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Abstract. Recently, G. E. Andrews defined combinatorial objects which he called (k, i)-
singular overpartitions, overpartitions of n in which no part is divisible by k and only parts
≡ ±i (mod k) may be overlined. Let the number of (k, i)-singular overpartitions of n be
denoted by Ck,i(n). Andrews and Chen, Hirschhorn and Sellers noted numerous congruences
modulo 2 for C3,1(n). The object of this paper is to obtain new congruences modulo 2 for
C20,5(n) and modulo 8 and 12 for C3,1(n).
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive
integers whose sum is n. Let p(n) be the number of partitions of n. For example
p(5) = 7. The seven partitions of 5 are 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1,
2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. The generating function for p(n) is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
=

1

f1
,

where as customary, we define fk := (qk; qk)∞ =
∏∞
m=1(1− qmk).

If l is a positive integer, then a partition of n is said to be l-regular if no part

iThe First author’s research is supported by DST/INSPIRE Fellowship, IF130961, Govern-
ment of India, Department Of Science & Technology, Technology Bhawan, New Delhi-110016.

http://siba-ese.unisalento.it/ c© 2018 Università del Salento
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is divisible by l. If bl(n) denotes the number of l-regular partitions of n then

∞∑
n=0

bl(n)qn =
(ql; ql)∞
(q; q)∞

=
fl
f1
.

Several interesting arithmetic properties of l-regular partitions are found by
many mathematicians, see [2, 6, 10, 11, 15, 19, 21]. In [9], Corteel and Lovejoy
developed a new aspect of the theory of partitions - overpartitions. A hint of
such a subject can also been seen in Hardy and Ramanujan [13, p.304]. An
overpartition of n is a non-increasing sequence of positive integers whose sum is
n in which the first occurrence of a part may be overlined. If p(n) denotes the
number of overpartitions of n then

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

=
f2

f2
1

. (1.1)

Lovejoy [17] investigated the function Al(n) which counts the number of l-
regular overpartitions of n. He also proved theorems for overpartitions analogous
to Gordons celebrated generalization of the RogersRamanujan identities [12].
The generating function for Al(n) is

∞∑
n=0

Al(n)qn =
(−q; q)∞(ql; ql)∞
(q; q)∞(−ql; ql)∞

=
f2f

2
l

f2
1 f2l

.

Recently, G. E. Andrews [3] introduced (k, i)-singular overpartitions,
overpatitions in which no part is divisible by k and only parts ≡ ±i (mod k)
may be overlined. Let Ck,i(n) denote the number of such partitions of n. For
example, C3,1(4) = 10. The ten (3, 1)-singular overpartitions of 4 are 4, 4̄, 2+2,
2̄ + 2, 2 + 1 + 1, 2̄ + 1 + 1, 2 + 1̄ + 1, 2̄ + 1̄ + 1, 1 + 1 + 1 + 1 and 1̄ + 1 + 1 + 1.
The generating function for Ck,i(n), where k ≥ 3 and 1 ≤ i ≤

⌊
k
2

⌋
is

∞∑
n=0

Ck,i(n)qn =
(qk; qk)∞(−qi; qk)∞(−qk−i; qk)∞

(q; q)∞
. (1.2)

In his paper [3], Andrews also proved that for n ≥ 0,

C3,1(9n+ 3) ≡ C3,1(9n+ 6) ≡ 0 (mod 3). (1.3)

It is important to note that C3,1(n) = A3(n). Later, Chen, Hirschhorn and
Sellers [8] found infinite families of congruences modulo 3 for C3,1(n), C6,1(n),
C6,2(n) and parity results for C4,1(n). For example, they proved the following
congruences,
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Theorem 1.1. Let p ≡ 3 (mod 4) be prime. Then for all k,m ≥ 0 with
p - m,

C3,1(p2k+1m) ≡ 0 (mod 3). (1.4)

In Theorem 1.1 if we set p = 3, k = 0 and m ≡ 1, 2 (mod 3), we can
easily obtain (1.3). For recent works on singular overpartitions, see [1, 3, 7, 8,
16, 18, 20, 22]. The aim of this paper is to prove new congruences for C3,1(n)
and C20,5(n). The following are our main results.

Theorem 1.2. For all k, n ≥ 0,

C3,1(4k(72n+ 21)) ≡ 0 (mod 12), (1.5)

C3,1(4k(72n+ 39)) ≡ 0 (mod 12), (1.6)

C3,1(4k(72n+ 57)) ≡ 0 (mod 12). (1.7)

Theorem 1.3. Let p ≥ 5 be prime and 1 ≤ s ≤ p−1 with 6s+1 a quadratic
nonresidue modulo p. Then, for all m ≥ 0,

C3,1 (18(pm+ s) + 3) ≡ 0 (mod 12). (1.8)

Theorem 1.4. For all k, n ≥ 0,

C3,1(4k(12n+ 5)) ≡ 0 (mod 8), (1.9)

C3,1(4k(12n+ 11)) ≡ 0 (mod 8). (1.10)

Theorem 1.5. Let p ≥ 5 be prime. Then for all α ≥ 1 and n ≥ 0,

C3,1

(
48p2αn+ (48j + 2p)p2α−1

)
≡ 0 (mod 8), j = 1, 2, . . . , p− 1. (1.11)

Theorem 1.6. For all α, n ≥ 0,

C20,5

(
2 · 52α+1n+

31 · 52α − 7

12

)
≡ 0 (mod 2), (1.12)

C20,5

(
2 · 52α+1n+

79 · 52α − 7

12

)
≡ 0 (mod 2), (1.13)

C20,5

(
2 · 52α+2n+

83 · 52α+1 − 7

12

)
≡ 0 (mod 2), (1.14)

C20,5

(
2 · 52α+2n+

107 · 52α+1 − 7

12

)
≡ 0 (mod 2). (1.15)
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For an odd prime , the Legendre symbol is defined by

(
a

p

)
=


1 if a is quadratic residue modulo p and a 6≡ 0 (mod p),

−1 if a is quadratic non-residue modulo p ,

0 if a ≡ 0 (mod p).

We also prove the following infinite family of congruences for C20,5(n).

Theorem 1.7. Let p ≥ 5 be prime,

(
−10

p

)
= −1. Then for all α, n ≥ 0 ,

C20,5

(
2p2α+1 (pn+ j) + 7× p2α+2 − 1

12

)
≡ 0 (mod 2), j = 1, 2, . . . , p− 1.

(1.16)

In order to prove our main results, we collect a few definitions and Lemmas
in section 2. In section 3-5 we prove our main results.

2 Preliminaries

We require the following definitions and lemmas to prove the main results in
the next three sections.
For | ab |< 1, Ramanujan’s general theta function f(a, b) is defined as

f(a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2. (2.1)

Using Jacobi’s triple product identity [5, Entry 19, p. 35], (2.1) becomes

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (2.2)

The most important special cases of f(a, b) are

ϕ(q) :=f(q, q) = 1 + 2
∞∑
n=1

qn
2

= (−q; q2)2
∞(q2; q2)∞ =

f5
2

f2
1 f

2
4

, (2.3)

ψ(q) :=f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
f2

2

f1
(2.4)

and

f(−q) :=f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞ = f1. (2.5)
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By the binomial theorem, we see that for any positive integer k,

f2k

1 ≡ f2k−1

2 (mod 2k). (2.6)

Lemma 2.1. (Hirschhorn, Garvan and Borwein [14]) The following 2-dissection
holds

f3
3

f1
=

f3
4 f

2
6

f2
2 f12

+ q
f3

12

f4
. (2.7)

Lemma 2.2. (Hirschhorn and Sellers [15, Theorem 2.1, 2.3, 2.4]) We have,

∞∑
n=0

b5(n)qn =
f5

f1
=
f8f

2
20

f2
2 f40

+ q
f3

4 f10f40

f3
2 f8f20

, (2.8)

∞∑
n=0

b5(2n+ 1)qn ≡ f5f20

f1f10
(mod 2), (2.9)

b5(20n+ 5) ≡ 0 (mod 2), (2.10)

b5(20n+ 13) ≡ 0 (mod 2). (2.11)

Lemma 2.3. (Cui and Gu [10, Theorem 2.2]) If p ≥ 5 is a prime and

±p− 1

6
:=

{
p−1

6 , if p ≡ 1 (mod 6),
−p−1

6 , if p ≡ −1 (mod 6),

then

(q; q)∞ =

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q
p2−1
24 (qp

2
; qp

2
)∞. (2.12)

Furthermore, if −p−1
2 ≤ k ≤

p−1
2 , k 6= ±p−1

6 then 3k2+k
2 6≡ p2−1

24 (mod p).

3 Congruences modulo 12 for C3,1(n)

In this section we prove some infinite families of congruences modulo 12 for
C3,1(n).
From [19, Theorem 2.7, Eq. 2.22], we have

∞∑
n=0

C3,1(9n+ 3)qn = 6
f8

2 f
15
3

f17
1 f6

6

+ 96q
f5

2 f
6
3 f

3
6

f14
1

. (3.1)
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Using (2.6), we have
f8

2 f
15
3

f17
1 f6

6

≡ f3
3

f1
(mod 2). (3.2)

Using (3.2) in (3.1), we obtain

∞∑
n=0

C3,1(9n+ 3)qn ≡ 6
f3

3

f1
(mod 12). (3.3)

Substituting the identity (2.7) in (3.3) and then simplifying, we have

∞∑
n=0

C3,1(9n+ 3)qn ≡ 6f8 + 6q
f3

12

f4
(mod 12). (3.4)

Equating the coefficients of q4n+1 from both sides of (3.4), dividing both sides
by q and then replacing q4 by q, we have

∞∑
n=0

C3,1(36n+ 12)qn ≡ 6
f3

3

f1
≡
∞∑
n=0

C3,1(9n+ 3)qn (mod 12), (3.5)

which yields,

C3,1(36n+ 12) ≡ C3,1(9n+ 3) (mod 12). (3.6)

By (3.6) and mathematical induction , we find that for n, k ≥ 0,

C3,1(4k(9n+ 3)) ≡ C3,1(9n+ 3) (mod 12). (3.7)

Equating the coefficients of q2n from both sides of (3.4), and then replacing q2

by q, we have
∞∑
n=0

C3,1(18n+ 3)qn ≡ 6f4 (mod 12). (3.8)

Equating the coefficients of q4n+1, q4n+2, q4n+3 from the both sides of (3.8), we
obtain

C3,1(72n+ 21) ≡ 0 (mod 12), (3.9)

C3,1(72n+ 39) ≡ 0 (mod 12), (3.10)

C3,1(72n+ 57) ≡ 0 (mod 12). (3.11)

Proof of Theorem 1.2. Replacing n by 8n+2 in (3.7) and using (3.9), we obtain
(1.5). Replacing n by 8n+ 4 in (3.7) and using (3.10), we have (1.6). Replacing
n by 8n+ 6 in (3.7) and then employing (3.11), we obtain (1.7). QED
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Theorem 3.1. For all n ≥ 0,

C3,1(18n+ 3) ≡

{
6 (mod 12) if n = 2k(3k − 1) ,

0 (mod 12) otherwise.
(3.12)

Proof. Using Euler’s Pentagonal Number Theorem [4, p. 12] in (3.8), we obtain

∞∑
n=0

C3,1(18n+ 3)qn ≡ 6

∞∑
k=−∞

q2k(3k−1) (mod 12). (3.13)

QED

Proof of Theorem 1.3. Replacing q by q6 in both sides of (3.13) and then
multiplying both sides by q, we have

∞∑
n=0

C3,1(18n+ 3)q6n+1 ≡ 6
∞∑

k=−∞
q12k(3k−1)+1 (mod 12), (3.14)

which yields

∞∑
n=0

C3,1(18n+ 3)q6n+1 ≡ 6

∞∑
k=−∞

q(6k−1)2 (mod 12). (3.15)

Let n = pm+s, then 6n+1 = 6pm+6s+1 ≡ 6s+1 (mod p) is not a quadratic
residue modulo p. Thus, 6n+1 is not a square and C3,1(18n+3) ≡ 0 (mod 12).

QED

4 Congruences modulo 8 for C3,1(n)

In this section, we prove some arithmetic properties modulo 8 satisfied by
C3,1(n).

From [19, Theorem 2.6, Eq. 2.16], we have

∞∑
n=0

C3,1(3n+ 2)qn = 4
f2f

3
6

f4
1

. (4.1)

Using (2.6), it follows that

f2f
3
6

f4
1

≡ f6
3

f2
1

(mod 2). (4.2)
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Using (4.2) in (4.1), we obtain

∞∑
n=0

C3,1(3n+ 2)qn ≡ 4
f6

3

f2
1

(mod 8). (4.3)

Substituting the identity (2.7) in (4.3) and then using (2.6) , we obtain

∞∑
n=0

C3,1(3n+ 2)qn ≡ 4

(
f3

4 f
2
6

f2
2 f12

+ q
f3

12

f4

)2

≡ 4

(
f6

4 f
4
6

f4
2 f

2
12

+ q2 f
6
12

f2
4

)
≡ 4

(
f4

4 + q2 f
6
12

f2
4

)
(mod 8). (4.4)

Extracting the terms containing q4n+2 from both sides of (4.4), dividing both
sides by q2 and then replacing q4 by q, we obtain

∞∑
n=0

C3,1(12n+ 8)qn ≡ 4
f6

3

f2
1

≡
∞∑
n=0

C3,1(3n+ 2)qn (mod 8), (4.5)

which yields,
C3,1(12n+ 8) ≡ C3,1(3n+ 2) (mod 8). (4.6)

By (4.6) and mathematical induction we have , for n, k ≥ 0,

C3,1(4k(3n+ 2)) ≡ C3,1(3n+ 2) (mod 8). (4.7)

Extracting the terms containing q4n from both sides of (4.4) and then replacing
q4 by q we have,

∞∑
n=0

C3,1(12n+ 2)qn ≡ 4f4
1 ≡ 4f4 (mod 8). (4.8)

Equating the coefficients of q4n+1 and q4n+3 from both sides of (4.4), we have

C3,1(12n+ 5) ≡ 0 (mod 8), (4.9)

C3,1(12n+ 11) ≡ 0 (mod 8). (4.10)

Proof of Theorem 1.4. Replacing n by 4n+1 in (4.7) and using (4.9), we obtain
(1.9). Again by replacing n by 4n+ 3 in (4.7) and using (4.10), we have (1.10).

QED
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Theorem 4.1. Let p ≥ 5 be prime. Then for all α, n ≥ 0,

∞∑
n=0

C3,1

(
48p2αn+ 2p2α

)
qn ≡ 4(q; q)∞ (mod 8). (4.11)

Proof. Extracting the terms involving q4n, from the both sides of (4.8) and then
replacing q4 by q, we obtain

∞∑
n=0

C3,1(48n+ 2)qn ≡ 4f1 (mod 8), (4.12)

which is the case α = 0 of (4.11). Suppose that (4.11) is true for some α ≥ 0.

Substituting (2.12) into (4.11), extracting the terms containing qpn+ p2−1
24 from

both sides of the identity, dividing both sides by q
p2−1
24 and then replacing qp by

q, we obtain

∞∑
n=0

C3,1

(
48p2α

(
pn+

p2 − 1

24

)
+ 2p2α

)
qn ≡ 4(qp; qp)∞ (mod 8). (4.13)

Extracting the terms containing of qpn from both sides of (4.13) and then re-
placing qp by q, we obtain

∞∑
n=0

C3,1

(
48p2(α+1)n+ 2p2(α+1)

)
qn ≡ 4(q; q)∞ (mod 8), (4.14)

which is (4.11) with α+1 for α. This completes the proof of (4.11) by induction.
QED

Proof of Theorem 1.5. Comparing the coefficients of qpn+j , for 1 ≤ j ≤ p − 1,
from both sides of (4.13), we arrive at (1.11). QED

5 Congruences modulo 2 for C20,5(n)

In this section, we prove a number of arithmetic properties modulo 2 satisfied
by C20,5(n).

Theorem 5.1. For all α, n ≥ 0,

∞∑
n=0

C20,5

(
2 · 52αn+ 7× 52α − 1

12

)
qn ≡ (q2; q2)∞(q5; q5)∞ (mod 2). (5.1)
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Proof. From (1.2), we have

∞∑
n=0

C20,5(n)qn =
(q20; q20)∞(−q5; q20)∞(−q15; q20)∞

(q; q)∞

≡ f10f5

f1
(mod 2). (5.2)

Using (2.6) in (2.8), we obtain

f5

f1
=
f8f

2
20

f2
2 f40

+ q
f3

4 f10f40

f3
2 f8f20

≡ f4 + q
f10f20

f2
(mod 2). (5.3)

Using (5.3) in (5.2), we obtain

∞∑
n=0

C20,5(n)qn ≡ f4f10 + q
f2

10f20

f2
(mod 2). (5.4)

Extracting the terms containing q2n from both sides of (5.4) and then replacing
q2 by q, we have

∞∑
n=0

C20,5(2n)qn ≡ f2f5 (mod 2), (5.5)

which is the case α = 0 of (5.1). Now suppose (5.1) holds for some α ≥ 0.

Recall Ramanujan’s beautiful identity [4, p. 161]:

f1

f25
= R(q5)

−1 − q − q2R(q5), (5.6)

where

R(q) =
f(−q,−q4)

f(−q2,−q3)
.

Replacing q by q2 in (5.6), we get

f2

f50
= R(q10)

−1 − q2 − q4R(q10). (5.7)
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Using (5.7) in (5.1), we have

∞∑
n=0

C20,5

(
2 · 52αn+ 7× 52α − 1

12

)
qn ≡ (q2; q2)∞(q5; q5)∞ (mod 2)

= f5f50

(
R(q10)

−1 − q2 − q4R(q10)
)
.

(5.8)

Extracting the terms containing q5n+2 from both sides of (5.8), then dividing
both sides by q2 and finally replacing q5 by q, we have

∞∑
n=0

C20,5

(
2 · 52α(5n+ 2) + 7× 52α − 1

12

)
qn ≡ f1f10 (mod 2). (5.9)

Using (5.6) in (5.9), we get

∞∑
n=0

C20,5

(
2 · 52α+1n+

11 · 52α+1 − 7

12

)
qn ≡ f1f10 (mod 2)

= f10f25

(
R(q5)

−1 − q − q2R(q5)
)
.

(5.10)

Extracting the terms containing q5n+1 from both sides (5.10), then dividing
both sides by q and finally replacing q5 by q, we obtain

∞∑
n=0

C20,5

(
2 · 52α+1(5n+ 1) +

11 · 52α+1 − 7

12

)
qn

=
∞∑
n=0

C20,5

(
2 · 52(α+1)n+ 7× 52(α+1) − 1

12

)
qn ≡ f2f5 (mod 2), (5.11)

which is (5.1) with α+ 1 for α. This completes the proof of (5.1) by induction.
QED

Proof of Theorem 1.6. Comparing the coefficients of q5n+1 and q5n+3 from both
sides of (5.8), we obtain the first two congruences of Theorem 1.6. Comparing
the coefficients of q5n+3 and q5n+4 from both sides of (5.10), we obtain the
remaining two congruences of Theorem 1.6. QED

Theorem 5.2. Let p ≥ 5 be prime,

(
−10

p

)
= −1. Then for all α, n ≥ 0,

∞∑
n=0

C20,5

(
2p2αn+ 7× p2α − 1

12

)
qn ≡ (q2; q2)∞(q5; q5)∞ (mod 2). (5.12)



112 Utpal Pore, S. N. Fathima

Proof. Now (5.5) is the α = 0 case of (5.12). Suppose (5.12) is true for some
α ≥ 0. Using (2.12) on the right hand of (5.12), we obtain

∞∑
n=0

C20,5

(
2p2αn+ 7× p2α − 1

12

)
qn

≡


p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq2· 3k
2+k
2 f

(
−q2· 3p

2+(6k+1)p
2 ,−q2· 3p

2−(6k+1)p
2

)

+ (−1)
±p−1

6 q2· p
2−1
24 (q2p2 ; q2p2)∞



×


p−1
2∑

m=− p−1
2

m 6=±p−1
6

(−1)mq5· 3m
2+m
2 f

(
−q5· 3p

2+(6m+1)p
2 ,−q5· 3p

2−(6m+1)p
2

)

+ (−1)
±p−1

6 q5· p
2−1
24 (q5p2 ; q5p2)∞

 (mod 2). (5.13)

For a prime p with −p−1
2 ≤ k,m ≤

p−1
2 , let us consider

2 · 3k2 + k

2
+ 5 · 3m2 +m

2
≡ 7p2 − 7

24
(mod p),

which equivalent to

(12k + 2)2 + 10(6m+ 1)2 ≡ 0 (mod p).

Since

(
−10

p

)
= −1, the only solution of the above condition is k,m =

±p− 1

6
.

Therefore extracting the terms containing qpn+7· p
2−1
24 from both sides of (5.13),
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then dividing both sides by q7· p
2−1
24 and replacing qpn by q we obtain,

∞∑
n=0

C20,5

(
2p2α

(
pn+ 7 · p

2 − 1

24

)
+ 7× p2α − 1

12

)
qn

=
∞∑
n=0

C20,5

(
2p2α+1n+ 7× p2α+2 − 1

12

)
qn ≡ (q2p; q2p)∞(q5p; q5p)∞ (mod 2).

(5.14)

Extracting the terms containing qpn from both sides of (5.14) and then replacing
qp by q, we obtain

∞∑
n=0

C20,5

(
2p2(α+1)n+ 7× p2(α+1) − 1

12

)
qn ≡ (q2; q2)∞(q5; q5)∞ (mod 2),

(5.15)
which is (5.12) with α+1 for α. This completes the proof of (5.12) by induction.

QED

Proof of Theorem 1.7. Comparing the coefficients of qpn+j , for 1 ≤ j ≤ p − 1
from both sides of (5.14), we arrive at (1.16). QED

We close this section by briefly noting the following corollary.

Corollary 1. For all n ≥ 0,

C20,5(n) ≡ b5(2n+ 1) (mod 2), (5.16)

C20,5(10n+ 2) ≡ 0 (mod 2), (5.17)

C20,5(10n+ 6) ≡ 0 (mod 2). (5.18)

Proof. From (2.9) we have,

∞∑
n=0

b5(2n+ 1)qn ≡ f5f20

f1f10
≡ f5f10

f1
(mod 2), (5.19)

(5.16) follows from (5.2) and (5.19). Replacing n by 10n + 2 in (5.16), using
(2.10), we have (5.17). Again replacing n by 10n+ 6 in (5.16) and using (2.11),
we obtain (5.18). Observe that (5.17) is the α = 0 case of (1.12) and (5.18) is
the α = 0 case of (1.13). QED
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