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Abstract. We study polyharmonic (k-harmonic) maps between Riemannian manifolds with
finite j-energies (j = 1,--- ,2k — 2). We show that if the domain is complete and the target is
the Euclidean space, then such a map is harmonic.
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Introduction

This paper is an extension of our previous work ([25]) to polyharmonic maps.
Harmonic maps play a central role in geometry;they are critical points of the
energy functional E(p) = 3 [}, |dp|? v, for smooth maps ¢ of (M, g) into (N, h).
The Euler-Lagrange equations are given by the vanishing of the tension filed
7(p). In 1983, J. Eells and L. Lemaire [6] extended the notion of harmonic map
to polyharmonic map, which are, by definition, critical points of the k-energy
(k> 2)

Pule) = 5 [ ld+ 8ol v, 01)

After G.Y. Jiang [15] studied the first and second variation formulas of Fs
(k = 2), extensive studies in this area have been done (for instance, see [2], [4],
(18], [19], [22], [26], [28], [12], [13], [14], etc.). Notice that harmonic maps are
always polyharmonic by definition.
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For harmonic maps, it is well known that:

If a domain manifold (M,g) is complete and has non-negative Ricci cur-
vature, and the sectional curvature of a target manifold (N, h) is non-positive,
then every energy finite harmonic map is a constant map (cf. [29]).

In our previous paper, we showed that

Theorem 1. [25] Let (M,g) be a complete Riemannian manifold, and
the curvature of (N, h) is non-positive. Then,

(1) every biharmonic map ¢ : (M,g) — (N, h) with finite energy and finite
bienergy must be harmonic.

(2) In the case Vol(M, g) = oo, every biharmonic map ¢ : (M,g) — (N, h)
with finite bienergy is harmonic.

Now, in this paper, we want to extend it to k-harmonic maps (k > 2).
Indeed, we will show

Theorem 2. Theorems 4 and 6 Let (M,g) be a complete Riemannian
manifold, and (N, h), the n-dimensional Euclidean space. Then,

(1) every k-harmonic map ¢ : (M, g) — (N, h) (k > 2) with finite j-energies
forall j=1,2,---,2k — 2, must be harmonic.

(2) In the case of Vol(M,g) = oo, every k-harmonic map ¢ : (M,g) —
(N, h) with finite j-energy for all j = 2,4, --- 2k — 2, is harmonic.

Theorem 2 gives an affirmative answer to the generalized B.Y. Chen’s con-
jecture (cf. [4]) on k-harmonic maps (k > 2) under the L?-conditions.

Acknowledgements. We express our gratitude to Dr. Shun Maeta who
gave valuable comments in the first draft. This manuscript was submitted as
arXiv: 1307.5089v2 [math.DG] 5 Aug 2013. However, the submission of this
manuscript to a journal has been delayed because of hard businessies of the
second author.

1 Preliminaries and statement of main theorem

In this section, we prepare materials for the first variational formula for the
biharmonic maps. Let us recall the definition of a harmonic map ¢ : (M, g) —
(N,h), of a compact Riemannian manifold (M, g) into another Riemannian
manifold (N, h), which is an extremal of the energy functional defined by

E(p) = /Mew)



Polyharmonic maps into the Euclidean space 91

where e(p) := 3|di|? is called the energy density of ¢. That is, for any variation
{epe} of  with o = ¢,

4
dt

B(o) = - [ h(r(e). Vg =0 (11)
t=0 M

where V € I'(¢~'TN) is a variation vector field along ¢ which is given by
V(z) = Llmopi(z) € Tp(2)N, (x € M), and the tension field is given by 7(¢) =
S B(p) (e e;) € (@ ITN), where {e;}7, is a locally defined frame field on
(M, g), and B(yp) is the second fundamental form of ¢ defined by

B(¢)(X,Y) = (Vdg)(X,Y)

= (%XdSO)(Y)
= Vx(dp(Y)) — dp(VxY), (1.2)

for all vector fields X,Y € X(M). Here, V, and V| are the Levi-Civita con-
nections of (M, g), (N, h), respectively, and V, and V are the induced ones on
@ 'TN, and T*M ® o~ 'TN, respectively. By (2), ¢ is harmonic if and only if
T(¢) = 0.

The second variation formula is given as follows. Assume that ¢ is harmonic.

Then, )
d
| B - | a0V, (1.3)

where J is an elliptic differential operator, called the Jacobi operator acting on
(¢~ 'TN) given by

J(V)=AV —R(V), (1.4)
where AV = V'VV = — Yot i{Ve, Ve,V =Vy, ¢V} is the rough Laplacian and
R is a linear operator on I'(p 1T N) given by R(V) = S, RN (V, dy(e;))dp(e;),
and R" is the curvature tensor of (N,h) given by RN(U,V) = VNV, —
VNVVNU — VN[Uy] for U, V € X(N).

J. Eells and L. Lemaire [6] proposed polyharmonic (k-harmonic) maps and
Jiang [15] studied the first and second variation formulas for biharmonic maps.
Let us consider the bienergy functional defined by

Bae) =5 [ o), (15)

where |V|?2 = h(V,V), V € TI'(¢~'TN). The first variation formula of the bi-
energy functional is given by

d

Bulpr) = — /M h(ra(), Vv, (1.6)
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Here,
n2(p) = J(7(9)) = Al7()) — R(7(¥)), (1.7)
which is called the bitension field of ¢, and J is given in (5).
A smooth map ¢ of (M, g) into (N, h) is said to be biharmonic if T2(p) = 0.
Now let us recall the definition of the k-energy Ei(y) (k > 2):
Definition 1. The k-energy Ex(p) (k > 2) is defined formally ([7]) by

Bu(e) =5 [ 1d+ 0 ey, (1)

for every smooth map ¢ € C°(M, N). Then, it is given ([12], p. 270, Lemma
40) by the following formula:

1
2/ \W£|2vg (if k is even, say 2/),
M

Bilg) =42 (1.9
2/ |V Wé\gvg (if k is odd, say 2¢ + 1).
M

Here, W£ is given as, by definition,

Wh=A-- A 7(p) eT(¢ 'TN). (1.10)
/-1

For k =1, that is, £ = 0, we define Wg = ¢, also.

Then, the definition and the first variation formula for the k-energy Ej are
given as follows:

Definition 2. k-harmonic map For each k= 2,3,---, and a smooth map
v: (M,g) = (N, h), is k-harmonic if
d Ei(p) =0 (1.11)
dt|,_, k\$t) = .

for every smooth variation ¢; : M — N (—e < t < ¢) with @9 = ¢.

Then, we have ([12], p.269, Theorem 39)

Theorem 3. The first variation formula of the k-energy Assume
that (N,h) = (R™, hgn) is the n-dimensional Euclidean space. For every k =
2,3, -+, it holds that

d

dt

Bu(or) = — / ((9), V) v, (1.12)
t=0 M
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where V' is a variation vector field given by V (z) = %!tzocpt(w) € Ty)N (z €
M ). The k-tension field 7;(¢) is given by

Te(p) = JWEH) = AW, (1.13)

where ngj*l =A---AT7(p) €T (¢ 'TN).
k—2
Thus, ¢ : (M,g) — (N, h) is k-harmonic if and only ifzk_lT(go) = 0 which
1s equivalent to W;f =0.

Notice that the formula (14) of the k-tension field 74 (¢) coincides with the
k-tension field in Theorems 2.2 and 2.3 in [21] in the case that the target space
(N, h) is the n-dimensional Euclidean space (N, h) = (R, hgn) because of RY =
0.

Here, we denote by VWé =Vep=dpfor{=0,and k=2{+1=1,

1
Pi() =5 [ ldoPu,

Then, we can state our main theorem.

Theorem 4. Main theorem Assume that the domain manifold (M, g) is a
complete Riemannian manifold, and the target space (N, h) is the n-dimensional
Euclidean space. Let ¢ : (M, g) — (N, h) be a k-harmonic map (k > 2). Assume
that

(1) Ej(p) < oo forall j =2,4,---,2k —2, and
(2) either
E](Qp) < OOfOT all] = 1737"' 72k_3, or
Vol(M, g) = oc.

Then, ¢ : (M,g) — (N, h) is harmonic.
In the case of the n-dimensional Euclidean space (N, h) = (R", hgn), The-

orem 4 and the following Theorem 5 are natural extensions of our previous
theorem in [25] which is:

Theorem 5. Assume that (M, g) is complete and the sectional curvature of
(N, h) is non-positive.

(1) Bvery biharmonic map ¢ : (M, g) — (N, h) with finite energy E(y) < 0o
and finite bienergy Ea(p) < 0o, is harmonic.

(2) In the case Vol(M, g) = oo, every biharmonic map ¢ : (M, g) — (N, h)
with finite bienergy Eo(p) < 00, is harmonic.
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2 The iteration proposition.

By virtue of (10), we have to notice the the energy conditions in (1) and (2)
of Theorem 4:

Indeed, the condition which E;(¢) < oo for all j =2,4,---,2k —2in (1) of
Theorem 4 is equivalent to that

/ \Wgy%g<oo (j=1,2,-- ,k—1), (2.1)
M

and the condition which E;(¢) < oo forall j =1,3,--- ,2k—3in (2) of Theorem
4 is equivalent to that

/M VWZ[Pvy <oo  (j=0,1,--- ,k—2). (2.2)

Therefore, to show Theorem 4, we only have to prove the following theorem:

Theorem 6. Assume that the domain manifold (M, g) is a complete Rie-
mannian manifold, and the target space (N, h) is the n-dimensional Fuclidean
space. Let ¢ : (M, g) — (N, h) be a k-harmonic map.

Assume that

(1) /M\W(ZP%<oof0rallj:1,2,---,k—l, and
(2) either

/ |§W$|2vg<oof0rallj:O,1,--~ Jk—2, or
M

Vol(M, g) = oc.
Then, ¢ : (M, g) — (N, h) is harmonic.

To prove Theorem 6 whose proof will be given in the next section, we need
the following iteration proposition:

Proposition 1. the iteration method Let (M,g) be a complete Rie-
mannian manifold, and (N,h), an arbitrary Riemannian manifold. Let ¢ :
(M, g) — (N, h) be an arbitrary C*> map satisfying that for some j > 2,

W] =0. (2.3)
If we assume the following two conditions:
(1) / \ngl\Qvg < 00, and
M

(2) either [,, \VWQZ_QFUQ < 00 or Vol(M, g) = oo,

(2.4)
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then, we have

-
Wit =0 (2.5)

Remark 1. Under the assumptions (16), if we have Wjj = 0 for some k > 2,
then we have automatically, Wg}, =7(p) =0, i.e., ¢ is harmonic.

In this section, we give a proof of Proposition 1 which consists of four steps.
(The first step)  For a fixed point xo € M, and for every 0 < r < oo, we
first take a cut-off C*° function n on M (for instance, see [16]) satisfying that

0<n(x) <1 (zeM),

n(z) =1 (z € By(z0)),
(@) =0 (x & Bar(x0)), (2:6)
V| < % (x e M).

(The second step)  Notice that (17) is equivalent to that
AWl =0 (2.7)

because of Wg = ZWg_l.
Then, we have

0= / (P Wi AW v,
M
- Z<vei (772 Wg_l)vﬁeiwg_w Ug
M=y
= /M n? Z |§6iW$71‘22’g +2 /M Znei(nﬂWé’lﬁeiWéﬂ Yg- (2.8)
i=1 i=1

By moving the second term in the last equality of (22) to the left hand side, we
have

f? T = 2 [ S W e Wi
M M =1
S / S (50T v (2.9)
M =1

2
=
@
=
@
=
[¢)
T
=
-+
=N
I
3
<
D
S
ok
o
=
o,
o
I
D
)
N—
&
L
<
I
—_
3
N—
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Now let recall the following inequality:
1
+2(S;, T;) < | Si|> + E\TiP (2.10)

for all positive £ > 0 because of the inequality 0 < |/ S; + % T;|?. Therefore,
for (24), we obtain

m m 1 m
—2/ S;, T\ v ge/ Sil? v +/ T v,. 2.11
sty se [ SisPues [ SmPy. e

If we put € = 1, we obtain, by (23) and (25),

m m
. 1 _
| W Py < g [ SO P
=1

=1

+ 2/ > eim)? (Wi v, (2.12)
M=y
Thus, by (26) and (20), we obtain

m
/ S [V Wi o, < 4 / Il WL 0,
M i M

16 i—1)2
< TQ/MWV; 20, (2.13)

(The third step) By definition of 7 in the first step, (27) turns out that

. 16 .
—12 —112
/&(xo)|vwg | uggﬂ/MWé % vy (2.14)

Here, recall our assumption that (M, g) is complete and non-compact, and (1)
I (W22 v, < co. When we tend r — oo, the right hand side of (26) goes to

zero, and the left hand side of (26) goes to [, |§W$71|2 vg. Thus, we obtain
0< / VWi Py <0,
M

which implies that
VWi-t=0 (2.15)

everywhere on M.
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The fourth step a) In the case that VW22, < oo, let us define
M ® g
a smooth 1-form « on M by

a(X) = (WL VxWi™?) (X € X(M)). (2.16)
Then, we have:
div(er) = —|WZ™% (2.17)

Because we have

div(a) = Z(Veia) (ei)

= (Wg_l, —ZW$_2> (because of (29) and definition of A)
= —|[Wi P, (2.18)

which is (31).
Furthermore, we have

/ || vy < o0. (2.19)
M
Because we have, by definition of « in (30),
[ lalv, = [ 1075 IWE
M M
. > _ 2
< ([ ) ([ wwes)
M M
< o0 (2.20)

because of our assumptions [, |W$71|Qvg < oo and [, |§W$72|2vg < o0.
Thus, we can apply Gaffney’s theorem to this a (cf. [10], and Theorem 4.1 in



98 N. Nakauchi, H. Urakawa

Appendix in [25]). We obtain
0— / div(a) v, = —/ Wi 12, (2.21)
M M

which implies that Wg_l =0. '
(b) In the case that Vol(M, g) = oo, we first notice that |VV<{,71|2 is constant
on M, say Cj. Because for every X € X(M), we have

X WP =2(VxWl L wli =0 (2.22)

due to (29). Then, due to the assumption (1) of Proposition 1, and the above,
we obtain

00 > / |Wg_1|2vg =) / vg = Cy Vol(M, g). (2.23)
M M

By our assumption that Vol(M, g) = oo, (37) implies that Cy = 0. We obtain
Wg,_l = 0. We obtain Proposition 1. QED

Proof of Theorem 6. We apply Proposition 1 to our map ¢ : (M,g) —
(N, h), then the iteration procedure works well since ¢ is k-harmonic, i.e., ij =
0. Then, we have W!,f‘l = 0, and then we have Wf;_2 = 0, etc. Finally, we obtain
7(¢) = W, = 0. Thus, ¢ : (M, g) — (N,h) is harmonic. We obtain Theorem
6. QED
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