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1 Introduction

In 1985, Kaneyuki and Williams [20] introduced the notion of paracontact
geometry. After that many authors [1, 2, 13, 16] contribute to study paracon-
tact geometry. A systematic study of paracontact metric manifolds was given by
Zamkovoy [31]. More recently, Cappelletti-Montano et al. [10] introduced a new
type of paracontact geometry, so-called paracontact metric (k, µ)-spaces, where
k and µ are some real constants. Also Martin-Molina [23, 24] obtained some clas-
sification theorems on paracontact metric (k, µ)-spaces and constructed some
examples (see also [5]).

The conformal curvature tensor C is invariant under conformal transforma-
tions and vanishes identically for three-dimensional manifolds. Using this fact
several authors [14, 21, 22] studied various types of three-dimensional manifolds.
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A Ricci soliton is a natural generalization of an Einstein metric [3]. In a
pseudo-Riemannian manifold M a Ricci soliton is a triplet (g, V, λ), with g, a
pseudo-Riemannian metric, V a vector field (called the potential vector field)
and λ a real constant such that

£V g + 2S + 2λg = 0, (1)

where £V is the Lie derivative with respect to V and S is the Ricci tensor of type
(0, 2). The Ricci soliton is said to be shrinking, steady or expanding according
as λ is negative, zero or positive, respectively. The compact Ricci solitons are
the fixed points of the Ricci flow ∂

∂tg = −2S projected from the space of metrics
onto its quotient modulo diffeomorphisms and scalings, and often arise as blow-
up limits for the Ricci flow on compact manifolds. For details, we refer to Chow
and Knopf [12].

If the complete vector field V is the gradient of a potential function −f ,
then g is said to be a gradient Ricci soliton and equation (1.2) takes the form

Hessf = S + λg, (2)

where Hessf denotes the Hessian of a smooth function f on M and defined by
Hessf = ∇∇f .

A Ricci soliton on a compact manifold has constant curvature in dimension
2 (Hamilton [18]) and also in dimension 3 (Ivey [19]). It is well known [29] that
a Ricci soliton on a compact manifold is a gradient Ricci soliton. Ricci solitons
have been studied by several authors such as Sharma [7], Cho and Kimura [11],
De and Mandal [15], Ghosh [17] and many others. A complete classification of
Ricci solitons of non-reductive homogeneous 4-spaces was given by Calvaruso
and Zaeim [7].

For a manifold M an η-Ricci soliton (g, V, λ, ν), with g, a pseudo-Riemannian
metric is defined by [11]

£V g + 2S + 2λg + 2ν.η ⊗ η = 0, (3)

where £V is the Lie derivative with respect to the potential vector filed V , S is
the Ricci tensor of type (0, 2), λ and ν are real scalars. In particular, if ν = 0,
then an η-Ricci soliton (g, V, λ, ν) reduces to a Ricci soliton (g, V, λ).

A Riemannian or, pseudo-Riemannian manifold of dimension n is said to
be special manifold [28] with the associated symmetric tensor B, denoted by
(ψB)n, if the (0, 4)-type tensor R′ satisfies the condition

R′(X,Y, Z,W ) = B(X,W )B(Y, Z)−B(Y,W )B(X,Z), (4)

where B(X,Y ) = ag(X,Y ) + bη(X)η(Y ), for some constants a and b.
Now we recall some useful lemmas.
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Lemma 1. [14, Proposition 2.2] A three-dimensional N(k)-paracontact met-
ric manifold is a manifold of constant curvature k if and only if the scalar
curvature r = 6k.

Lemma 2. [28, Theorem 5.4] A three-dimensional para-Sasakian η-Ricci
soliton M3(g, ξ, λ, µ) is a (ψB)3 with associated symmetric tensor B given by

B(X,Y ) =

√
(µ− λ)

2
g(X,Y )− µ

√
2

(µ− λ)
η(X)η(Y ).

In [26], Olszak proved that any contact metric manifold of constant curvature
and of dimension > 3 has constant curvature 1 and is Sasakian. Also it is
known [25] that every Sasakian conformally flat manifold of dimension > 3 is
of constant curvature 1.

In this circumstances, it is interesting to study conformally flat N(k)-para-
contact manifolds of dimension > 3 and also for dimension three.

The present paper is organized as follows. In Section 2, we present some basic
results of N(k)-paracontact metric manifolds. Section 3 is devoted to study
conformally flat N(k)-paracontact metric manifolds and we prove that there
does not exist any conformally flat N(k)-paracontact metric manifold M of
dimension > 3. The next section deals with η-Ricci solitons on three-dimensional
N(k)-paracontact metric manifolds. Finally, we study gradient Ricci solitons on
three-dimensional contractible N(k)-paracontact metric manifolds.

2 Preliminaries

A smooth odd dimensional manifold Mn (n > 1) is said to an almost para-
contact manifold if it admits a (1, 1)-type tensor field φ, a vector field ξ and a
1-form η satisfying the following conditions [20]
(i) φ2 = I − η ⊗ ξ,
(ii) φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1, and
(iii) on each fibre of D =ker(η) the tensor field φ induces an almost paracomplex
structure, that is, the eigendistributions D+

φ and D−φ of φ corresponding to the
respective eigenvalues 1 and −1 have same dimension n. Here ξ is called the
Reeb vector field.
An almost paracontact manifold M is said to be an almost paracontact metric
manifold if there is a pseudo-Riemannian metric g such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (5)

for all X,Y ∈ χ(M), and (φ, ξ, η, g) is said to be an almost paracontact metric
structure. Here the signature of g is necessarily (n+ 1, n).
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An almost paracontact structure is said to be a paracontact structure if
Φ(X,Y ) = dη(X,Y ) [31], the fundamental 2-form is defined by Φ(X,Y ) =
g(X,φY ); almost paracontact structure is said to be normal [31] if the (1, 2)-
type torsion tensor Nφ = [φ, φ]− 2dη ⊗ ξ = 0, where [φ, φ](X,Y ) = φ2[X,Y ] +
[φX, φY ]− φ[φX, Y ]− φ[X,φY ].
Any almost paracontact metric manifold (Mn, φ, ξ, η, g) admits (at least, locally)
a φ-basis [31], and thus in particular a three dimensional almost paracontact
metric manifold, any (local) pseudo-orthonormal basis of ker(η) gives a φ-basis,
up to sign. If {e2, e3} is a (local) pseudo-orthonormal basis of ker(η), with e3,
time-like, so by (5) vector field φe2 ∈ ker(η) is time-like and orthogonal to
e2. Therefore, φe2 = ±e3 and {ξ, e2,±e3} is a φ-basis [6]. For a paracontact
metric manifold we can easily get a symmetric, trace-free (1, 1)-tensor h = 1

2£ξφ
satisfying the following formulas [9, 31]

φh+ hφ = 0, hξ = 0, (6)

∇Xξ = −φX + φhX, (7)

for all X ∈ χ(M), where ∇ is the Levi-Civita connection of the pseudo-Rieman-
nian manifold.

Furthermore, if ξ is a Killing vector field ( or equivalently h vanishes iden-
tically) then the manifold (Mn, φ, ξ, η, g) is called a K-paracontact manifold.

The following definition follows from Cappelletti-Montano and Di Terlizzi
[9]:

Definition 1. A paracontact metric manifold is said to be a paracontact
(k, µ)-manifold if the curvature tensor R satisfies

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ), (8)

for all vector fields X,Y ∈ χ(M) and k, µ are real constants.

If µ = 0, then the paracontact metric (k, µ)-manifold reduces to an N(k)-
paracontact metric manifold and hence for an N(k)-paracontact metric manifold
we get the following formula

R(X,Y )ξ = k(η(Y )X − η(X)Y ), (9)

for all vector fieldsX,Y ∈ χ(M) and k is a real constant. In anN(k)-paracontact
metric manifold of dimension (2n+ 1) the Ricci operator is given by

QY =2(1− n)Y + 2(n− 1)hY

+ [2(n− 1) + 2nk]η(Y )ξ, for k 6= −1.
(10)
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Replacing Y by ξ in the above equation we have

Qξ = 2nkξ. (11)

Making use of (11), we get

(∇Xη)Y = g(X,φY )− g(hX, φY ). (12)

The following results hold for anN(k)-paracontact metric manifold (M3, φ, ξ, η, g)
[4, 14, 27]

QX =
(r

2
− k
)
X +

(
− r

2
+ 3k

)
η(X)ξ, k 6= −1, (13)

S(X,Y ) =
(r

2
− k
)
g(X,Y ) +

(
3k − r

2

)
η(X)η(Y ), (14)

Qξ = 2kξ, (15)

S(X, ξ) = 2kη(X), (16)

R(X,Y )Z =
(r

2
− 2k

)
{g(Y,Z)X − g(X,Z)Y }+

(
− r

2
+ 3k

)
{η(Y )η(Z)X

−η(X)η(Z)Y + g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ}, (17)

where X, Y , Z are any vector fields on M , Q denotes the Ricci operator of M ,
r is the scalar curvature of M . We have the following result due to Cappelletti-
Montano et al. [10, p.686].

Lemma 3. A paracontact metric (k, µ)-manifold of dimension three is Ein-
stein if and only if k = µ = 0.

Though any paracontact metric (k, µ)-manifold of dimension three is Ein-
stein if and only if k = µ = 0, it always admits some compatible Einstein metrics
[8].

3 Conformally flat N(k)-paracontact metric manifolds

In this section we study conformally flat N(k)-paracontact metric manifolds.
A pseudo-Riemannian manifold M of dimension (2n + 1) is conformally flat if
and only if the Weyl conformal curvature tensor filed C defined by

C(X,Y )Z = R(X,Y )Z − 1

2n− 1
{S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX

−g(X,Z)QY }+
r

2n(2n− 1)
{g(Y,Z)X − g(X,Z)Y } (18)
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vanishes for n > 1, and

(∇XQ)Y − (∇YQ)X =
1

4
{(Xr)Y − (Y r)X} (19)

for n = 1. The Weyl conformal curvature tensor field vanishes identically for
n = 1.
Thus for a conformally flat manifolds M for n > 1, C = 0 implies

R(X,Y )Z =
1

2n− 1
{S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX

−g(X,Z)QY } − r

2n(2n− 1)
{g(Y,Z)X − g(X,Z)Y }. (20)

Putting Y = Z = ξ in (18) and using (15), (15) and (16), we get

R(X, ξ)ξ =
1

2n− 1
{2nkX − 2nkη(X)ξ +QX − 2nkη(X)ξ}

− r

2n(2n− 1)
{X − η(X)ξ}. (21)

Form the above equation, we get the following,

QX =
{ r

2n
− k
}
X −

{ r

2n
− 2nk − k

}
η(X)ξ. (22)

Taking covariant derivative of the above equation along and arbitrary vector
field Y , we obtain

(∇YQ)X =
Y (r)

2n
X − Y (r)

2n
η(X)ξ −

{ r

2n
− 2nk − k

}
{(∇Y η)(X)ξ

+η(X)∇Y ξ}. (23)

Now using (12) in (21), we obtain

(∇YQ)X =
Y (r)

2n
{X − η(X)ξ} −

{ r

2n
− 2nk − k

}
{g(φhY,X)ξ − g(φY,X)ξ

−η(X)φY + η(X)φhY }. (24)

Interchanging X and Y in (22), we obtain

(∇XQ)Y =
X(r)

2n
{Y − η(Y )ξ} −

{ r

2n
− 2nk − k

}
{g(φhX, Y )ξ − g(φX, Y )ξ

−η(Y )φX + η(Y )φhX}. (25)

Since C = 0, we have divC = 0 or equivalently,

(∇XQ)Y − (∇YQ)X =
1

4n
{(X(r))Y − (Y (r))X}. (26)
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Thus from (22), (23) and (24), we have

X(r)

2n
{Y − η(Y )ξ} − Y (r)

2n
{X − η(X)ξ} −

{ r

2n
− 2nk − k

}
{2g(X,φY )ξ

−η(Y )φhX + η(X)φY − η(X)φhY } =
1

4n
{(Xr)Y − (Y r)X}. (27)

Contracting Y in (25), we get

(n− 1)X(r) + ξrη(X) = 0. (28)

Substituting X = ξ in the above equations yields,

ξr = 0. (29)

Now using this in (26), we get Xr = 0 and hence r is constant. Thus by (25),
we have ( r

2n
− 2nk − k

)
2g(X,φY ) = 0. (30)

Making use of (28) in (20), we obtain

QX = 2nkX, for all X ∈ χ(M). (31)

Taking trace of the above equation we have

r = 2n(2n+ 1)k. (32)

Applying (29) and (32) in (18), we finally get

R(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y }, (33)

for any vector fields X,Y and Z ∈ χ(M). But as a consequence of Corollary 4.14
and Corollary 5.12 of [10] we conclude that a N(k)-paracontact metric manifold
of constant curvature can not exist for dimension > 3. Thus we can state the
following:

Theorem 1. There does not exist any conformally flat N(k)-paracontact
metric manifold M of dimension > 3.

Now we study conformally flat N(k)-paracontact metric manifolds for di-
mension three. Thus from (17) we have

(∇XS)(Y, Z)− (∇Y S)(X,Z) =
1

4
{(Xr)g(Y,Z)− (Y r)g(X,Z)}. (34)
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Taking the covariant derivative of (15) along an arbitrary vector field Y and
using (11) and (12) we have

(∇Y S)(X,Z) =
dr(Y )

2
{g(X,Z)− η(X)η(Z)}+

(
3k − r

2

)
{g(Y, φX)η(Z)

−g(hY, φX)η(Z)− η(X)g(φY,Z) + η(X)g(φhY,Z)}. (35)

Interchanging X and Y in (35) we infer that

(∇XS)(Y,Z) =
dr(X)

2
{g(Y,Z)− η(Y )η(Z)}+

(
3k − r

2

)
{g(X,φY )η(Z)

−g(hX, φY )η(Z)− η(Y )g(φX,Z) + η(Y )g(φhX,Z)}. (36)

Making use of (35) and (36) in (34) we have

X(r)

2
{g(Y,Z)− η(Y )η(Z)} − Y (r)

2
{g(X,Z)− η(X)η(Z)}

+
(

3k − r

2

)
{2g(X,φY )η(Z)− g(φX,Z)η(Y )

+g(φhX,Z)η(Y ) + g(φY,Z)η(X)− g(φhY,Z)η(X)}

=
1

4
{X(r)g(Y,Z)− Y (r)g(X,Z)}. (37)

Substituting ξ for both X and Z in the above equation it follows that

Y (r) = 0, (38)

for all vector fields Y . Applying (38) in (37) we obtain(
3k − r

2

)
{2g(X,φY )η(Z)− g(φX,Z)η(Y )

+g(φhX,Z)η(Y ) + g(φY,Z)η(X)− g(φhY, Z)η(X)} = 0. (39)

Putting φY for Y in (39) yields(
3k − r

2

)
{2g(X,Y )η(Z) + g(Y,Z)η(X)

+g(hY, Z)η(X)− 3η(X)η(Y )η(Z)} = 0. (40)

Let {ei}, i = 1, 2, 3 be a φ-basis of the tangent space at each point of the
manifold. Then substituting Y = Z = ei in (40) and taking summation over i,
1 ≤ i ≤ 3, we get (

3k − r

2

)
η(X) = 0. (41)

This gives r = 6k (since η(X) does not vanish for all vector fields X), which
implies by Lemma 1 that the manifold is of constant curvature k.
This leads to the following:

Theorem 2. A conformally flat N(k)-paracontact metric manifold M of
dimension three is of constant curvature k.
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4 η-Ricci solitons on N(k)-paracontact metric mani-
folds

This section is devoted to study η-Ricci solitons on three-dimensional N(k)-
paracontact metric manifolds. Now the equation (31) implies that

(£ξg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) + 2νη(X)η(Y ) = 0. (42)

For an N(k)-paracontact metric manifold, we have

(£ξg)(X,Y ) = 2g(φhX, Y ). (43)

Thus the equation (32) reduces to

S(X,Y ) = −g(φhX, Y )− λg(X,Y )− νη(X)η(Y ). (44)

Substituting φX for X in (34) we infer that

S(φX, Y ) = g(hX, Y )− λ(φX, Y ). (45)

Replacing X by φX in (15) yields

S(φX, Y ) =
(r

2
− k
)
g(φX, Y ). (46)

Equating the right hand sides of (45) and (46) we have

g(hX, Y ) =
(r

2
− k + λ

)
g(φX, Y ). (47)

Interchanging X and Y in (47) we get

g(hY,X) =
(r

2
− k + λ

)
g(φY,X). (48)

Adding (47) and (48) we obtain g(hX, Y ) = 0, that is, h = 0. Now we know
that h = 0 holds if and only if ξ is a Killing vector field and consequently M is
a K-paracontact metric manifold. For three-dimensional case, a K-paracontact
metric manifold is a paraSasakian manifold. Thus M is a paraSasakian manifold.
Using Lemma 2 we get the following result.

Theorem 3. If a three-dimensional N(k)-paracontact metric manifold ad-
mits a η-Ricci soliton whose potential vector field is the Reeb vector field ξ, then
the manifold is a (ψB)3 with associated symmetric tensor B given by

B(X,Y ) =

√
(ν − λ)

2
g(X,Y )− ν

√
2

(ν − λ)
η(X)η(Y ),

for all vector fields X,Y ∈ χ(M).
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5 Gradient Ricci solitons on three-dimensional con-
tractible N(k)-paracontact metric manifolds

In this section we study gradient Ricci solitons on three-dimensional con-
tractible N(k)-paracontact metric manifolds. Let M be a three-dimensional con-
tractible N(k)-paracontact metric manifold and g a gradient Ricci soliton. Then
the equation (2) can be put in of the form

∇YDf = QY + λY, (49)

for all vector fields Y ∈ χ(M), where D denotes the gradient operator of the
pseudo-metric g.
From (49), we have

R(X,Y )Df = (∇XQ)Y − (∇YQ)X. (50)

Making use of (14) in (50) we obtain

R(X,Y )Df =
dr(X)

2
{Y − η(Y )ξ} − dr(Y )

2
{X − η(X)ξ}

−
(r

2
− 3k

)
{2g(X,φY )ξ + η(X)φY − η(Y )φX

+η(Y )φhX − η(X)φhY }. (51)

Substituting ξ for X in (51) we infer that

R(ξ, Y )Df =
dr(ξ)

2
{Y − η(Y )ξ} −

(r
2
− 3k

)
{φY − φhY }. (52)

Taking inner product of (52) with ξ yields

g(R(ξ, Y )Df, ξ) = 0. (53)

Again from (17) it follows that

g(R(ξ, Y )Z, ξ) = k{g(Y, Z)− η(Y )η(Z)}. (54)

Thus from (53) and (54) we get

k{g(Y, Z)− η(Y )η(Z)} = 0. (55)

Case 1: Let us suppose that k = 0. From Lemma 3 we conclude that the
manifold is an Einstein manifold and hence, being three-dimensional, a space of
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constant curvature.
Case 2: Let g(Y,Z)− η(Y )η(Z) = 0. From which it follows that

g(Y,Df) = ξfη(Y ),

that is,
Df = (ξf)ξ. (56)

Again using (11) and (56) we obtain

g(∇YDf,X) = Y (ξf)η(X)− (ξf){g(φX, Y )− g(φhY,X)}. (57)

Noticing (49) and (57) we infer that

S(X,Y ) + λg(X,Y ) = Y (ξf)η(X)− (ξf){g(φX, Y )− g(φhY,X)}. (58)

Putting X = ξ and using (15) yields

Y (ξf) = (λ+ 2k)η(Y ). (59)

Therefore we have from (59) and (57)

g(∇YDf,X) = (λ+ 2k)η(X)η(Y )− (ξf){g(φX, Y )− g(φhY,X)}. (60)

Applying Poincaré’s lemma: On a contractible manifold, all closed forms are
exact. Therefore d2f(X,Y ) = 0, for all X,Y ∈ χ(M). Thus we have

XY (f)− Y X(f)− [X,Y ]f = 0,

from which we have,

Xg(gradf, Y )− Y g(gradf,X)− g(gradf, [X,Y ]) = 0.

This is equivalent to

∇Xg(gradf, Y )− g(gradf,∇XY )−∇Y g(gradf,X) + g(gradf,∇YX) = 0.

Since ∇g = 0, the above equation implies

g(∇Xgradf, Y )− g(∇Y gradf,X) = 0,

that is, g(∇XDf, Y ) = g(∇YDf,X). Applying this in (60), we have (ξf)
g(φX, Y ) = 0, that is, (ξf)dη(X,Y ) = 0. Since dη 6= 0, it follows that ξf = 0.
Consequently from (56) we obtain Df = 0. Hence from (49) we have

S(X,Y ) = −λg(X,Y ).
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Substituting ξ for both X and Y in the above equation we obtain

λ = −2k. (61)

Thus we obtain S(X,Y ) = 2kg(X,Y ), that is, the manifold becomes Einstein
and hence, being three-dimensional, a space of constant curvature.

Combining the above two cases we have the following:

Theorem 4. If the pseudo-Riemannian metric g of a three-dimensional
contractible N(k)-paracontact metric manifold is a gradient Ricci soliton, then
the manifold is of constant curvature.
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