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1 Introduction

The Ulam stability problem of functional equation [1] have been extended to
different kinds of equations such as ordinary differential equations, integral equa-
tions, difference equations, fractional differential equations and Partial differen-
tial equations. In the past recent years, several authors proved the Ulam–Hyers
and Ulam–Hyers–Rassias stabilities of various forms of differential and integrod-
ifferential equations by utilizing different techniques [2, 3, 4, 5, 6, 7, 10, 11, 12].

Rus [8] and Akkouchi et al. [9] by utilizing the tools of Gronwall inequal-
ity and fixed point technique, investigated the Ulam–Hyers and Ulam–Hyers–
Rassias stabilities of ordinary semilinear differential equations in Banach space

x′(t) = Ax(t) + f(t, x(t)), t ∈ I = [a, b] or [a,+∞),
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68 K. D. Kucche, P. U. Shikhare

where A : X → X is the infinitesimal generator of C0-semigroup {T (t)}t≥0 in a
Banach space (X, ‖ · ‖) (see[16], [19]).

Recently, Kucche and Shikhare [13] by employing Pachpatte’s inequality
extended the study of [8, 9] to semilinear Volterra integrodifferential equations

x′(t) = Ax(t) + f

(
t, x(t),

∫ t

0

g(t, s, x(s))ds

)
, t ∈ J = [0, b] or [0,+∞), (1.1)

and semilinear Volterra delay integrodifferential equations

x′(t) = Ax(t) + f

(
t, xt,

∫ t

0

g(t, s, xs)ds

)
, t ∈ J = [0, b] or [0,+∞), (1.2)

in a Banach space.
Inspired by the work mentioned above, in this paper, by employing Pach-

patte’s inequality and its extended version, we investigate the Ulam–Hyers and
Ulam–Hyers–Rassias stabilities of semilinear Volterra–Fredholm delay integrod-
ifferential equations (VFDIDE)

x′(t) = Ax(t) + f

(
t, xt,

∫ t

0

g1(t, s, xs)ds,

∫ b

0

g2(t, s, xs)ds

)
, t ∈ J = [0, b], 0 < b <∞,

(1.3)

in a Banach space (X, ‖ · ‖), where A : X → X is the infinitesimal generator of
C0-semigroup {T (t)}t≥0, f : J×C×X×X → X and gi : J×J×C → X (i = 1, 2)
are given continuous nonlinear functions, C = C([−r, 0], X) is the Banach space
of continuous functions endowed with supremum norm ‖ · ‖C , B = C([−r, b], X)
is the Banach space of all continuous functions with supremum norm ‖ · ‖B
and for any x ∈ B, t ∈ [0, b] we denote by xt the element of C defined by
xt(θ) = x(t+ θ), θ ∈ [−r, 0].

The novelty of this paper is that by applying the Pachpatte inequality, we
have obtained Ulam–Hyers and Ulam–Hyers–Rassias stability results for more
general equation (1.3) with the only Lipschitz type conditions on the functions
f and gi (i = 1, 2) involved in the equation. Further, the results obtained in this
paper includes the study of [8] and [9] (when r = 0, gi = 0 (i = 1, 2)), [2] (when
A = 0, r = 0, gi = 0 (i = 1, 2)), [13] (when g2 = 0) and also may be regarded
as generalization of some of the results obtained in [3], [5] and [6].

We remark that the existence, uniqueness and other qualitative properties
of the variants of equation (1.3) with initail condition x(t) = φ(t), t ∈ [−r, 0]
have been studied by Kucche et al. [14, 15].

The paper is organized as follows. In section 2, we give definitions and the
statements of the theorem that are utilized in this paper. In Section 3, vari-
ant of Pachpatte’s inequality is derived. Section 4 deals with Ulam–Hyers and
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Ulam–Hyers–Rassias stabilities of nonlinear Volterra–Fredholm delay integrod-
ifferential equations. Finally in Section 5, examples are given to illustrate our
main results.

2 Preliminaries

Definition 2.1. Let {T (t)}t≥0 is a C0- semigroup of bounded linear oper-
ators in X with infinitesimal generator A. Then a continuous function which
satisfies the integral equations

x(t) = T (t)φ(0) +

∫ t

0

T (t− s)f

(
s, xs,

∫ s

0

g1(s, τ, xτ )dτ,

∫ b

0

g2(s, τ, xτ )dτ

)
ds, t ∈ J,

x(t) = φ(t), t ∈ [−r, 0].

is called a mild solution of initial value problem

x′(t) = Ax(t) + f

(
t, xt,

∫ t

0

g1(t, s, xs)ds,

∫ b

0

g2(t, s, xs)ds

)
, t ∈ J = [0, b], 0 < b <∞,

x(t) = φ(t), t ∈ [−r, 0].

Theorem 2.1 ([16]). Let {T (t)}t≥0 is a C0- semigroup. There exists con-
stant ω ≥ 0 and M ≥ 1 such that ‖T (t)‖ ≤Meωt, 0 < t <∞.

For the details on C0- semigroup theory, we refer to the monographs of Pazy
[16] and Engel and Nagel [19].

To establish Ulam–Hyers stabilities for VFDIDE (1.3) we need the following
integral inequality investigated by B. G. Pachpatte.

Theorem 2.2 ([17], p-47). Let z(t), u(t), v(t), w(t) ∈ C([α, β], R+) and
k ≥ 0 be a real constant and

z(t) ≤ k +

∫ t

α

u(s)

[
z(s) +

∫ s

α

v(σ)z(σ)dσ +

∫ β

α

w(σ)z(σ)dσ

]
ds, for t ∈ [α, β].

If

r∗ =

∫ β

α

w(σ) exp

(∫ σ

α

[u(τ) + v(τ)]dτ

)
dσ < 1,

then

z(t) ≤ k

1− r∗
exp

(∫ t

α

[u(s) + v(s)]ds

)
, for t ∈ [α, β].
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3 A Variant of Pachpatte’s inequality

The following corollary is the variant of the Pachpatte’s inequality given in
Theorem 2.2. It’s proof is very close to the proof of Theorem 1.7.4 ([18], page 39)
and can be completed on similar line. The variant of the Pachpatte’s inequality
established below will be utilized to obtain Ulam–Hyers–Rassias stabilities for
VFDIDE (1.3).

Corollary 24. Let z(t), u(t), v(t), w(t) ∈ C([α, β], R+) and n(t) be a
positive and nondecreasing continuous function defined on [α, β] for which in-
equality

z(t) ≤ n(t) +

∫ t

α

u(s)

[
z(s) +

∫ s

α

v(σ)z(σ)dσ +

∫ β

α

w(σ)z(σ)dσ

]
ds, for t ∈ [α, β].

(3.1)

If

r∗ =

∫ β

α

w(σ) exp

(∫ σ

α

[u(τ) + v(τ)]dτ

)
dσ < 1,

then

z(t) ≤ n(t)

1− r∗
exp

(∫ t

α

[u(s) + v(s)]ds

)
, for t ∈ [α, β].

Proof. Noting that n(t) be a positive and nondecreasing continuous function
defined on [α, β] and α ≤ σ ≤ s ≤ t ≤ β, from inequality (3.1) we have

z(t)

≤ n(t) +

∫ t

α

u(s)z(s)ds+

∫ t

α

u(s)

(∫ s

α

v(σ)z(σ)dσ

)
ds+

∫ t

α

u(s)

(∫ β

α

w(σ)z(σ)dσ

)
ds

= n(t) +

∫ t

α

u(s)
z(s)

n(s)
n(s)ds+

∫ t

α

u(s)

(∫ s

α

v(σ)
z(σ)

n(σ)
n(σ)dσ

)
ds

+

∫ t

α

u(s)

(∫ β

α

w(σ)
z(σ)

n(σ)
n(σ)dσ

)
ds

≤ n(t) +

∫ t

α

u(s)
z(s)

n(s)
n(t)ds+

∫ t

α

u(s)

(∫ s

α

v(σ)
z(σ)

n(σ)
n(t)dσ

)
ds

+

∫ t

α

u(s)

(∫ β

α

w(σ)
z(σ)

n(σ)
n(t)dσ

)
ds

= n(t)

[
1 +

∫ t

α

u(s)
z(s)

n(s)
ds+

∫ t

α

u(s)

(∫ s

α

v(σ)
z(σ)

n(σ)
dσ

)
ds

+

∫ t

α

u(s)

(∫ β

α

w(σ)
z(σ)

n(σ)
dσ

)
ds

]
.
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Therefore

z(t)

n(t)
≤ 1 +

∫ t

α

u(s)

[
z(s)

n(s)
+

∫ s

α

v(σ)
z(σ)

n(σ)
dσ +

∫ β

α

w(σ)
z(σ)

n(σ)
dσ

]
ds.

Apply the inequality given in the Theorem 2.2 to above inequality with z(t)
n(t) in

place of z(t) and 1 in place of k to obtain

z(t)

n(t)
≤ 1

1− r∗
exp

(∫ t

α

[u(s) + v(s)]ds

)
, for t ∈ [α, β],

which gives the desired inequality. QED

4 Ulam type stabilities for VFDIDE

The definitions of Ulam type stabilities for VFDIDE are based on the papers
by Rus [2, 8].

Definition 4.1. We say that equation (1.3) has the Ulam–Hyers stability if
there exists a non negative constant C such that for each ε ≥ 0, if y : [−r, b]→ X
in B satisfies∥∥∥∥∥y′(t)−Ay(t)− f

(
t, yt,

∫ t

0

g1(t, s, ys)ds,

∫ b

0

g2(t, s, ys)ds

)∥∥∥∥∥ ≤ ε, t ∈ J, (4.1)

then there exists a solution x : [−r, b]→ X in B of the equation (1.3) with

‖y − x‖B ≤ C ε.

Definition 4.2. We say that equation (1.3) has the generalised Ulam–Hyers
stability if there exists θf ∈ C(R+,R+), θf (0) = 0 such that for each solution
y : [−r, b]→ X in B of (4.1) there exists a solution x : [−r, b]→ X in B of the
equation (1.3) with

‖y − x‖B ≤ θf (ε).

Definition 4.3. We say that equation (1.3) has the Ulam–Hyers–Rassias
stability with respect to a positive nondecreasing continuous function ψ : [−r, b]→
R+, if there exists Cf,ψ ≥ 0 (depending on f and ψ) such that for each ε ≥ 0,
if y : [−r, b]→ X in B satisfies∥∥∥∥∥y′(t)−Ay(t)− f

(
t, yt,

∫ t

0

g1(t, s, ys)ds,

∫ b

0

g2(t, s, ys)ds

)∥∥∥∥∥ ≤ εψ(t), t ∈ J, (4.2)

then there exists a solution x : [−r, b]→ X in B of the equation (1.3) with

‖y(t)− x(t)‖ ≤ Cf,ψ εψ(t),∀ t ∈ [−r, b].
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Definition 4.4. We say that equation (1.3) has the generalised Ulam–
Hyers–Rassias stability with respect to a positive nondecreasing continuous
function ψ : [−r, b] → R+, if there exists Cf,ψ ≥ 0 (depending on f and ψ)
such that if y : [−r, b]→ X in B satisfies∥∥∥∥∥y′(t)−Ay(t)− f

(
t, yt,

∫ t

0

g1(t, s, ys)ds,

∫ b

0

g2(t, s, ys)ds

)∥∥∥∥∥ ≤ ψ(t), t ∈ J, (4.3)

then there exists a solution x : [−r, b]→ X in B of the equation (1.3) with

‖y(t)− x(t)‖ ≤ Cf,ψ ψ(t), ∀ t ∈ [−r, b].

Remark 25. A function y ∈ B is a solution of inequation (4.1) if there
exists a function ay ∈ C(J,X) (which depend on y) such that

(i) ‖ay(t)‖ ≤ ε t ∈ J.

(ii) y
′
(t) = Ay(t) + f

(
t, yt,

∫ t
0 g1(t, s, ys)ds,

∫ b
0 g2(t, s, ys)ds

)
+ ay(t) t ∈ J.

Remark 26. If y ∈ B satisfies inequation (4.1) then y is a solution of the
following integral inequation∥∥∥∥∥y(t)− T (t)y(0)−

∫ t

0

T (t− s)f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)
ds

∥∥∥∥∥
≤ ε

∫ t

0

‖T (t− s)‖ds, t ∈ J. (4.4)

Indeed, if y ∈ B satisfies inequation (4.1), by Remark 25 we have

y
′
(t) = Ay(t) + f

(
t, yt,

∫ t

0

g1(t, s, ys)ds,

∫ b

0

g2(t, s, ys)ds

)
+ ay(t), ∈ J.

This implies that

y(t) = T (t)y(0) +

∫ t

0

T (t− s)

[
f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)
+ ay(s)

]
ds

= T (t)y(0) +

∫ t

0

T (t− s)f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)
ds

+

∫ t

0

T (t− s)ay(s)ds t ∈ J.

Therefore∥∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)
ds

∥∥∥∥∥
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≤
∫ t

0

‖T (t− s)‖‖ay(s)‖ds

≤ ε
∫ t

0

‖T (t− s)‖ds.

One can obtain similar type of estimations for the inequations (4.2) and
(4.3).

4.1 Ulam–Hyers Stability

Theorem 4.1. We suppose that

(i) f ∈ C(J × C ×X ×X;X) and gi ∈ C(J × J × C;X) (i = 1, 2);

(ii) there exists L(·) ∈ C(J,R+) such that

‖f(t, x1, x2, x3)− f(t, y1, y2, y3)‖ ≤ L(t) (‖x1 − y1‖C + ‖x2 − y2‖+ ‖x3 − y3‖) ,

for all t, s ∈ J, x1, y1 ∈ C and x2, x3, y2, y3 ∈ X;

(iii) there exists Gi(·) ∈ C(J,R+) for i = 1, 2 such that

‖gi(t, s, x1)− gi(t, s, y1)‖ ≤ Gi(t) (‖x1 − y1‖C) , ∀ t, s ∈ J, x1, y1 ∈ C.

Then, the VFDIDE (1.3) is Ulam–Hyers stable, provided

q∗ =

∫ b

0

G2(σ) exp

(∫ σ

0

[ML(τ)ew(b−τ) +G1(τ)]dτ

)
dσ < 1. (4.5)

Proof. Let y ∈ B satisfies the inequation (4.1). Let x ∈ B be the mild solution
of the following problem

x′(t) = Ax(t) + f

(
t, xt,

∫ t

0

g1(t, s, xs)ds,

∫ b

0

g2(t, s, xs)ds

)
, t ∈ J,

x(t) = y(t), t ∈ [−r, 0].

Then

x(t) = T (t)y(0) +

∫ t

0

T (t− s)f

(
s, xs,

∫ s

0

g1(s, τ, xτ )dτ,

∫ b

0

g2(s, τ, xτ )dτ

)
ds. (4.6)

Using the Theorem 2.1 and the inequation (4.4), we obtain∥∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)
ds

∥∥∥∥∥
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≤ ε
∫ t

0

‖T (t− s)‖ds ≤ ε
∫ t

0

Meω(t−s)ds =
εM

ω

(
eωt − 1

)
≤ εM

ω

(
eωb − 1

)
≤ εM

ω
eωb, t ∈ J.

From above inequation and the equation (4.6), for any t ∈ J , we have

‖y(t)− x(t)‖

=

∥∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)f

(
s, xs,

∫ s

0

g1(s, τ, xτ )dτ,

∫ b

0

g2(s, τ, xτ )dτ

)
ds

∥∥∥∥∥
≤

∥∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)
ds

∥∥∥∥∥
+

∥∥∥∥∥
∫ t

0

T (t− s)

[
f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)

−f

(
s, xs,

∫ s

0

g1(s, τ, xτ )dτ,

∫ b

0

g2(s, τ, xτ )dτ

)]
ds

∥∥∥∥∥
≤ εM

ω
eωb +

∫ t

0

‖T (t− s)‖

∥∥∥∥∥f
(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)

−f

(
s, xs,

∫ s

0

g1(s, τ, xτ )dτ,

∫ b

0

g2(s, τ, xτ )dτ

)∥∥∥∥∥ ds
≤ εM

ω
eωb +

∫ t

0

Meω(t−s)L(s)

[
‖ys − xs‖C +

∫ s

0

G1(τ) ‖yτ − xτ‖C dτ

+

∫ b

0

G2(τ) ‖yτ − xτ‖C dτ

]
ds.

Consider the function defined by µ(t) = sup{‖(y − x)(s)‖ : s ∈ [−r, t]}, t ∈ J ,
then ‖(y − x)t‖C ≤ µ(t) for all t ∈ J and there is t∗ ∈ [−r, t] such that µ(t) =
‖(y − x)(t∗)‖. Hence for t∗ ∈ [0, t] we have

µ(t) ≤ εM

ω
eωb +

∫ t∗

0

ML(s)eω(b−s)
[
‖(ys − xs)‖C +

∫ s

0

G1(τ) ‖yτ − xτ‖C dτ

+

∫ b

0

G2(τ) ‖yτ − xτ‖C dτ

]
ds

≤ εM

ω
eωb +

∫ t

0

ML(s)eω(b−s)

[
µ(s) +

∫ s

0

G1(τ)µ(τ)dτ +

∫ b

0

G2(τ)µ(τ)dτ

]
ds.

(4.7)

If t∗ ∈ [−r, 0] then µ(t) = 0 and the inequality (4.7) hold obviously, since
M ≥ 1. Applying the Pachpatte inequality given in the Theorem 2.2 to the
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inequation (4.7) with

z(t) = µ(t), k =
εM

ω
eωb, u(t) = ML(t)eω(b−t), v(t) = G1(t) and w(t) = G2(t),

we obtain

µ(t) ≤ ε Meωb

ω(1− q∗)
exp

(∫ t

0

[
L(s)Meω(b−s) +G1(s)

]
ds

)
≤ ε Meωb

ω(1− q∗)
exp

(∫ b

0

[
L(s)Meω(b−s) +G1(s)

]
ds

)
.

Therefore

‖y − x‖B ≤ ε
Meωb

ω(1− q∗)
exp

(∫ b

0

[
L(s)Meω(b−s) +G1(s)

]
ds

)
. (4.8)

Putting C = Meωb

ω(1−q∗) exp
(∫ b

0

[
L(s)Meω(b−s) +G1(s)

]
ds
)

in (4.8), we obtain

‖y − x‖B ≤ εC.

This completes the proof. QED

Corollary 27. Under the assumptions of Theorem 4.1 the VFDIDE (1.3)
is generalized Ulam–Hyers stable, provided that the condition (4.5) is satisfied.

Proof. Define θf (ε) = ε Meωb

ω(1−q∗) exp
(∫ b

0

[
L(s)Meω(b−s) +G1(s)

]
ds
)
, where q∗

is given in condition (4.5). Then we have θf ∈ C(R+, R+), θf (0) = 0 and the
inequation (4.8) takes the form

‖y − x‖B ≤ θf (ε).

This proves (1.3) is generalized Ulam–Hyers stable. QED

4.2 Ulam–Hyers–Rassias Stability

Theorem 4.2. Assume that f and gi (i = 1, 2) satisfy the conditions of
Theorem 4.1. Moreover assume that ψ : [−r, b]→ R+ is positive, nondecreasing,
continuous function and there exists λ > 0 such that∫ t

0
‖T (t− s)‖ψ(s)ds ≤ λψ(t), t ∈ [−r, b].

Then, the equation (1.3) is Ulam–Hyers–Rassias stable with respect to ψ, pro-
vided that the condition (4.5) is satisfied.
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Proof. Let y ∈ B be solution of inequation (4.2) then proceeding as in Remark
26 and using the hypothesis, we have∥∥∥∥∥y(t)− T (t)y(0) +

∫ t

0

T (t− s)f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)
ds

∥∥∥∥∥
≤
∫ t

0

‖T (t− s)‖ ‖ay(s)‖ ds ≤
∫ t

0

‖T (t− s)‖ εψ(s)ds ≤ ελψ(t), t ∈ J. (4.9)

Let us denote by x ∈ B the mild solution of the following problem

x′(t) = Ax(t) + f

(
t, xt,

∫ t

0

g1(t, s, xs)ds,

∫ b

0

g2(t, s, xs)ds

)
, t ∈ J = [0, b],

x(t) = y(t), t ∈ [−r, 0].

Then

x(t) = T (t)y(0) +

∫ t

0

T (t− s)f

(
s, xs,

∫ s

0

g1(s, τ, xτ )dτ,

∫ b

0

g2(s, τ, xτ )dτ

)
ds. (4.10)

Using the equation (4.10) and the inequation (4.9), we have

‖y(t)− x(t)‖

=

∥∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)f

(
s, xs,

∫ s

0

g1(s, τ, xτ )dτ,

∫ b

0

g2(s, τ, xτ )dτ

)
ds

∥∥∥∥∥
≤

∥∥∥∥∥y(t)− T (t)y(0)−
∫ t

0

T (t− s)f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)
ds

∥∥∥∥∥
+

∥∥∥∥∥
∫ t

0

T (t− s)

[
f

(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)

−f

(
s, xs,

∫ s

0

g1(s, τ, xτ )dτ,

∫ b

0

g2(s, τ, xτ )dτ

)]
ds

∥∥∥∥∥
≤ ελψ(t) +

∫ t

0

‖T (t− s)‖

∥∥∥∥∥f
(
s, ys,

∫ s

0

g1(s, τ, yτ )dτ,

∫ b

0

g2(s, τ, yτ )dτ

)

−f

(
s, xs,

∫ s

0

g1(s, τ, xτ )dτ,

∫ b

0

g2(s, τ, xτ )dτ

)∥∥∥∥∥ ds
≤ ελψ(t) +

∫ t

0

Meω(b−s)L(s)

[
‖ys − xs‖C +

∫ s

0

G1(τ) ‖yτ − xτ‖C dτ

+

∫ b

0

G2(τ) ‖yτ − xτ‖C dτ

]
ds.
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Considering the function µ defined in the proof of Theorem 4.1 and proceeding
in similar manner we obtain

µ(t) ≤ ε λψ(t) +

∫ t

0

ML(s)eω(b−s)

[
µ(s) +

∫ s

0

G1(τ)µ(τ)dτ +

∫ b

0

G2(τ)µ(τ)dτ

]
ds.

(4.11)

Applying the inequality given in the Corollary 24 to inequation (4.11) with

z(t) = µ(t), n(t) = ε λψ(t), u(t) = ML(t)eω(b−t), v(t) = G1(t) and w(t) = G2(t),

we obtain

µ(t) ≤ ελψ(t)

1− q∗
exp

(∫ t

0

[
L(s)Meω(b−s) +G1(s)

]
ds

)
≤ ελψ(t)

1− q∗
exp

(∫ b

0

[
L(s)Meω(b−s) +G1(s)

]
ds

)
.

Taking

Cf,ψ =
λ

(1− q∗)
exp

(∫ b

0

[
L(s)Meω(b−s) +G1(s)

]
ds

)
,

we get
µ(t) ≤ εCf,ψ, ψ(t), t ∈ J.

Therefore
‖y(t)− x(t)‖ ≤ εCf,ψ, ψ(t), t ∈ [−r, b].

This proves (1.3) is Ulam–Hyers–Rassias stable with respect to ψ . QED

Corollary 28. Under the assumptions of Theorem 4.1 the VFDIDE (1.3)
is generalized Ulam–Hyers–Rassias stable with respect to ψ, provided that the
condition (4.5) is satisfied.

Proof. Proof follows by taking ε = 1 in the proof of Theorem 4.2. QED

5 Application

We know the following initial value problem for difference equation

x′(t) = Ax(t) + f

(
t, x(t− r),

∫ t

0

g1(t, s, x(s− r))ds,
∫ b

0

g2(t, s, x(s− r))ds

)
, t ∈ [0, b],

(5.1)
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x(t) = φ(t), t ∈ [−r, 0], (5.2)

is the particular case of VFDIDE (1.3) with initial condition x(t) = φ(t), t ∈
[−r, 0]. Thus all the results we obtained in this paper for VFDIDE are also
applicable to the difference equations (5.1)–(5.2).

6 Examples

In this section we present a illustrative example.

Example 6.1. Consider the nonlinear Volterra–Fredholm delay integrodif-
ferential equations in the Banach space (R, |·|) :

x
′
(t) = − 1

80
+

sin(8)

640
+

sin(4)

80
− x(t− 4)

320
+

sin(2x(t− 4))

640
+

1

10

∫ t

0

sin2(x(s− 4))

16
ds

− 1

16

∫ π

0

cos(x(s− 4))

10
ds, t ∈ [0, π], (6.1)

x(t) = t, t ∈ [−4, 0]. (6.2)

Consider the functions gi : [0, 1]× [0, 1]× R→ R for i = 1, 2 are defined by

g1 (t, s, x(s− 4)) =
sin2(x(s− 4))

16
,

g2 (t, s, x(s− 4)) =
cos(x(s− 4))

10
,

and the function f : [0, 1]× R× R× R→ R is defined by

f

(
t, x(t− 4),

∫ t

0

g1(t, s, x(s− 4))ds,

∫ b

0

g2(t, s, x(s− 4))ds

)

= − 1

80
+

sin(8)

640
+

sin(4)

80
− x(t− 4)

320
+

sin(2x(t− 4))

640
+

1

10

∫ t

0

sin2(x(s− 4))

16
ds

− 1

16

∫ π

0

cos(x(s− 4))

10
ds.

Then the initial value problem (6.1)–(6.2) can be written in the form of (5.1)–
(5.2) with infinitsimal generator A = 0.

Note that:

(i) For any t, s ∈ [0, π] and x1, y1 ∈ R, we have

|g1(t, s, x1)− g1(t, s, y1)| ≤ 1

16

∣∣sin2 x1 − sin2 y1
∣∣ ≤ 1

8
|x1 − y1| .
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(ii) For any t, s ∈ [0, 1] and x1, y1 ∈ R, we have

|g2(t, s, x1)− g2(t, s, y1)| ≤ 1

10
|cosx1 − cos y1| ≤

1

10
|x1 − y1| .

(iii) For any t, s ∈ [0, 1] and x1, y1, x2, y2, x3, y3 ∈ R, we have

|f(t, s, x1, x2, x3)− f(t, s, y1, y2, y3)| ≤ 1

10
{|x1 − y1|+ |x2 − y2|+ |x3 − y3|} .

The functions f, g1 and g2 in the equation (6.1) verifies the assumption with
L(t) = 1

10 , G1(t) = 1
8 , G2(t) = 1

10 . Note that for the infinitesimal generator
A = 0 the C0 semigroup is T (t) = 1, t ≥ 0 and the corresponding constants in
the Theorem 2.1 are M = 1, ω = 0. Thus we have,

q∗ =

∫ b

0

G2(σ) exp

(∫ σ

0

[ML(τ)eω(b−τ) +G1(τ)]dτ

)
dσ

=

∫ b

0

G2(σ) exp

(∫ σ

0

[L(τ) +G1(τ)]dτ

)
dσ

=

∫ π

0

1

10
exp

(∫ σ

0

[
1

10
+

1

8

]
dτ

)
dσ = 0.456716 < 1.

Therefore by the Theorem 4.1 the equation (6.1) is Ulam–Hyres stable on [0, π].
We now discuss the Ulam–Hyres stability of the equation (6.1) by showing

that given any values of ε > 0 and given solutions y(t) of the inequations∣∣∣∣∣y′(t)− f
(
t, y(t− 4),

∫ t

0

g1(t, s, y(s− 4))ds,

∫ b

0

g2(t, s, y(s− 4))ds

)∣∣∣∣∣ < ε (6.3)

there is a solution x(t) of equation (6.1) satisfying the inequation

|y(t)− x(t)| < Cε, t ∈ [−4, π].

One can veryify that x(t) = t, t ∈ [−4, π] is solution of the intial value problem
(6.1)–(6.2).

(i) Choose ε = 0.55 and y1(t) =

{
t
2 if t ∈ [0, π],

t if t ∈ [−4, 0].
Then for t ∈ [0, π], we

have ∣∣∣∣∣y′1(t)− f

(
t, y1(t− 4),

∫ t

0

g1(t, s, y1(s− 4))ds,

∫ b

0

g2(t, s, y1(s− 4))ds

)∣∣∣∣∣
=

∣∣∣∣y′1(t) +
1

80
− sin(8)

640
− sin(4)

80
+
y1(t− 4)

320
− sin(2y1(t− 4))

640

− 1

10

∫ t

0

sin2(y1(s− 4))

16
ds+

1

16

∫ π

0

cos(y1(s− 4))

10
ds

∣∣∣∣
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=

∣∣∣∣∣∣12 +
1

80
− sin(8)

640
− sin(4)

80
+
t− 4

640
− sin(t− 4)

640
− 1

10

∫ t

0

sin2
(

(s−4)
2

)
16

ds

+
1

16

∫ π

0

cos
(

(s−4)
2

)
10

ds

∣∣∣∣∣∣ ≤ 0.511872 < ε.

For the solution x(t) = t of (6.1)–(6.2) and constant C = 3 we have

|y1(t)− x(t)| =
∣∣∣∣t− t

2

∣∣∣∣ ≤ π

2
< Cε, t ∈ [0, π],

and

|y1(t)− x(t)| = 0, t ∈ [−4, 0].

Therefore

|y1(t)− x(t)| < Cε, t ∈ [−4, π].

(ii) Choose ε = 2.3 and y2(t) =

{
2t if t ∈ [0, π],

t if t ∈ [−4, 0].
Then for t ∈ [0, π], we have

∣∣∣∣∣y′2(t)− f

(
t, y2(t− 4),

∫ t

0

g1(t, s, y2(s− 4))ds,

∫ b

0

g2(t, s, y2(s− 4))ds

)∣∣∣∣∣
=

∣∣∣∣y′2(t) +
1

80
− sin(8)

640
− sin(4)

80
+
y2(t− 4)

320
− sin(2y2(t− 4))

640

− 1

10

∫ t

0

sin2(y2(s− 4))

16
ds+

1

16

∫ π

0

cos(y2(s− 4))

10
ds

∣∣∣∣
=

∣∣∣∣2 +
1

80
− sin(8)

640
− sin(4)

80
+
t− 4

640
− sin(4(t− 4))

640
− 1

10

∫ t

0

sin2(2(s− 4))

16
ds

+
1

16

∫ π

0

cos(2(s− 4))

10
ds

∣∣∣∣ ≤ 2.0478 < ε.

For the solution x(t) = t of (6.1)–(6.2) and constant C = 1.4 we have

|y2(t)− x(t)| = |2t− t| ≤ π < Cε, t ∈ [0, π],

and

|y2(t)− x(t)| = 0, t ∈ [−4, 0].

Therefore

|y2(t)− x(t)| < Cε, t ∈ [−4, π].
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(iii) Choose ε = 6.5 and y2(t) =

{
t2 if t ∈ [0, π],

t if t ∈ [−4, 0].
Then for t ∈ [0, π], we have

∣∣∣∣∣y′3(t)− f

(
t, y3(t− 4),

∫ t

0

g1(t, s, y3(s− 4))ds,

∫ b

0

g2(t, s, y3(s− 4))ds

)∣∣∣∣∣
=

∣∣∣∣y′3(t) +
1

80
− sin(8)

640
− sin(4)

80
+
y3(t− 4)

320
− sin(2y2(t− 4))

640

− 1

10

∫ t

0

sin2(y3(s− 4))

16
ds+

1

16

∫ π

0

cos(y3(s− 4))

10
ds

∣∣∣∣
=

∣∣∣∣2t+
1

80
− sin(8)

640
− sin(4)

80
+

(t− 4)2

320
− sin(2(t− 4)2)

640
− 1

10

∫ t

0

sin2((s− 4)2)

16
ds

+
1

16

∫ π

0

cos((s− 4)2)

10
ds

∣∣∣∣
≤ 6.29242 < ε.

For the solution x(t) = t of (6.1)–(6.2) and constant C = 2.2 we have

|y3(t)− x(t)| =
∣∣t− t2∣∣ < Cε, t ∈ [0, π],

and

|y1(t)− x(t)| = 0, t ∈ [−4, 0].

Therefore

|y1(t)− x(t)| < Cε, t ∈ [−4, π].

We conclude that corresponding to given values of ε and given solutions y(t) of
the inequation (6.3), we are able to find the the exact solution x(t) of equation
(6.1) satisfying |y(t) − x(t)| ≤ C ε, t ∈ [−4, π]. Hence equation (6.1) is Ulam–
Hyres stable on [−4, π].
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