n$. Therefore $A \cap H=2 O \cap H$. Hence $h^{1}\left(H, \mathcal{I}_{A \cap H}(2)\right)=0$ and $\operatorname{deg}\left(\operatorname{Res}_{H}(A)\right)=2$. Hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(A)}(1)\right)=0$. The residual exact sequence of the inclusion $H \subset \mathbb{P}^{n}$ gives $h^{1}\left(\mathcal{I}_{A}(2)\right)=0$.

Proposition 13. Assume $m \geq 3, d \geq 9$, and take a 3 -dimensional linear subspace $\mathbb{H} \subseteq \mathbb{P}^{m}$. Let $A \subset \mathbb{H}$ be a connected degree 5 scheme not curvilinear and in linearly general position in \mathbb{H}. Then $r_{m, d}(P) \leq 4 d-2$ for every $P \in \mathbb{P}^{r}$ whose cactus rank is evinced by A.

Proof. By concision we may assume $m=3$. Set $\{O\}:=A_{\text {red }}$. We have $h^{0}\left(\mathcal{I}_{A}(2)\right)$ $=5$ and $h^{1}\left(\mathcal{I}_{A}(2)\right)=0$ (Example 1). By Castelnuovo-Mumford's lemma $\mathcal{I}_{A}(3)$ is spanned. Let $H \subset \mathbb{P}^{3}$ be a hyperplane. If $O \notin H$, then no reducible quadric with H as a component contains A. Now assume $O \in H$. Since $\operatorname{deg}(H \cap A)=3$, the scheme $\operatorname{Res}_{H}(A)$ has degree two and hence $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}(A)}(1)\right)=2$. Therefore a dimensional count gives that a general $Q \in\left|\mathcal{I}_{A}(2)\right|$ is irreducible. Each $Q \in$ $\left|\mathcal{I}_{A}(2)\right|$ is singular at O. Take another general $Q^{\prime} \in\left|\mathcal{I}_{A}(2)\right|$ and set $T:=Q \cap Q^{\prime}$.

Claim 1: T is the union of 4 distinct lines.
Proof of Claim 1: Since Q and Q^{\prime} are irreducible and with O as their singular point, $T_{\text {red }}$ is a union of at most 4 lines through O and $T=T_{\text {red }}$ if and only if T has no multiple line. We have $h^{0}\left(Q, \mathcal{I}_{A}(2)\right)=4$ and for each line $D \subset Q$ (it is a line through O) we have $h^{0}\left(Q, \mathcal{I}_{A \cup D}(2)\right)=3$. The effective Weil divisor
$2 D$ of Q is a Cartier divisor and $2 D \in\left|\mathcal{O}_{Q}(1)\right|$. Therefore $h^{0}\left(Q, \mathcal{I}_{A \cup 2 D}(2)\right)=$ $h^{0}\left(Q, \mathcal{I}_{A}(1)\right)=0$. So Claim 1 is true just taking any $Q^{\prime} \neq Q$.

By Claim $1 T$ is a reduced and connected curve. Write $T=L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$ with each L_{i} a line. Let $\left\{2 O, L_{i}\right\}$ be the degree two effective divisor of L_{i} with O as its support. We have $A \subset T$ and hence $P \in\left\langle\nu_{d}(T)\right\rangle$. Therefore there are $P_{i} \in\left\langle\nu_{d}\left(L_{i}\right)\right\rangle$ such that $P \in\left\langle\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}\right\rangle$. Let r_{i} be the rank of P_{i} with respect to the rational normal curve $\nu_{d}\left(L_{i}\right)$. Sylvester's theorem gives that $r_{i} \leq d$ and that equality holds if and only if P_{i} has cactus rank 2 and its cactus rank is not evinced by a reduced scheme (Remark 1). Let E_{i} be the only scheme evincing the cactus rank of P_{i} with respect to the rational normal curve $\nu_{d}\left(L_{i}\right)$. The points P_{1}, \ldots, P_{4} are not uniquely determined by P. Take $U_{1} \in\left\langle\nu_{d}\left(L_{2} \cup L_{3} \cup L_{4}\right)\right\rangle$ such that $P \in\left\{P_{1}, U_{1}\right\}$. Since $p_{a}(T)=1$, we have $\left\{2 O, L_{1}\right\} \subset L_{2} \cup L_{3} \cup L_{4}$ and hence changing U_{1} we may move P_{1} to a general point $P_{i}^{\prime} \in\left\langle\nu_{d}\left(\left\{2 O_{i}, L_{i}\right\} \cup E_{1}\right)\right\rangle$. Therefore (changing simultaneously P_{1}, \ldots, P_{4} to some $\left.P_{1}^{\prime}, \ldots, P_{4}^{\prime}\right)$ we may take $\operatorname{deg}\left(E_{i}\right) \geq 3$, unless $E_{i}=\left\{2 O_{i}, L_{i}\right\}$. Therefore to prove Proposition 13 it is sufficient to prove that (changing simultaneously $\left.P_{1}, \ldots, P_{4}\right)$ for at most two indices i we have $E_{i}=\left\{2 O_{i}, L_{i}\right\}$. We cannot have $E_{i}=\left\{2 O_{i}, L_{i}\right\}$ for all i, because it would imply $P \in\langle\nu(2 O)\rangle$, where $2 O$ is the closed subscheme of \mathbb{P}^{3} with $\left(\mathcal{I}_{O}\right)^{2}$ as its ideal sheaf; this would imply that P has border rank two by the proof of [5, Theorem 37] or by [6, Lemma 2.3] and the fact the $2 O$ is not Gorenstein. Assume that $E_{i}=\left\{2 O_{i}, L_{i}\right\}$ for 3 indices i, say $i=1,2,3$. If $r_{4} \leq d-2$, then Proposition 13 holds. Therefore we may assume $\operatorname{deg}\left(E_{4}\right)=3$. We have $2 O=E_{1} \cup E_{2} \cup E_{3}$. Since $\operatorname{deg}\left(L_{i} \cap E_{i}\right)>2$ and A is in linearly general position, we have $A \neq 2 O \cup E_{4}$. Since $2 O \subset A$, we have $\operatorname{deg}\left(A \cup\left(2 O \cup E_{4}\right)\right) \leq 8$. Since $d \geq 7$, and $P \in\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}\left(2 O \cup E_{4}\right)\right\rangle$, we get a contradiction.

Lemma 9. Assume $d \geq 7$ and that the degree 5 scheme evincing the cactus rank of P is not connected. Then $r_{m, d}(P) \leq 3 d-1$.

Proof. Write $A_{1}, \ldots, A_{s}, s \geq 2$, be the connected components of A. Set $a_{i}:=$ $\operatorname{deg}\left(A_{i}\right)$ and assume $a_{i} \geq a_{j}$ for all $j \geq 2$. We have $5=a_{1}+\cdots+a_{s}$. There is $P_{i} \in\left\langle\nu_{d}\left(A_{i}\right)\right\rangle$ such that $P \in\left\langle\left\{P_{1} \ldots, P_{s}\right\}\right\rangle$ and hence $r_{m, d}(P) \leq \sum_{i=1}^{s} r_{m, d}\left(P_{i}\right)$. If $a_{i}=1$, then $r_{m, d}\left(P_{i}\right)=1$. If $2 \leq a_{i} \leq 4$, then $r_{m, d}\left(P_{i}\right) \leq\left(a_{i}-1\right) d-a_{i}+2$ ([5] and [4]). Therefore in all cases we get $r_{m, d}(P) \leq 3 d-1$ (we get a stronger inequality, unless $s=2$).

Proposition 14. Assume the existence of a 3-dimensional linear space $\mathbb{H} \subseteq$ \mathbb{P}^{m} such that $A \subset \mathbb{H}$ and A is not in linearly general position in \mathbb{H}. Then $r_{m, d}(P) \leq 4 d-2$ for every $P \in \mathbb{P}^{r}$ whose cactus rank is evinced by A.

Proof. By [2, Theorem 1] we may assume $\operatorname{dim}(\langle A\rangle)=3$. Hence by concision we may assume $m=3$. By Lemma 9 we may assume that A is connected. Set $\{O\}:=A_{\text {red }}$. Since A is not in linearly general position in \mathbb{P}^{3}, there is a plane $H \subset \mathbb{P}^{3}$ such that $\operatorname{deg}(A \cap H)=4$. Since $\operatorname{Res}_{H}(A)=\{O\}$, we have $A \subset H \cup M$ for every plane M containing O. Since $h^{0}\left(\mathcal{I}_{O}(1)\right)=3$ and $h^{0}\left(\mathcal{I}_{A}(2)\right) \geq 5$, a general $Q \in\left|\mathcal{I}_{A}(2)\right|$ has not H as a component. Fix a general plane M containing O and take $P_{1} \in\left\langle\nu_{d}(Q \cap H)\right\rangle$ and $P_{2} \in\left\langle\nu_{d}\left(Q^{\prime} \cap M\right)\right\rangle$. Since M is general, $Q^{\prime} \cap M$ is a reduced conic. Hence [11, Proposition 5.1] gives $r_{m, d}(P) \leq 2$. Since P_{1} has cactus rank ≤ 4, the case $n=2$ of [4] and concision gives $r_{m, d}\left(P_{1}\right) \leq 2 d-2$. Hence $r_{m, d}(P) \leq 4 d-2$.

5 Proof of Theorem 1

Since $d \geq 4$ and P has border rank 5 , there is a zero-dimensional scheme $A \subset \mathbb{P}^{m}$ such that $\operatorname{deg}(A)=5, A$ is smoothable, $P \in\left\langle\nu_{d}(A)\right\rangle$ and $P \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A([7$, Lemma 2.6], [6, Proposition 2.5]). If A is reduced, then $r_{m, d}(P)=5$ (we are assuming that P has border rank 5 and hence $r_{m, d}(P) \geq 5$). Since $\operatorname{deg}(A)=5$, we have $\operatorname{dim}(\langle A\rangle) \leq \min \{m, 4\}$. By concision ([10, Exercise 3.2.2.2]) we may assume $m=\operatorname{dim}(\langle A\rangle)$. The case $\operatorname{dim}(\langle A\rangle)=4$ is the main result of [2] (but for this paper we only need the easier upper bound for the rank). If A is not connected, then $r_{m, d}(P) \leq 3 d-1$ by Lemma 9 . If $\operatorname{dim}(\langle A\rangle)=2$, then $r_{m, d}(P) \leq 3 d$ (Lemma 2). Therefore we may assume $\operatorname{dim}(\langle A\rangle)=3$ and that A is connected. If A is in linearly general position in $\langle A\rangle$ and not curvilinear, then $r_{m, d}(P) \leq 4 d-2$ by Proposition 13. If A is connected, curvilinear and in linearly general position in \mathbb{P}^{3}, then $r_{m, d}(P)=3 d-3$ (Proposition 3). If A is not in linearly general position in \mathbb{P}^{3}, then $r_{m, d}(P) \leq 4 d-2$ (Proposition 14).

Acknowledgements. Many thanks to a referee for several very useful suggestions.

References

[1] E. Ballico: Subsets of the variety $X \subset \mathbb{P}^{n}$ evincing the X-rank of a point of \mathbb{P}^{n}, Houston J. Math. 42 (2016), no. 3, 803-824.
[2] E. Ballico: The stratification by rank for homogeneous polynomials with border rank 5 which essentially depend on at least 5 variables, Acta Math. Vietnam. 42 (2017), 509-531.
[3] E. Ballico, A. Bernardi: Decomposition of homogeneous polynomials with low rank, Math. Z. 271 (2012), 1141-1149.
[4] E. Ballico, A. Bernardi: Stratification of the fourth secant variety of Veronese variety via the symmetric rank, Adv. Pure Appl. Math. 4 (2013), no. 2, 215-250.
[5] A. Bernardi, A. Gimigliano, M. IdÀ: Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), no. 1, 34-53.
[6] W. Buczyńska, J. Buczyński: Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom. 23 (2014) 63-90.
[7] J. Buczyński, A. Ginensky, J. M. Landsberg: Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, J. London Math. Soc. (2) 88 (2013) $1-24$.
[8] G. Comas, M. Seiguer: On the rank of a binary form, Found. Comp. Math. 11 (2011), no. 1, 65-78.
[9] D. Eisenbud, J. Harris: Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), no. 1, 15-30.
[10] J. M. Landsberg: Tensors: Geometry and Applications, Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc. Providence, 2012.
[11] J. M. Landsberg, Z. Teitler: On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), no. 3, 339-366.

[^0]: ${ }^{\mathrm{i}}$ This work is partially supported by MIUR and GNSAGA (INDAM)
 http://siba-ese.unisalento.it/ © 2018 Università del Salento

