Polyharmonic maps into the Euclidean space

Nobumitsu Nakauchi ${ }^{\text {i }}$
Graduate School of Science and Engineering, Yamaguchi University
Yamaguchi, 753-8512, Japan. nakauchi@yamaguchi-u.ac.jp

Hajime Urakawa ${ }^{\text {ii }}$
Institute for International Education, Tohoku University
Kawauchi 41, Sendai 980-8576, Japan. urakawa@math.is.tohoku.ac.jp

Received: 18.10.2017; accepted: 19.2.2018.

Abstract

We study polyharmonic (k-harmonic) maps between Riemannian manifolds with finite j-energies $(j=1, \cdots, 2 k-2)$. We show that if the domain is complete and the target is the Euclidean space, then such a map is harmonic.

Keywords: harmonic map, polyharmonic map, Chen's conjecture, generalized Chen's conjecture

MSC 2000 classification: primary 58E20, secondary 53C43

Introduction

This paper is an extension of our previous work ([25]) to polyharmonic maps. Harmonic maps play a central role in geometry; they are critical points of the energy functional $E(\varphi)=\frac{1}{2} \int_{M}|d \varphi|^{2} v_{g}$ for smooth maps φ of (M, g) into (N, h). The Euler-Lagrange equations are given by the vanishing of the tension filed $\tau(\varphi)$. In 1983, J. Eells and L. Lemaire [6] extended the notion of harmonic map to polyharmonic map, which are, by definition, critical points of the k-energy ($k \geq 2$)

$$
\begin{equation*}
E_{k}(\varphi)=\frac{1}{2} \int_{M}\left|(d+\delta)^{k} \varphi\right|^{2} v_{g} . \tag{0.1}
\end{equation*}
$$

After G.Y. Jiang [15] studied the first and second variation formulas of E_{2} $(k=2)$, extensive studies in this area have been done (for instance, see [2], [4], [18], [19], [22], [26], [28], [12], [13], [14], etc.). Notice that harmonic maps are always polyharmonic by definition.

[^0]For harmonic maps, it is well known that:
If a domain manifold (M, g) is complete and has non-negative Ricci curvature, and the sectional curvature of a target manifold (N, h) is non-positive, then every energy finite harmonic map is a constant map (cf. [29]).

In our previous paper, we showed that
Theorem 1. [25] Let (M, g) be a complete Riemannian manifold, and the curvature of (N, h) is non-positive. Then,
(1) every biharmonic map $\varphi:(M, g) \rightarrow(N, h)$ with finite energy and finite bienergy must be harmonic.
(2) In the case $\operatorname{Vol}(M, g)=\infty$, every biharmonic map $\varphi:(M, g) \rightarrow(N, h)$ with finite bienergy is harmonic.

Now, in this paper, we want to extend it to k-harmonic maps $(k \geq 2)$. Indeed, we will show

Theorem 2. Theorems 4 and 6 Let (M, g) be a complete Riemannian manifold, and (N, h), the n-dimensional Euclidean space. Then,
(1) every k-harmonic map $\varphi:(M, g) \rightarrow(N, h)(k \geq 2)$ with finite j-energies for all $j=1,2, \cdots, 2 k-2$, must be harmonic.
(2) In the case of $\operatorname{Vol}(M, g)=\infty$, every k-harmonic map $\varphi:(M, g) \rightarrow$ (N, h) with finite j-energy for all $j=2,4, \cdots, 2 k-2$, is harmonic.

Theorem 2 gives an affirmative answer to the generalized B.Y. Chen's conjecture (cf. [4]) on k-harmonic maps ($k \geq 2$) under the L^{2}-conditions.

Acknowledgements. We express our gratitude to Dr. Shun Maeta who gave valuable comments in the first draft. This manuscript was submitted as arXiv: 1307.5089 v 2 [math.DG] 5 Aug 2013. However, the submission of this manuscript to a journal has been delayed because of hard businessies of the second author.

1 Preliminaries and statement of main theorem

In this section, we prepare materials for the first variational formula for the biharmonic maps. Let us recall the definition of a harmonic map $\varphi:(M, g) \rightarrow$ (N, h), of a compact Riemannian manifold (M, g) into another Riemannian manifold (N, h), which is an extremal of the energy functional defined by

$$
E(\varphi)=\int_{M} e(\varphi) v_{g},
$$

where $e(\varphi):=\frac{1}{2}|d \varphi|^{2}$ is called the energy density of φ. That is, for any variation $\left\{\varphi_{t}\right\}$ of φ with $\varphi_{0}=\varphi$,

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} E\left(\varphi_{t}\right)=-\int_{M} h(\tau(\varphi), V) v_{g}=0 \tag{1.1}
\end{equation*}
$$

where $V \in \Gamma\left(\varphi^{-1} T N\right)$ is a variation vector field along φ which is given by $V(x)=\left.\frac{d}{d t}\right|_{t=0} \varphi_{t}(x) \in T_{\varphi(x)} N,(x \in M)$, and the tension field is given by $\tau(\varphi)=$ $\sum_{i=1}^{m} B(\varphi)\left(e_{i}, e_{i}\right) \in \Gamma\left(\varphi^{-1} T N\right)$, where $\left\{e_{i}\right\}_{i=1}^{m}$ is a locally defined frame field on (M, g), and $B(\varphi)$ is the second fundamental form of φ defined by

$$
\begin{align*}
B(\varphi)(X, Y) & =(\widetilde{\nabla} d \varphi)(X, Y) \\
& =\left(\widetilde{\nabla}_{X} d \varphi\right)(Y) \\
& =\bar{\nabla}_{X}(d \varphi(Y))-d \varphi\left(\nabla_{X} Y\right) \tag{1.2}
\end{align*}
$$

for all vector fields $X, Y \in \mathfrak{X}(M)$. Here, ∇, and ∇^{N}, are the Levi-Civita connections of $(M, g),(N, h)$, respectively, and $\bar{\nabla}$, and $\widetilde{\nabla}$ are the induced ones on $\varphi^{-1} T N$, and $T^{*} M \otimes \varphi^{-1} T N$, respectively. By (2), φ is harmonic if and only if $\tau(\varphi)=0$.

The second variation formula is given as follows. Assume that φ is harmonic. Then,

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} E\left(\varphi_{t}\right)=\int_{M} h(J(V), V) v_{g} \tag{1.3}
\end{equation*}
$$

where J is an elliptic differential operator, called the Jacobi operator acting on $\Gamma\left(\varphi^{-1} T N\right)$ given by

$$
\begin{equation*}
J(V)=\bar{\Delta} V-\mathcal{R}(V) \tag{1.4}
\end{equation*}
$$

where $\bar{\Delta} V=\bar{\nabla}^{*} \bar{\nabla} V=-\sum_{i=1}^{m}\left\{\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}} V-\bar{\nabla}_{\nabla_{e_{i}} e_{i}} V\right\}$ is the rough Laplacian and \mathcal{R} is a linear operator on $\Gamma\left(\varphi^{-1} T N\right)$ given by $\mathcal{R}(V)=\sum_{i=1}^{m} R^{N}\left(V, d \varphi\left(e_{i}\right)\right) d \varphi\left(e_{i}\right)$, and R^{N} is the curvature tensor of (N, h) given by $R^{N}(U, V)=\nabla^{N}{ }_{U} \nabla^{N} V_{V}-$ $\nabla^{N}{ }_{V} \nabla^{N}{ }_{U}-\nabla^{N}{ }_{[U, V]}$ for $U, V \in \mathfrak{X}(N)$.
J. Eells and L. Lemaire [6] proposed polyharmonic (k-harmonic) maps and Jiang [15] studied the first and second variation formulas for biharmonic maps. Let us consider the bienergy functional defined by

$$
\begin{equation*}
E_{2}(\varphi)=\frac{1}{2} \int_{M}|\tau(\varphi)|^{2} v_{g} \tag{1.5}
\end{equation*}
$$

where $|V|^{2}=h(V, V), V \in \Gamma\left(\varphi^{-1} T N\right)$. The first variation formula of the bienergy functional is given by

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} E_{2}\left(\varphi_{t}\right)=-\int_{M} h\left(\tau_{2}(\varphi), V\right) v_{g} \tag{1.6}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\tau_{2}(\varphi):=J(\tau(\varphi))=\bar{\Delta}(\tau(\varphi))-\mathcal{R}(\tau(\varphi)), \tag{1.7}
\end{equation*}
$$

which is called the bitension field of φ, and J is given in (5).
A smooth map φ of (M, g) into (N, h) is said to be biharmonic if $\tau_{2}(\varphi)=0$.
Now let us recall the definition of the k-energy $E_{k}(\varphi)(k \geq 2)$:
Definition 1. The k-energy $E_{k}(\varphi)(k \geq 2)$ is defined formally ([7]) by

$$
\begin{equation*}
E_{k}(\varphi):=\frac{1}{2} \int_{M}\left|(d+\delta)^{k} \varphi\right|^{2} v_{g} \tag{1.8}
\end{equation*}
$$

for every smooth map $\varphi \in C^{\infty}(M, N)$. Then, it is given ([12], p. 270, Lemma 40) by the following formula:

$$
E_{k}(\varphi)= \begin{cases}\frac{1}{2} \int_{M}\left|W_{\varphi}^{\ell}\right|^{2} v_{g} & (\text { if } k \text { is even, say } 2 \ell) \tag{1.9}\\ \frac{1}{2} \int_{M}\left|\bar{\nabla} W_{\varphi}^{\ell}\right|^{2} v_{g} & (\text { if } k \text { is odd, say } 2 \ell+1)\end{cases}
$$

Here, W_{φ}^{ℓ} is given as, by definition,

$$
\begin{equation*}
W_{\varphi}^{\ell}:=\underbrace{\bar{\Delta} \cdots \bar{\Delta}}_{\ell-1} \tau(\varphi) \in \Gamma\left(\varphi^{-1} T N\right) . \tag{1.10}
\end{equation*}
$$

For $k=1$, that is, $\ell=0$, we define $W_{\varphi}^{0}=\varphi$, also.

Then, the definition and the first variation formula for the k-energy E_{k} are given as follows:

Definition 2. k-harmonic map For each $k=2,3, \cdots$, and a smooth map $\varphi:(M, g) \rightarrow(N, h)$, is k-harmonic if

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} E_{k}\left(\varphi_{t}\right)=0 \tag{1.11}
\end{equation*}
$$

for every smooth variation $\varphi_{t}: M \rightarrow N(-\varepsilon<t<\varepsilon)$ with $\varphi_{0}=\varphi$.

Then, we have ([12], p.269, Theorem 39)
Theorem 3. The first variation formula of the k-energy Assume that $(N, h)=\left(\mathbb{R}^{n}, h_{\mathbb{R}^{n}}\right)$ is the n-dimensional Euclidean space. For every $k=$ $2,3, \cdots$, it holds that

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} E_{k}\left(\varphi_{t}\right)=-\int_{M}\left\langle\tau_{k}(\varphi), V\right\rangle v_{g} \tag{1.12}
\end{equation*}
$$

where V is a variation vector field given by $V(x)=\left.\frac{d}{d t}\right|_{t=0} \varphi_{t}(x) \in T_{\varphi(x)} N \quad(x \in$ $M)$. The k-tension field $\tau_{k}(\varphi)$ is given by

$$
\begin{equation*}
\tau_{k}(\varphi)=J\left(W_{\varphi}^{k-1}\right)=\bar{\Delta}\left(W_{\varphi}^{k-1}\right) \tag{1.13}
\end{equation*}
$$

where $W_{\varphi}^{k-1}=\underbrace{\bar{\Delta} \cdots \bar{\Delta}}_{k-2} \tau(\varphi) \in \Gamma\left(\varphi^{-1} T N\right)$.
Thus, $\varphi:(M, g) \rightarrow(N, h)$ is k-harmonic if and only if $\bar{\Delta}^{k-1} \tau(\varphi)=0$ which is equivalent to $W_{\varphi}^{k}=0$.

Notice that the formula (14) of the k-tension field $\tau_{k}(\varphi)$ coincides with the k-tension field in Theorems 2.2 and 2.3 in [21] in the case that the target space (N, h) is the n-dimensional Euclidean space $(N, h)=\left(\mathbb{R}^{n}, h_{\mathbb{R}^{n}}\right)$ because of $R^{N} \equiv$ 0.

Here, we denote by $\bar{\nabla} W_{\varphi}^{\ell}=\bar{\nabla} \varphi=d \varphi$ for $\ell=0$, and $k=2 \ell+1=1$,

$$
E_{1}(\varphi)=\frac{1}{2} \int_{M}|d \varphi|^{2} v_{g}
$$

Then, we can state our main theorem.
Theorem 4. Main theorem Assume that the domain manifold (M, g) is a complete Riemannian manifold, and the target space (N, h) is the n-dimensional Euclidean space. Let $\varphi:(M, g) \rightarrow(N, h)$ be a k-harmonic map $(k \geq 2)$. Assume that
(1) $E_{j}(\varphi)<\infty$ for all $j=2,4, \cdots, 2 k-2$, and
(2) either

$$
\begin{aligned}
& E_{j}(\varphi)<\infty \text { for all } j=1,3, \cdots, 2 k-3, \text { or } \\
& \quad \operatorname{Vol}(M, g)=\infty
\end{aligned}
$$

Then, $\varphi:(M, g) \rightarrow(N, h)$ is harmonic.
In the case of the n-dimensional Euclidean space $(N, h)=\left(\mathbb{R}^{n}, h_{\mathbb{R}^{n}}\right)$, Theorem 4 and the following Theorem 5 are natural extensions of our previous theorem in [25] which is:

Theorem 5. Assume that (M, g) is complete and the sectional curvature of (N, h) is non-positive.
(1) Every biharmonic map $\varphi:(M, g) \rightarrow(N, h)$ with finite energy $E(\varphi)<\infty$ and finite bienergy $E_{2}(\varphi)<\infty$, is harmonic.
(2) In the case $\operatorname{Vol}(M, g)=\infty$, every biharmonic map $\varphi:(M, g) \rightarrow(N, h)$ with finite bienergy $E_{2}(\varphi)<\infty$, is harmonic.

2 The iteration proposition.

By virtue of (10), we have to notice the the energy conditions in (1) and (2) of Theorem 4:

Indeed, the condition which $E_{j}(\varphi)<\infty$ for all $j=2,4, \cdots, 2 k-2$ in (1) of Theorem 4 is equivalent to that

$$
\begin{equation*}
\int_{M}\left|W_{\varphi}^{j}\right|^{2} v_{g}<\infty \quad(j=1,2, \cdots, k-1), \tag{2.1}
\end{equation*}
$$

and the condition which $E_{j}(\varphi)<\infty$ for all $j=1,3, \cdots, 2 k-3$ in (2) of Theorem 4 is equivalent to that

$$
\begin{equation*}
\int_{M}\left|\bar{\nabla} W_{\varphi}^{j}\right|^{2} v_{g}<\infty \quad(j=0,1, \cdots, k-2) \tag{2.2}
\end{equation*}
$$

Therefore, to show Theorem 4, we only have to prove the following theorem:
Theorem 6. Assume that the domain manifold (M, g) is a complete Riemannian manifold, and the target space (N, h) is the n-dimensional Euclidean space. Let $\varphi:(M, g) \rightarrow(N, h)$ be a k-harmonic map.

Assume that

$$
\begin{equation*}
\int_{M}\left|W_{\varphi}^{j}\right|^{2} v_{g}<\infty \text { for all } j=1,2, \cdots, k-1, \text { and } \tag{1}
\end{equation*}
$$

(2) either

$$
\begin{aligned}
& \int_{M}\left|\bar{\nabla} W_{\varphi}^{j}\right|^{2} v_{g}<\infty \text { for all } j=0,1, \cdots, k-2 \text {, or } \\
& \operatorname{Vol}(M, g)=\infty .
\end{aligned}
$$

Then, $\varphi:(M, g) \rightarrow(N, h)$ is harmonic.
To prove Theorem 6 whose proof will be given in the next section, we need the following iteration proposition:

Proposition 1. the iteration method Let (M, g) be a complete Riemannian manifold, and (N, h), an arbitrary Riemannian manifold. Let φ : $(M, g) \rightarrow(N, h)$ be an arbitrary C^{∞} map satisfying that for some $j \geq 2$,

$$
\begin{equation*}
W_{\varphi}^{j}=0 . \tag{2.3}
\end{equation*}
$$

If we assume the following two conditions:

$$
\left\{\begin{array}{l}
(1) \quad \int_{M}\left|W_{\varphi}^{j-1}\right|^{2} v_{g}<\infty, \text { and } \tag{2.4}\\
(2) \quad \text { either } \int_{M}\left|\bar{\nabla} W_{\varphi}^{j-2}\right|^{2} v_{g}<\infty \text { or } \operatorname{Vol}(M, g)=\infty
\end{array}\right.
$$

then, we have

$$
\begin{equation*}
W_{\varphi}^{j-1}=0 . \tag{2.5}
\end{equation*}
$$

Remark 1. Under the assumptions (16), if we have $W_{\varphi}^{k}=0$ for some $k \geq 2$, then we have automatically, $W_{\varphi}^{1}=\tau(\varphi)=0$, i.e., φ is harmonic.

In this section, we give a proof of Proposition 1 which consists of four steps.
(The first step) For a fixed point $x_{0} \in M$, and for every $0<r<\infty$, we first take a cut-off C^{∞} function η on M (for instance, see [16]) satisfying that

$$
\begin{cases}0 \leq \eta(x) \leq 1 & (x \in M) \tag{2.6}\\ \eta(x)=1 & \left(x \in B_{r}\left(x_{0}\right)\right) \\ \eta(x)=0 & \left(x \notin B_{2 r}\left(x_{0}\right)\right) \\ |\nabla \eta| \leq \frac{2}{r} & (x \in M)\end{cases}
$$

(The second step) Notice that (17) is equivalent to that

$$
\begin{equation*}
\bar{\Delta} W_{\varphi}^{j-1}=0 \tag{2.7}
\end{equation*}
$$

because of $W_{\varphi}^{j}=\bar{\Delta} W_{\varphi}^{j-1}$.
Then, we have

$$
\begin{align*}
0 & =\int_{M}\left\langle\eta^{2} W_{\varphi}^{j-1}, \bar{\Delta} W_{\varphi}^{j-1}\right\rangle v_{g} \\
& =\int_{M} \sum_{i=1}^{m}\left\langle\bar{\nabla}_{e_{i}}\left(\eta^{2} W_{\varphi}^{j-1}\right), \bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}\right\rangle v_{g} \\
& =\int_{M} \eta^{2} \sum_{i=1}^{m}\left|\bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}\right|^{2} v_{g}+2 \int_{M} \sum_{i=1}^{m} \eta e_{i}(\eta)\left\langle W_{\varphi}^{j-1}, \bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}\right\rangle v_{g} \tag{2.8}
\end{align*}
$$

By moving the second term in the last equality of (22) to the left hand side, we have

$$
\begin{align*}
\int_{M} \eta^{2} \sum_{i=1}^{m}\left|\bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}\right|^{2} & =-2 \int_{M} \sum_{i=1}^{m}\left\langle\eta \bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}, e_{i}(\eta) W_{\varphi}^{j-1}\right\rangle v_{g} \\
& =-2 \int_{M} \sum_{i=1}^{m}\left\langle S_{i}, T_{i}\right\rangle v_{g} \tag{2.9}
\end{align*}
$$

where we put $S_{i}:=\eta \bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}$, and $T_{i}:=e_{i}(\eta) W_{\varphi}^{j-1}(i=1 \cdots, m)$.

Now let recall the following inequality:

$$
\begin{equation*}
\pm 2\left\langle S_{i}, T_{i}\right\rangle \leq \varepsilon\left|S_{i}\right|^{2}+\frac{1}{\varepsilon}\left|T_{i}\right|^{2} \tag{2.10}
\end{equation*}
$$

for all positive $\varepsilon>0$ because of the inequality $0 \leq\left|\sqrt{\varepsilon} S_{i} \pm \frac{1}{\sqrt{\varepsilon}} T_{i}\right|^{2}$. Therefore, for (24), we obtain

$$
\begin{equation*}
-2 \int_{M} \sum_{i=1}^{m}\left\langle S_{i}, T_{i}\right\rangle v_{g} \leq \varepsilon \int_{M} \sum_{i=1}^{m}\left|S_{i}\right|^{2} v_{g}+\frac{1}{\varepsilon} \int_{M} \sum_{i=1}^{m}\left|T_{i}\right|^{2} v_{g} \tag{2.11}
\end{equation*}
$$

If we put $\varepsilon=\frac{1}{2}$, we obtain, by (23) and (25),

$$
\begin{align*}
\int_{M} \eta^{2} \sum_{i=1}^{m}\left|\bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}\right|^{2} v_{g} \leq & \frac{1}{2} \int_{M} \sum_{i=1}^{m} \eta^{2}\left|\bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}\right|^{2} v_{g} \\
& +2 \int_{M} \sum_{i=1}^{m} e_{i}(\eta)^{2}\left|W_{\varphi}^{j-1}\right|^{2} v_{g} \tag{2.12}
\end{align*}
$$

Thus, by (26) and (20), we obtain

$$
\begin{align*}
\int_{M} \eta^{2} \sum_{i=1}^{m}\left|\bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}\right|^{2} v_{g} & \leq 4 \int_{M}|\nabla \eta|^{2}\left|W_{\varphi}^{j-1}\right|^{2} v_{g} \\
& \leq \frac{16}{r^{2}} \int_{M}\left|W_{\varphi}^{j-1}\right|^{2} v_{g} \tag{2.13}
\end{align*}
$$

(The third step) By definition of η in the first step, (27) turns out that

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}\left|\bar{\nabla} W_{\varphi}^{j-1}\right|^{2} v_{g} \leq \frac{16}{r^{2}} \int_{M}\left|W_{\varphi}^{j-1}\right|^{2} v_{g} \tag{2.14}
\end{equation*}
$$

Here, recall our assumption that (M, g) is complete and non-compact, and (1) $\int_{M}\left|W_{\varphi}^{j-1}\right|^{2} v_{g}<\infty$. When we tend $r \rightarrow \infty$, the right hand side of (26) goes to zero, and the left hand side of (26) goes to $\int_{M}\left|\bar{\nabla} W_{\varphi}^{j-1}\right|^{2} v_{g}$. Thus, we obtain

$$
0 \leq \int_{M}\left|\bar{\nabla} W_{\varphi}^{j-1}\right|^{2} v_{g} \leq 0
$$

which implies that

$$
\begin{equation*}
\bar{\nabla} W_{\varphi}^{j-1}=0 \tag{2.15}
\end{equation*}
$$

everywhere on M.
(The fourth step) (a) In the case that $\int_{M}\left|\bar{\nabla} W_{\varphi}^{j-2}\right|^{2} v_{g}<\infty$, let us define a smooth 1 -form α on M by

$$
\begin{equation*}
\alpha(X):=\left\langle W_{\varphi}^{j-1}, \bar{\nabla}_{X} W_{\varphi}^{j-2}\right\rangle \quad(X \in \mathfrak{X}(M)) . \tag{2.16}
\end{equation*}
$$

Then, we have:

$$
\begin{equation*}
\operatorname{div}(\alpha)=-\left|W_{\varphi}^{j-1}\right|^{2} \tag{2.17}
\end{equation*}
$$

Because we have

$$
\begin{align*}
& \operatorname{div}(\alpha)=\sum_{i=1}^{m}\left(\nabla_{e_{i}} \alpha\right)\left(e_{i}\right) \\
&=\sum_{i=1}^{m}\left\{e_{i}\left(\alpha\left(e_{i}\right)\right)-\alpha\left(\nabla_{e_{i}} e_{i}\right)\right\} \\
&=\sum_{i=1}^{m}\left\{e_{i}\left(\left\langle W_{\varphi}^{j-1}, \bar{\nabla}_{e_{i}} W_{\varphi}^{j-2}\right\rangle\right)-\left\langle W_{\varphi}^{j-1}, \bar{\nabla}_{\nabla_{e_{i} e_{i}}} W_{\varphi}^{j-2}\right\rangle\right\} \\
&=\sum_{i=1}^{m}\left\{\left\langle\bar{\nabla}_{e_{i}} W_{\varphi}^{j-1}, \bar{\nabla}_{e_{i}} W_{\varphi}^{j-2}\right\rangle+\left\langle W_{\varphi}^{j-1}, \bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}} W_{\varphi}^{j-2}\right\rangle\right. \\
& \quad-\left\langle W_{\varphi}^{j-1}, \bar{\nabla}_{\nabla_{e_{i} e_{i}}} W_{\varphi}^{j-2}\right\} \\
&\left.=\left\langle W_{\varphi}^{j-1},-\bar{\Delta} W_{\varphi}^{j-2}\right\rangle \quad \text { (because of }(29) \text { and definition of } \bar{\Delta}\right) \\
&=-\left|W_{\varphi}^{j-1}\right|^{2}, \tag{2.18}
\end{align*}
$$

which is (31).
Furthermore, we have

$$
\begin{equation*}
\int_{M}|\alpha| v_{g}<\infty \tag{2.19}
\end{equation*}
$$

Because we have, by definition of α in (30),

$$
\begin{align*}
\int_{M}|\alpha| v_{g} & =\int_{M}\left|\left\langle W_{\varphi}^{j-1}, \bar{\nabla} W_{\varphi}^{j-2}\right\rangle\right| v_{g} \\
& \leq\left(\int_{M}\left|W_{\varphi}^{j-1}\right|^{2} v_{g}\right)^{\frac{1}{2}}\left(\int_{M}\left|\bar{\nabla} W_{\varphi}^{j-2}\right|^{2} v_{g}\right)^{\frac{1}{2}} \\
& <\infty \tag{2.20}
\end{align*}
$$

because of our assumptions $\int_{M}\left|W_{\varphi}^{j-1}\right|^{2} v_{g}<\infty$ and $\int_{M}\left|\bar{\nabla} W_{\varphi}^{j-2}\right|^{2} v_{g}<\infty$. Thus, we can apply Gaffney's theorem to this α (cf. [10], and Theorem 4.1 in

Appendix in [25]). We obtain

$$
\begin{equation*}
0=\int_{M} \operatorname{div}(\alpha) v_{g}=-\int_{M}\left|W_{\varphi}^{j-1}\right|^{2} v_{g} \tag{2.21}
\end{equation*}
$$

which implies that $W_{\varphi}^{j-1}=0$.
(b) In the case that $\operatorname{Vol}(M, g)=\infty$, we first notice that $\left|W_{\varphi}^{j-1}\right|^{2}$ is constant on M, say C_{0}. Because for every $X \in \mathfrak{X}(M)$, we have

$$
\begin{equation*}
X\left|W_{\varphi}^{j-1}\right|^{2}=2\left\langle\bar{\nabla}_{X} W_{\varphi}^{j-1}, W_{\varphi}^{j-1}\right\rangle=0 \tag{2.22}
\end{equation*}
$$

due to (29). Then, due to the assumption (1) of Proposition 1, and the above, we obtain

$$
\begin{equation*}
\infty>\int_{M}\left|W_{\varphi}^{j-1}\right|^{2} v_{g}=C_{0} \int_{M} v_{g}=C_{0} \operatorname{Vol}(M, g) \tag{2.23}
\end{equation*}
$$

By our assumption that $\operatorname{Vol}(M, g)=\infty$, (37) implies that $C_{0}=0$. We obtain $W_{\varphi}^{j-1} \equiv 0$. We obtain Proposition 1 .

Proof of Theorem 6. We apply Proposition 1 to our map $\varphi:(M, g) \rightarrow$ (N, h), then the iteration procedure works well since φ is k-harmonic, i.e., $W_{\varphi}^{k}=$ 0 . Then, we have $W_{\varphi}^{k-1}=0$, and then we have $W_{\varphi}^{k-2}=0$, etc. Finally, we obtain $\tau(\varphi)=W_{\varphi}^{1}=0$. Thus, $\varphi:(M, g) \rightarrow(N, h)$ is harmonic. We obtain Theorem 6.

References

[1] P. Baird and J. Eells, A conservation law for harmonic maps, Lecture Notes in Math., Springer, 894 (1981), 1-25.
[2] P. Baird, A. Fardoun and S. Ouakkas, Liouville-type theorems for biharmonic maps between Riemannian manifolds, Adv. Calc. Var., 3 (2010), 49-68.
[3] P. Baird and J. Wood, Harmonic Morphisms Between Riemannian Manifolds, Oxford Science Publication, 2003, Oxford.
[4] R. Caddeo, S. Montaldo, P. Piu, On biharmonic maps, Contemp. Math., 288 (2001), 286-290.
[5] B.Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17 (1991), 169-188.
[6] J. Eells, L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68.
[7] J. Eells, L. Lemaire, Selected topics in harmonic maps, CBMS, 50, Amer. Math. Soc, 1983.
[8] J. Eells, L. Lemaire, Another Report on Harmonic Maps, Bull. London Math. Soc., 20 (1988), 385-524.
[9] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160.
[10] M.P. Gaffney A special Stokes' theorem for complete Riemannian manifold, Ann. Math., 60 (1954), 140-145.
[11] S. Gudmundsson, The Bibliography of Harmonic Morphisms, http://matematik.lu.se/ matematiklu/personal/sigma/harmonic/bibliography.html
[12] T. Ichiyama, J. Inoguchi, H. Urakawa, Biharmonic maps and bi-Yang-Mills fields, Note di Matematica, 28, (2009), 233-275.
[13] T. Ichiyama, J. Inoguchi, H. Urakawa, Classifications and isolation phenomena of biharmonic maps and bi-Yang-Mills fields, Note di Matematica, 30, (2010), 15-48.
[14] S. Ishihara, S. Ishikawa, Notes on relatively harmonic immersions, Hokkaido Math. J., 4(1975), 234-246.
[15] G.Y. Jiang, 2-harmonic maps and their first and second variational formula, Chinese Ann. Math., 7A (1986), 388-402; Note di Matematica, 28 (2009), 209-232.
[16] A. Kasue, Riemannian Geometry, in Japanese, Baihu-kan, Tokyo, 2001.
[17] T. Lamm, Biharmonic map heat flow into manifolds of nonpositive curvature, Calc. Var., 22 (2005), 421-445.
[18] E. Loubeau, C. Oniciuc, The index of biharmonic maps in spheres, Compositio Math., 141 (2005), 729-745.
[19] E. Loubeau and C. Oniciuc, On the biharmonic and harmonic indices of the Hopf map, Trans. Amer. Math. Soc., 359 (2007), 5239-5256.
[20] E. Loubeau and Y-L. Ou, Biharmonic maps and morphisms from conformal mappings, Tohoku Math. J., 62 (2010), 55-73.
[21] S. Maeta, k-harmonic maps into a Riemannian manifold with constant sectional curvature, Proc. Amer. Math. Soc., 140, (2012), 1835-1847.
[22] S. Montaldo, C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1-22.
[23] N. Nakauchi and H. Urakawa, Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature, Ann. Global Anal. Geom., 40 (2011), 125-131.
[24] N. Nakauchi and H. Urakawa, Biharmonic submanifolds in a Riemannian manifold with non-positive curvature, Results in Math., 63 (2013), 467-474.
[25] N. Nakauchi, H. Urakawa and S. Gudmundsson, Biharmonic maps into a Riemannian manifold of non-positive curvature, to appear in Geometriae Dedicata, 2013.
[26] C. Oniciuc, On the second variation formula for biharmonic maps to a sphere, Publ. Math. Debrecen., 67 (2005), 285-303.
[27] Ye-Lin Ou and Liang Tang, The generalized Chen's conjecture on biharmonic submanifolds is false, arXiv: 1006.1838 v 1 .
[28] T. Sasahara, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen, 67 (2005), 285-303.
[29] R. Schoen and S.T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), 333-341.
[30] S.T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670.
[31] S.B. Wang, The first variation formula for k-harmonic mappings, J. Nanchang Univ. 13, No. 1 (1989).
[32] Z-P Wang and Y-L Ou, Biharmonic Riemannian submersions from 3-manifolds, Math. Z., 269 (2011), 917-925.

[^0]: ${ }^{i}$ This work is partially supported by by the Grant-in-Aid for the Scientific Reserch, (C) No. 15K04846, Japan Society for the Promotion of Science.
 ${ }^{\text {ii }}$ This work is partially supported by the Grant-in-Aid for the Scientific Reserch, (C) No. 21540207, Japan Society for the Promotion of Science.
 http://siba-ese.unisalento.it/ © 2018 Università del Salento

