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Abstract. We study polyharmonic (k-harmonic) maps between Riemannian manifolds with
finite j-energies (j = 1, · · · , 2k− 2). We show that if the domain is complete and the target is
the Euclidean space, then such a map is harmonic.
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Introduction

This paper is an extension of our previous work ([25]) to polyharmonic maps.
Harmonic maps play a central role in geometry; they are critical points of the
energy functional E(ϕ) = 1

2

∫
M |dϕ|

2 vg for smooth maps ϕ of (M, g) into (N,h).
The Euler-Lagrange equations are given by the vanishing of the tension filed
τ(ϕ). In 1983, J. Eells and L. Lemaire [6] extended the notion of harmonic map
to polyharmonic map, which are, by definition, critical points of the k-energy
(k ≥ 2)

Ek(ϕ) =
1

2

∫
M
|(d+ δ)kϕ|2 vg. (0.1)

After G.Y. Jiang [15] studied the first and second variation formulas of E2

(k = 2), extensive studies in this area have been done (for instance, see [2], [4],
[18], [19], [22], [26], [28], [12], [13], [14], etc.). Notice that harmonic maps are
always polyharmonic by definition.
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For harmonic maps, it is well known that:
If a domain manifold (M, g) is complete and has non-negative Ricci cur-

vature, and the sectional curvature of a target manifold (N,h) is non-positive,
then every energy finite harmonic map is a constant map (cf. [29]).

In our previous paper, we showed that

Theorem 1. [25] Let (M, g) be a complete Riemannian manifold, and
the curvature of (N,h) is non-positive. Then,

(1) every biharmonic map ϕ : (M, g)→ (N,h) with finite energy and finite
bienergy must be harmonic.

(2) In the case Vol(M, g) = ∞, every biharmonic map ϕ : (M, g) → (N,h)
with finite bienergy is harmonic.

Now, in this paper, we want to extend it to k-harmonic maps (k ≥ 2).
Indeed, we will show

Theorem 2. Theorems 4 and 6 Let (M, g) be a complete Riemannian
manifold, and (N,h), the n-dimensional Euclidean space. Then,

(1) every k-harmonic map ϕ : (M, g)→ (N,h) (k ≥ 2) with finite j-energies
for all j = 1, 2, · · · , 2k − 2, must be harmonic.

(2) In the case of Vol(M, g) = ∞, every k-harmonic map ϕ : (M, g) →
(N,h) with finite j-energy for all j = 2, 4, · · · , 2k − 2, is harmonic.

Theorem 2 gives an affirmative answer to the generalized B.Y. Chen’s con-
jecture (cf. [4]) on k-harmonic maps (k ≥ 2) under the L2-conditions.

Acknowledgements. We express our gratitude to Dr. Shun Maeta who
gave valuable comments in the first draft. This manuscript was submitted as
arXiv: 1307.5089v2 [math.DG] 5 Aug 2013. However, the submission of this
manuscript to a journal has been delayed because of hard businessies of the
second author.

1 Preliminaries and statement of main theorem

In this section, we prepare materials for the first variational formula for the
biharmonic maps. Let us recall the definition of a harmonic map ϕ : (M, g)→
(N,h), of a compact Riemannian manifold (M, g) into another Riemannian
manifold (N,h), which is an extremal of the energy functional defined by

E(ϕ) =

∫
M
e(ϕ) vg,
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where e(ϕ) := 1
2 |dϕ|

2 is called the energy density of ϕ. That is, for any variation
{ϕt} of ϕ with ϕ0 = ϕ,

d

dt

∣∣∣∣
t=0

E(ϕt) = −
∫
M
h(τ(ϕ), V )vg = 0, (1.1)

where V ∈ Γ(ϕ−1TN) is a variation vector field along ϕ which is given by
V (x) = d

dt |t=0ϕt(x) ∈ Tϕ(x)N , (x ∈M), and the tension field is given by τ(ϕ) =∑m
i=1B(ϕ)(ei, ei) ∈ Γ(ϕ−1TN), where {ei}mi=1 is a locally defined frame field on

(M, g), and B(ϕ) is the second fundamental form of ϕ defined by

B(ϕ)(X,Y ) = (∇̃dϕ)(X,Y )

= (∇̃Xdϕ)(Y )

= ∇X(dϕ(Y ))− dϕ(∇XY ), (1.2)

for all vector fields X,Y ∈ X(M). Here, ∇, and ∇N , are the Levi-Civita con-
nections of (M, g), (N,h), respectively, and ∇, and ∇̃ are the induced ones on
ϕ−1TN , and T ∗M ⊗ ϕ−1TN , respectively. By (2), ϕ is harmonic if and only if
τ(ϕ) = 0.

The second variation formula is given as follows. Assume that ϕ is harmonic.
Then,

d2

dt2

∣∣∣∣
t=0

E(ϕt) =

∫
M
h(J(V ), V )vg, (1.3)

where J is an elliptic differential operator, called the Jacobi operator acting on
Γ(ϕ−1TN) given by

J(V ) = ∆V −R(V ), (1.4)

where ∆V = ∇∗∇V = −
∑m

i=1{∇ei∇eiV −∇∇eieiV } is the rough Laplacian and

R is a linear operator on Γ(ϕ−1TN) given byR(V ) =
∑m

i=1R
N (V, dϕ(ei))dϕ(ei),

and RN is the curvature tensor of (N,h) given by RN (U, V ) = ∇NU∇NV −
∇NV∇NU −∇N [U,V ] for U, V ∈ X(N).

J. Eells and L. Lemaire [6] proposed polyharmonic (k-harmonic) maps and
Jiang [15] studied the first and second variation formulas for biharmonic maps.
Let us consider the bienergy functional defined by

E2(ϕ) =
1

2

∫
M
|τ(ϕ)|2vg, (1.5)

where |V |2 = h(V, V ), V ∈ Γ(ϕ−1TN). The first variation formula of the bi-
energy functional is given by

d

dt

∣∣∣∣
t=0

E2(ϕt) = −
∫
M
h(τ2(ϕ), V )vg. (1.6)
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Here,
τ2(ϕ) := J(τ(ϕ)) = ∆(τ(ϕ))−R(τ(ϕ)), (1.7)

which is called the bitension field of ϕ, and J is given in (5).
A smooth map ϕ of (M, g) into (N,h) is said to be biharmonic if τ2(ϕ) = 0.

Now let us recall the definition of the k-energy Ek(ϕ) (k ≥ 2):

Definition 1. The k-energy Ek(ϕ) (k ≥ 2) is defined formally ([7]) by

Ek(ϕ) :=
1

2

∫
M
|(d+ δ)kϕ|2 vg (1.8)

for every smooth map ϕ ∈ C∞(M,N). Then, it is given ([12], p. 270, Lemma
40) by the following formula:

Ek(ϕ) =


1

2

∫
M
|W `

ϕ|2 vg (if k is even, say 2 `),

1

2

∫
M
|∇W `

ϕ|2 vg (if k is odd, say 2`+ 1).

(1.9)

Here, W `
ϕ is given as, by definition,

W `
ϕ := ∆ · · ·∆︸ ︷︷ ︸

`−1

τ(ϕ) ∈ Γ(ϕ−1TN). (1.10)

For k = 1, that is, ` = 0, we define W 0
ϕ = ϕ, also.

Then, the definition and the first variation formula for the k-energy Ek are
given as follows:

Definition 2. k-harmonic map For each k = 2, 3, · · · , and a smooth map
ϕ : (M, g)→ (N,h), is k-harmonic if

d

dt

∣∣∣∣
t=0

Ek(ϕt) = 0 (1.11)

for every smooth variation ϕt : M → N (−ε < t < ε) with ϕ0 = ϕ.

Then, we have ([12], p.269, Theorem 39)

Theorem 3. The first variation formula of the k-energy Assume
that (N,h) = (Rn, hRn) is the n-dimensional Euclidean space. For every k =
2, 3, · · · , it holds that

d

dt

∣∣∣∣
t=0

Ek(ϕt) = −
∫
M
〈τk(ϕ), V 〉 vg, (1.12)
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where V is a variation vector field given by V (x) = d
dt

∣∣
t=0

ϕt(x) ∈ Tϕ(x)N (x ∈
M). The k-tension field τk(ϕ) is given by

τk(ϕ) = J(W k−1
ϕ ) = ∆(W k−1

ϕ ), (1.13)

where W k−1
ϕ = ∆ · · ·∆︸ ︷︷ ︸

k−2

τ(ϕ) ∈ Γ(ϕ−1TN).

Thus, ϕ : (M, g)→ (N,h) is k-harmonic if and only if ∆
k−1

τ(ϕ) = 0 which
is equivalent to W k

ϕ = 0.

Notice that the formula (14) of the k-tension field τk(ϕ) coincides with the
k-tension field in Theorems 2.2 and 2.3 in [21] in the case that the target space
(N,h) is the n-dimensional Euclidean space (N,h) = (Rn, hRn) because of RN ≡
0.

Here, we denote by ∇W `
ϕ = ∇ϕ = dϕ for ` = 0, and k = 2`+ 1 = 1,

E1(ϕ) =
1

2

∫
M
|dϕ|2 vg.

Then, we can state our main theorem.

Theorem 4. Main theorem Assume that the domain manifold (M, g) is a
complete Riemannian manifold, and the target space (N,h) is the n-dimensional
Euclidean space. Let ϕ : (M, g)→ (N,h) be a k-harmonic map (k ≥ 2). Assume
that

(1) Ej(ϕ) <∞ for all j = 2, 4, · · · , 2k − 2, and

(2) either

Ej(ϕ) <∞ for all j = 1, 3, · · · , 2k − 3, or

Vol(M, g) =∞.

Then, ϕ : (M, g)→ (N,h) is harmonic.

In the case of the n-dimensional Euclidean space (N,h) = (Rn, hRn), The-
orem 4 and the following Theorem 5 are natural extensions of our previous
theorem in [25] which is:

Theorem 5. Assume that (M, g) is complete and the sectional curvature of
(N,h) is non-positive.

(1) Every biharmonic map ϕ : (M, g)→ (N,h) with finite energy E(ϕ) <∞
and finite bienergy E2(ϕ) <∞, is harmonic.

(2) In the case Vol(M, g) = ∞, every biharmonic map ϕ : (M, g) → (N,h)
with finite bienergy E2(ϕ) <∞, is harmonic.
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2 The iteration proposition.

By virtue of (10), we have to notice the the energy conditions in (1) and (2)
of Theorem 4:

Indeed, the condition which Ej(ϕ) <∞ for all j = 2, 4, · · · , 2k − 2 in (1) of
Theorem 4 is equivalent to that∫

M
|W j

ϕ|2 vg <∞ (j = 1, 2, · · · , k − 1), (2.1)

and the condition which Ej(ϕ) <∞ for all j = 1, 3, · · · , 2k−3 in (2) of Theorem
4 is equivalent to that∫

M
|∇W j

ϕ|2 vg <∞ (j = 0, 1, · · · , k − 2). (2.2)

Therefore, to show Theorem 4, we only have to prove the following theorem:

Theorem 6. Assume that the domain manifold (M, g) is a complete Rie-
mannian manifold, and the target space (N,h) is the n-dimensional Euclidean
space. Let ϕ : (M, g)→ (N,h) be a k-harmonic map.

Assume that

(1)

∫
M
|W j

ϕ|2 vg <∞ for all j = 1, 2, · · · , k − 1, and

(2) either ∫
M
|∇W j

ϕ|2 vg <∞ for all j = 0, 1, · · · , k − 2, or

Vol(M, g) =∞.
Then, ϕ : (M, g)→ (N,h) is harmonic.

To prove Theorem 6 whose proof will be given in the next section, we need
the following iteration proposition:

Proposition 1. the iteration method Let (M, g) be a complete Rie-
mannian manifold, and (N,h), an arbitrary Riemannian manifold. Let ϕ :
(M, g)→ (N,h) be an arbitrary C∞ map satisfying that for some j ≥ 2,

W j
ϕ = 0. (2.3)

If we assume the following two conditions:(1)

∫
M
|W j−1

ϕ |2 vg <∞, and

(2) either
∫
M |∇W

j−2
ϕ |2 vg <∞ or Vol(M, g) =∞,

(2.4)



Polyharmonic maps into the Euclidean space 95

then, we have
W j−1
ϕ = 0. (2.5)

Remark 1. Under the assumptions (16), if we have W k
ϕ = 0 for some k ≥ 2,

then we have automatically, W 1
ϕ = τ(ϕ) = 0, i.e., ϕ is harmonic.

In this section, we give a proof of Proposition 1 which consists of four steps.
(The first step) For a fixed point x0 ∈ M , and for every 0 < r < ∞, we

first take a cut-off C∞ function η on M (for instance, see [16]) satisfying that

0 ≤η(x) ≤ 1 (x ∈M),

η(x) = 1 (x ∈ Br(x0)),

η(x) = 0 (x 6∈ B2r(x0)),

|∇η| ≤ 2

r
(x ∈M).

(2.6)

(The second step) Notice that (17) is equivalent to that

∆W j−1
ϕ = 0 (2.7)

because of W j
ϕ = ∆W j−1

ϕ .
Then, we have

0 =

∫
M
〈η2W j−1

ϕ ,∆W j−1
ϕ 〉 vg

=

∫
M

m∑
i=1

〈∇ei(η2W j−1
ϕ ),∇eiW j−1

ϕ 〉 vg

=

∫
M
η2

m∑
i=1

|∇eiW j−1
ϕ |2vg + 2

∫
M

m∑
i=1

η ei(η)〈W j−1
ϕ ,∇eiW j−1

ϕ 〉 vg. (2.8)

By moving the second term in the last equality of (22) to the left hand side, we
have ∫

M
η2

m∑
i=1

|∇eiW j−1
ϕ |2 = −2

∫
M

m∑
i=1

〈η∇eiW j−1
ϕ , ei(η)W j−1

ϕ 〉 vg

= −2

∫
M

m∑
i=1

〈Si, Ti〉 vg, (2.9)

where we put Si := η∇eiW
j−1
ϕ , and Ti := ei(η)W j−1

ϕ (i = 1 · · · ,m).
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Now let recall the following inequality:

±2 〈Si, Ti〉 ≤ ε|Si|2 +
1

ε
|Ti|2 (2.10)

for all positive ε > 0 because of the inequality 0 ≤ |
√
ε Si ± 1√

ε
Ti|2. Therefore,

for (24), we obtain

−2

∫
M

m∑
i=1

〈Si, Ti〉 vg ≤ ε
∫
M

m∑
i=1

|Si|2 vg +
1

ε

∫
M

m∑
i=1

|Ti|2 vg. (2.11)

If we put ε = 1
2 , we obtain, by (23) and (25),∫

M
η2

m∑
i=1

|∇eiW j−1
ϕ |2 vg ≤

1

2

∫
M

m∑
i=1

η2 |∇eiW j−1
ϕ |2 vg

+ 2

∫
M

m∑
i=1

ei(η)2 |W j−1
ϕ |2 vg. (2.12)

Thus, by (26) and (20), we obtain∫
M
η2

m∑
i=1

|∇eiW j−1
ϕ |2 vg ≤ 4

∫
M
|∇η|2 |W j−1

ϕ |2 vg

≤ 16

r2

∫
M
|W j−1

ϕ |2 vg. (2.13)

(The third step) By definition of η in the first step, (27) turns out that∫
Br(x0)

|∇W j−1
ϕ |2 vg ≤

16

r2

∫
M
|W j−1

ϕ |2 vg. (2.14)

Here, recall our assumption that (M, g) is complete and non-compact, and (1)∫
M |W

j−1
ϕ |2 vg <∞. When we tend r →∞, the right hand side of (26) goes to

zero, and the left hand side of (26) goes to
∫
M |∇W

j−1
ϕ |2 vg. Thus, we obtain

0 ≤
∫
M
|∇W j−1

ϕ |2 vg ≤ 0,

which implies that

∇W j−1
ϕ = 0 (2.15)

everywhere on M .
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(The fourth step) (a) In the case that
∫
M |∇W

j−2
ϕ |2 vg <∞, let us define

a smooth 1-form α on M by

α(X) := 〈W j−1
ϕ ,∇XW j−2

ϕ 〉 (X ∈ X(M)). (2.16)

Then, we have:

div(α) = −|W j−1
ϕ |2. (2.17)

Because we have

div(α) =
m∑
i=1

(∇eiα)(ei)

=

m∑
i=1

{ei(α(ei))− α(∇eiei)}

=
m∑
i=1

{
ei
(
〈W j−1

ϕ ,∇eiW j−2
ϕ 〉

)
− 〈W j−1

ϕ ,∇∇eieiW
j−2
ϕ 〉

}

=
m∑
i=1

{
〈∇eiW j−1

ϕ ,∇eiW j−2
ϕ 〉+ 〈W j−1

ϕ ,∇ei∇eiW j−2
ϕ 〉

− 〈W j−1
ϕ ,∇∇eieiW

j−2
ϕ

}
= 〈W j−1

ϕ ,−∆W j−2
ϕ 〉 (because of (29) and definition of ∆)

= −|W j−1
ϕ |2, (2.18)

which is (31).
Furthermore, we have ∫

M
|α| vg <∞. (2.19)

Because we have, by definition of α in (30),∫
M
|α| vg =

∫
M
|〈W j−1

ϕ ,∇W j−2
ϕ 〉| vg

≤
(∫

M
|W j−1

ϕ |2 vg
) 1

2
(∫

M
|∇W j−2

ϕ |2 vg
) 1

2

<∞ (2.20)

because of our assumptions
∫
M |W

j−1
ϕ |2 vg < ∞ and

∫
M |∇W

j−2
ϕ |2 vg < ∞.

Thus, we can apply Gaffney’s theorem to this α (cf. [10], and Theorem 4.1 in
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Appendix in [25]). We obtain

0 =

∫
M

div(α) vg = −
∫
M
|W j−1

ϕ |2 vg, (2.21)

which implies that W j−1
ϕ = 0.

(b) In the case that Vol(M, g) =∞, we first notice that |W j−1
ϕ |2 is constant

on M , say C0. Because for every X ∈ X(M), we have

X |W j−1
ϕ |2 = 2 〈∇XW j−1

ϕ ,W j−1
ϕ 〉 = 0 (2.22)

due to (29). Then, due to the assumption (1) of Proposition 1, and the above,
we obtain

∞ >

∫
M
|W j−1

ϕ |2 vg = C0

∫
M
vg = C0 Vol(M, g). (2.23)

By our assumption that Vol(M, g) = ∞, (37) implies that C0 = 0. We obtain
W j−1
ϕ ≡ 0. We obtain Proposition 1. QED

Proof of Theorem 6. We apply Proposition 1 to our map ϕ : (M, g) →
(N,h), then the iteration procedure works well since ϕ is k-harmonic, i.e., W k

ϕ =

0. Then, we have W k−1
ϕ = 0, and then we have W k−2

ϕ = 0, etc. Finally, we obtain
τ(ϕ) = W 1

ϕ = 0. Thus, ϕ : (M, g) → (N,h) is harmonic. We obtain Theorem
6. QED
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